Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo[2,1-b]thiazoles in EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O green medium

Anu Mishraa, Madhulika Srivastavaa, Pratibha Raia, Snehlata Yadava, Bhartendu Pati Tripathia, Jaya Singhb and Jagdamba Singh*a
aEnvironmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India. E-mail: dr.jdsau@gmail.com; Tel: +91 9415218507
bDepartment of Chemistry, LRPG College, Sahibabad, Uttar Pradesh, India. E-mail: nimesh.singh@in.abb.com

Received 29th February 2016 , Accepted 2nd May 2016

First published on 4th May 2016


Abstract

The development of a visible light promoted, mild and greener approach for the synthesis of highly functionalized thiazoles and imidazo[2,1-b]thiazoles under photochemical activation in EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O green medium is demonstrated. The characteristic feature of the present protocol is the utilization of visible light (an omnipresent, nontoxic, environmentally benign and inexpensive reagent) to form C–S and C–N bonds and circumvent the use of catalysts or photosensitizers. The reported protocol is the first example of visible light promoted synthesis of thiazoles and imidazo[2,1-b]thiazoles with various attractive features like being catalyst free, eco-efficient and possessing cost effectiveness, short reaction time, excellent yields and sustainability to fulfill the parameters of green chemistry.


Introduction

Increasing need is the key to new inventions which lead to new thoughts and new creations. The frequent use of hazardous solvents and metal catalysts in the laboratory pollutes our environment severely. Researchers and scientists are thus shifting their focus towards maximum environmentally benign and sustainable utilization of resources which is capable of being maintained at a steady level without causing ecological damage or exhausting natural resources.1 The development of visible light mediated synthesis has been recognised as a prominent route for a number of organic transformations2 because of its ability to provide activation energy to the reactant in the chemical reactions. Light is an abundant, easily handled, renewable energy source as well as a valuable tool for a myriad of green chemical reactions and thus has attracted much attention.3 Chemists have successfully performed a variety of visible light induced reactions and achieved their goals. Several research groups have used compact fluorescent light (CFL) and light emitting diodes (LEDs) as a visible light source for the formation of the target compound. Easy availability, simple handling, cost effectiveness and a safe approach, places this method under the heading of green chemistry.4

There are several organic molecules which are unable to absorb visible light.5 To overcome this barrier chemists use photo sensitizers and photo catalysts. In literature different methods have been reported which incorporate the transition metals, certain organic dyes and nanoparticles as a photocatalyst.6 However a number of disadvantages associated with transition metal photocatalyst as it shows adverse inherent malignancy, short durability and expensiveness.7 At present, many nanoparticles like ZnO/γ-Mn2O3,8a ZnO/CdO,8b ZnO/V2O5,8c ZnO/Ag/Mn2O3[thin space (1/6-em)]8d and electrospun nanomaterials8e which also act as photocatalytic substances and fruitful for degradation of several textile eluent, organic dyes and organic pollutants. But still nanoparticles exhibit drawbacks as large band gap,8f depletion of crystallinity8g which consequence less efficiency. Within this context a catalyst free synthesis using green solvent medium in various synthetic processes has emerged as an important tool.9

Thiazole and its derivatives are present in innumerable natural compounds such as in epithilone, thiostrepton, TPP (a coenzyme of Krebs cycle), carboxylase vitamin B1 and antibiotics (penicillin),10 with significant medicinal and biological importance. Thiazoles are largely associated with medicinal chemistry exhibiting vast applications in drug development for the treatment of allergies,11 inflammation,12 HIV infections,13 hypertension,14 bacterial infections,15 hypnotics,16 schizophrenia17 and treatment of pain,18 as new inhibitors of bacterial DNA gyrase B19 and as fibrinogen receptor antagonists with antithrombotic activity.20 They express tremendous biological activities such as being antitumor,21 antifungal,22 antimicrobial,23 anti-inflammatory,24 antitubercular,25 anticonvulsant,26 diuretic,27 neuroprotective and having antioxidant activity28 (Fig. 1).29


image file: c6ra05385h-f1.tif
Fig. 1 Some medicinally important derivatives of thiazole and imidazothiazole.29a–j

Numerous protocols for the synthesis of thiazoles30 and imidazothiazoles31 using various types of catalysts and different reaction conditions have been developed. Though the reported methods have several advantages, there are certain drawbacks associated with these methods example long reaction time, use of costly catalyst, difficulty in the recovery of high boiling solvent, low yield of the product, limited availability of starting material, non-reusability of catalyst and solvent. Thus there was a need to design a more eco-efficient method for the synthesis of thiazoles. In continuation of our previous work,32 we were encouraged to develop a more sustainable process for the synthesis of the target scaffold which involved a visible light induced reaction without the use of a catalyst for the completion of the reaction. Mild reaction conditions make it a more relevant, efficient and a cleaner methodology for the synthesis of the target scaffold (Scheme 1).


image file: c6ra05385h-s1.tif
Scheme 1 Synthesis of thiazoles (3) and (5) derivatives.

For optimization studies of visible light mediated two component synthesis of thiazoles and imidazothiazoles, we carried out two different sets of reactions by the use of phenacyl bromide (1a), N-phenylthiourea (2a) and 2-aminothiazole (4a) as reactants. Condensation of phenacyl bromide (1a, 1 mmol) and N-phenylthiourea (2a, 1 mmol) and condensation of phenacyl bromide (1a, 1 mmol) and 2-aminothiazole (4a, 1 mmol) have been taken as model reactions for the synthesis of different types of thiazoles. During optimization we examined the effect of different solvents, different intensities of light sources and catalysts under different experimental conditions to obtain the best condition for the above transformation (Table 1). In our initial endeavour, we took two reaction mixtures with 1.0 mmol of each reactant in ethanol using CFL (24 W) irradiation as a source of visible light. Under this condition, the condensation of phenacyl bromide (1a) and N-phenyl thiourea (2a) gave the product (3aa) with 85% yield within 10 minutes and condensation of phenacyl bromide (1a) and 2-aminothiazole (4a) afforded the product (5aa) with 55% yield within 5 h (Table 1, entry 8). An interesting result was obtained by the condensation of (1a) and (2a). Immediate formation of product (3aa) took place on addition of second reactant, confirmed by TLC analysis but pure product was formed after 10 minutes. When the same model reactions were performed under catalyst free conditions in a variety of other non-polar traditional organic solvents at rt, they resulted in lower yield of the product. In case of DCM and THF the reaction mixture showed the non-consumption of the starting reactant materials on TLC and resulted in moderate yield of the product (3aa). However, product (5aa) was not formed in case of DCM within 5 h (Table 1, entry 4) and took almost 24 h of CFL irradiation and resulted in trace amount of product (5aa), in case of THF product (5aa) afforded very poor yield of the product (Table 1, entry 2). In case of toluene there was a solubility concern of reactant (2) and that's why it afforded a very low, 15% yield of product (3aa). However product (5aa) was not formed within 5 h and took almost 24 h of CFL irradiation to get the trace amount of the product (5aa). In order to increase the yield of the product we next performed our synthesis in polar solvents like methanol and ethanol. Interestingly there occurred an increase in yield of the product (3aa) and (5aa). Now our complete focus on further improvement of the reaction with respect to time. When we used methanol a small amount of phenacyl bromide (1a) and N-phenyl thiourea (2a) remained unutilized after 10 minutes resulted 80% yield of the product (Table 1, entry 7), moreover the pure product (3aa) was formed after 1 h with 90% yield; while in case of ethanol, a considerable decrease in reaction time was observed and pure product was formed with 85% yield (Table 1, entry 8) within 10 minutes. After that we tried mixed solvent system of EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O to carry out the above transformation and found that EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O solvent system proved successful in increasing the yield of the product (Table 1, entries 9–12). The utility of ethanol and water is to increase the solubility of reactants and in turn, the yield of the product. It is also hypothesized that the transition states of the above reaction would be stabilized by water because of its high static permittivity.33 The increased yield of product in EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O solvent system may be due to the hydrophobic nature of reactant (1) and (4) in water. This leads to an increase in the number of collisions between reactants and results in increasing their ground state energy as well as the reaction rates. In order to further increase the efficiency of the reaction we used different ratio of EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O solvent system and discovered that (4[thin space (1/6-em)]:[thin space (1/6-em)]1) combination gives the best result (Table 1, entry 12). At this stage, in quest of eco-friendlier conditions, both the test reactions were carried out in neat condition without the use of a catalyst.34 No reaction was observed (Table 1, entry 13). A catalyst free synthesis using EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (4[thin space (1/6-em)]:[thin space (1/6-em)]1) as a solvent is a considerably cost effective, safer and environmentally benign method for the above transformation.

Table 1 Optimization table of solventa

image file: c6ra05385h-u1.tif

Entry Solvent Time (min) Yieldb (3aa) Time (h) Yieldb (5aa)
a Reaction conditions: 1a (1.0 mmol), 2a (1.0 mmol) in solvent were irradiated under open air at room temperature using CFL (24 W).b Isolated yield of the product (%).c Not detected.
1 Toluene 10 15 5 c
2 THF 10 65 5 15
3 Benzene 10 50 5 c
4 DCM 10 73 5 c
5 DMSO 10 75 5 28
6 CH3CN 10 77 5 Trace
7 Methanol 10 80 5 45
8 EtOH 10 85 5 55
9 EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 10 86 5 55
10 EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (2[thin space (1/6-em)]:[thin space (1/6-em)]1) 10 86 5 57
11 EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (3[thin space (1/6-em)]:[thin space (1/6-em)]1) 10 93 5 59
12 EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (4[thin space (1/6-em)]:[thin space (1/6-em)]1) 10 95 5 60
13 Neat 10 c 5 c


After the realisation of the best solvent system for the synthesis of thiazoles, we investigated different sources and intensities of visible light irradiation by performing a series of reactions using CFL light (18 W and 20 W) and LEDs (white 7 W). It was found that when we performed the reaction in compact fluorescent lamp (CFL, 24 W) in place of LEDs, the product formed readily (Table 2, entry 1 and 8). However in the absence of visible light, the rate of formation of product significantly decreases (Table 2, entry 2 and 3). We further performed our test reaction with photoredox catalyst, eosin Y which is activated by irradiating visible light. It was seen that although the reaction initially completed a bit faster with 0.5 mol% and 1 mol% of eosin Y, but the difference in final yield of the product was marginal (Table 2, entries 1, 9 and 10). Therefore we selected a catalyst free condition for the required transformation. The presence of oxygen as an oxidant was important for the formation of the desired product since the product was formed in traces in the absence of oxygen (Table 2, entries 4 and 5). Moreover, the reaction was inhibited with benzoquinone (2 mmol) (Table 2, entry 11) in optimized state, which indicates that there may be radical intermediates involved in the reaction.35

Table 2 Optimization table of reaction conditionsa

image file: c6ra05385h-u2.tif

Entry Reaction condition Time (min) Yieldb (3aa) Time (h) Yieldb (5aa)
a Reaction condition: 1a (1.0 mmol), 2a (1.0 mmol) in ethanol[thin space (1/6-em)]:[thin space (1/6-em)]water irradiated using CFL under open air at room temperature.b Isolated yield of the product (%).c Not detected.d 2 mmol.
1 24 W, CFL, air, no catalyst 10 95 5 60
2 Daylight, air, no catalyst 10 43 5 18
3 No light, air, no catalyst 10 34 5 10
4 CFL, degassed 10 54 5 c
5 CFL, N2 10 36 5 c
6 20 W, CFL, air, no catalyst 10 87 5 52
7 18 W, CFL, air, no catalyst 10 80 5 40
8 White LED (7 W), no catalyst 10 76 5 23
9 CFL, air, eosin Y (0.5 mol%) 10 96 5 60
10 CFL, air, eosin Y (1 mol%) 10 96 5 60
11 CFL, air, benzoquinoned 10 52 5 16


Once the optimal conditions had been finalised the scope and limitations of the developed synthetic strategy was explored by the use of a series of different derivatives of phenacyl bromides (1), thiourea (2) and thiazoles (4). It was observed that the use of phenacyl bromide (1) bearing an electron withdrawing group showed a significant effect on the yield of the product. Similarly, use of thiourea with or without phenyl ring affected the yield of the product; thiourea bearing phenyl ring as a substituent increases the yield of the product, the product being free from the need of purification. In case of thiourea purification is necessary to obtain the pure product and the yield of the product also is less as compared to that in the case of N-phenyl thiourea (Tables 3 and 4).

Table 3 Substrate scopea (3)

image file: c6ra05385h-u6.tif

Entry Phenacyl bromide (1) Thiourea (2) Product (3) Time (min) Yieldb (%)
a All reactions were carried out in EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (4[thin space (1/6-em)]:[thin space (1/6-em)]1) in the presence of visible light irradiation using a 24 W CFL at room temperature under air.b Isolated yield of the product (%).
1 a a 3aa 08 95
2 a b 3ab 10 88
3 b a 3ba 10 85
4 b d 3bd 10 82
5 b b 3bb 10 82
6 c a 3ca 09 87
7 c b 3cb 09 85
8 d a 3da 05 96
9 d b 3db 05 94
10 e a 3ea 07 94
11 e c 3ec 07 94
12 e b 3eb 09 90
13 f a 3fa 09 89
14 f b 3fb 10 87
15 f c 3fc 08 89
16 a e 3ae 10 81


Table 4 Substrate scopea (5)

image file: c6ra05385h-u7.tif

Entry Phenacyl bromide (1) 2-Aminothiazole (4) Product (5) Time (h) Yieldb (%)
a All reactions were carried out in EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (4[thin space (1/6-em)]:[thin space (1/6-em)]1) in the presence of visible light irradiation using a 24 W CFL at room temperature under air.b Isolated yield of the product (%).
1 a a 5aa 5.0 60
2 f b 5fb 5.5 59
3 d b 5db 5.0 61
4 g b 5gb 6.5 50
5 a c 5ac 6.5 53
6 c c 5cc 6.5 55
7 e c 5ec 6.5 53



image file: c6ra05385h-u3.tif


image file: c6ra05385h-u4.tif


image file: c6ra05385h-u5.tif

Mechanism

On the basis of literature surey,36–38 a plausible mechanistic pathway for the synthesis of different types of thiazoles has been proposed. The reaction was initiated by [1,3]tautomerism in reactants (2) and (4). Then visible light promoted homolytic fission of the C–Br bond of phenacyl bromide, S–H bond of N-phenyl thiourea (Scheme 2) and N–H bond of 2-amino thiazole (Scheme 3) takes place resulting to free radicals (A), (B), (C) respectively. After that radical (A) combines with (B) (Scheme 2) and radical (A) combines with (C) (Scheme 3) to give (D) and (E), respectively as mentioned in the mechanism. A homolytic cleavage of carbonyl carbon supported by hydrogen free radical and similar cleavage of N–H bond supported by bromine free radical takes place. Finally the newly formed free radicals (F) and (G) coalesce to form the desired product (3) and (5) via cyclization followed by removal of H2O molecule.
image file: c6ra05385h-s2.tif
Scheme 2 Plausible mechanism for the synthesis of thiazole derivatives.

image file: c6ra05385h-s3.tif
Scheme 3 Plausible mechanism for the synthesis of imidazo[2,1-b]thiazole derivatives.

Conclusion

In summary, we have disclosed a visible-light-induced synthetic strategy to attain a facile synthesis of biologically and medicinally important thiazoles (3) and imidazo-thiazoles (5) via oxidative coupling of phenacyl bromide (1) with thiourea (2) and 2-amino thiazole (4) without the use of heat, base, ligands or an additional oxidant. The present protocol has been applied to the rapid synthesis of products (3) and (5) using commercially available substrates, without the use of hazardous chemicals, catalysts or harsh reaction conditions. The extension of methodology can be examined with a variety of phenacyl bromide derivatives as well as with thiourea and 2-amino thiazole derivatives. Utilization of visible light, eco-efficiency, cost-effectiveness, use of greener reagent, no requirement of bases and catalysts, use of mixed solvent system of EtOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O, experimental feasibility, short reaction time, easy workup and high yields of the product makes this protocol attractive and superior to the proposed other methods.

Acknowledgements

We sincerely thank SAIF, Punjab University, Chandigarh, for providing micro-analyses and spectra. The author A. Mishra is thankful to UGC, New Delhi, for the award of Junior Research Fellowship (JRF), authors M. Srivastava and P. Rai are thankful to UGC, New Delhi, for the award of Senior Research Fellowship (SRF). B. P. Tripathi and S. Yadav are also thankful to UGC, New Delhi for Research fellowship.

References

  1. (a) P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998 Search PubMed; (b) M. Eissen, J. O. Metzger, E. Schmidt and V. Schneidewind, Angew. Chem., Int. Ed., 2002, 41, 414 CrossRef CAS; (c) I. T. Horvath, Special Topic Issue on Green Chemistry: Acc. Chem. Res., 2002, 35, 685 Search PubMed.
  2. (a) G. Ciamician, Science, 1912, 36, 385 CAS; (b) A. Albini and M. Fagnoni, Green Chem., 2004, 6, 1 RSC.
  3. (a) K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 9785 CrossRef CAS PubMed; (b) J. M. R. Narayanam and C. R. Stephenson, Chem. Soc. Rev., 2011, 40, 102 RSC.
  4. (a) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886 CrossRef CAS PubMed; (b) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756 CrossRef CAS PubMed.
  5. K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 2 CrossRef PubMed.
  6. (a) L. Huang and J. Zhao, RSC Adv., 2013, 3, 23377 RSC; (b) S. Guo, H. Zhang, L. Huang, Z. Guo, G. Xiong and J. Zhao, Chem. Commun., 2013, 49, 8689 RSC; (c) J. Zhao, W. Wu, J. Sun and S. Guo, Chem. Soc. Rev., 2013, 42, 5323 RSC; (d) D. Hari, J. Am. Chem. Soc., 2012, 134, 2958 CrossRef CAS PubMed; (e) D.-T. Yang, Q.-Y. Meng, J.-J. Zhong, M. Xiang, Q. Liu and L.-Z. Wu, Eur. J. Org. Chem., 2013, 7528 CrossRef CAS; (f) M. Mjek, F. Filace and A. J. V. Wangelin, Beilstein J. Org. Chem., 2014, 10, 981 CrossRef PubMed.
  7. (a) A. K. Yadav and L. D. S. Yadav, Tetrahedron Lett., 2014, 55, 1788 CrossRef; (b) V. P. Srivastava, A. K. Yadav and L. D. S. Yadav, Synlett, 2014, 625 Search PubMed; (c) T. Keshari, V. K. Yadav, V. P. Srivastava and L. D. S. Yadav, Green Chem., 2014, 16, 3986 RSC.
  8. (a) R. Saravanan, V. K. Gupta, V. Narayanan and A. Stephen, J. Taiwan Inst. Chem. Eng., 2014, 45, 1910 CrossRef CAS; (b) R. Saravanan, H. Shankar, T. Prakash, V. Narayanan and A. Stephen, Mater. Chem. Phys., 2011, 125, 277 CrossRef CAS; (c) R. Saravanan, V. K. Gupta, E. Mosquera and F. Gracia, J. Mol. Liq., 2014, 198, 409 CrossRef CAS; (d) R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan and A. Stephen, RSC Adv., 2015, 5, 34645 RSC; (e) J. J. Doyle, S. Choudhari, S. Ramakrishna and R. P. Babu, Mater. Sci. Eng., 2013, 33, 91 CrossRef PubMed; (f) J. Tian, Z. Zhao, A. Kumar, R. I. Boughtonc and H. Liu, Chem. Soc. Rev., 2014, 43, 6920 RSC; (g) M. Pal, U. Pal, R. S. Gonzalez, E. S. Mora and P. Santiago, J. Nano Res., 2009, 5, 193 CrossRef CAS.
  9. N. A. A. Ahmad, S. M. Rokade, A. M. Garande and P. M. Bhate, Tetrahedron Lett., 2014, 55, 5458 CrossRef CAS.
  10. N. H. Karam, J. H. Tomma and A. H. Al-Dujaili, Chem. Mater., 2013, 3(9), 162 Search PubMed.
  11. K. D. Haragave, F. K. Hess and J. T. Oliver, J. Med. Chem., 1983, 26, 1158 CrossRef.
  12. (a) R. N. Sharma, F. P. Xavier, K. K. Vasu, S. C. Chaturvedi and S. S. Pancholi, J. Enzyme Inhib. Med. Chem., 2009, 24, 890 CrossRef CAS PubMed; (b) F. Haviv, J. D. Ratajczyk, R. W. De Net, F. A. Keredesky, R. L. Walters, S. P. Schimidt, J. H. Holmes, P. R. Young and G. W. Carter, J. Med. Chem., 1988, 31, 1719 CrossRef CAS PubMed.
  13. F. W. Bell, A. S. Cantrell, M. Hoegberg, S. R. Jaskunas, N. G. Johansson, C. L. Jorden, M. D. Kinnick, P. Lind, J. M. Morin Jr, R. Noreen, B. Oberg, J. A. Palkowitz, C. A. Parrish, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang and X. X. Zhou, J. Med. Chem., 1995, 38, 4929 CrossRef CAS PubMed.
  14. W. C. Patt, H. W. Hamilton, M. D. Taylor, M. J. Ryan, D. G. Taylor Jr, C. J. C. Connoly, A. M. Doherty, S. R. Klutchko, I. Sircar, B. A. Steinbaugh, B. L. Batley, C. A. Painchaud, S. T. Rapundalo, B. M. Michniewiez and S. C. J. Olson, J. Med. Chem., 1992, 35, 2562 CrossRef CAS PubMed.
  15. K. Tsuji and H. Ishikawa, Bioorg. Med. Chem. Lett., 1994, 4, 1601 CrossRef CAS.
  16. N. Ergenc, G. Capan, N. S. Gunay, S. Ozkirimli, M. Gungor, S. Ozbey and E. Kendi, Arch. Pharm. Pharm. Med. Chem., 1999, 332, 343 CrossRef CAS PubMed.
  17. J. C. Jaen, L. D. Wise, B. W. Caprathe, H. Tecle, S. Bergmeier, C. C. Humblet, T. G. Heffner, L. T. Meltzer and T. A. Pugsley, J. Med. Chem., 1990, 33, 311 CrossRef CAS PubMed.
  18. J. S. Carter, S. Kramer, J. J. Talley, T. Penning, P. Collins, M. J. Graneto, K. Seibert, C. Koboldt, J. Masferrer and B. Zweifel, Bioorg. Med. Chem. Lett., 1999, 9, 1171 CrossRef CAS PubMed.
  19. J. Rudolph, H. Theis, R. Hanke, R. Endermann, L. Johannsen and F. Geschke, J. Med. Chem., 2001, 44, 619 CrossRef CAS PubMed.
  20. A. Badorc, M. F. Bordes, P. de Cointet, P. Savi, A. Bernat, A. Lale, M. Petitou, J. P. Maffrand and J. M. Herbert, J. Med. Chem., 1997, 40, 3393 CrossRef CAS PubMed.
  21. (a) M. M. Ramla, M. A. Omar, A. M. M. El-Khamry and H. I. El-Diwan, Bioorg. Med. Chem., 2006, 14, 7324–7332 CrossRef CAS PubMed; (b) M. Popsavin, S. Spaic, M. Svircev, V. Kojic, G. Bogdanovic and V. Popsavin, Bioorg. Med. Chem. Lett., 2007, 17, 4123 CrossRef CAS PubMed; (c) E. Gulsory and N. U. Guzeldemirci, Eur. J. Med. Chem., 2007, 42, 320 CrossRef PubMed.
  22. (a) B. Narayana, K. K. Vijaya Raj, B. V. Ashalatha, N. S. Kumari and B. K. Sarojini, Eur. J. Med. Chem., 2004, 39, 867 CrossRef CAS PubMed; (b) P. Beuchet, M. Varache-Lembège, A. Neveu, J. M. Léger, J. Vercauteren, S. Larrouture, G. Deffieux and A. Nuhrich, Eur. J. Med. Chem., 1999, 34, 773 CrossRef CAS; (c) F. Chimenti, B. Bizzarri, E. Maccioni, D. Secci, A. Bolasco, R. Fioravanti, P. Chimenti, A. Granese, S. Carradori, D. Rivanera, D. Lilli, A. Zicari and S. Distinto, Bioorg. Med. Chem. Lett., 2007, 17, 4635 CrossRef CAS PubMed.
  23. (a) S. N. Pandeya, D. Sriram, G. Nath and E. De Clerq, Eur. J. Pharm. Sci., 1999, 9, 25 CrossRef CAS PubMed; (b) M. R. Shiradkar, K. K. Murahari, H. R. Gangadasu, T. Suresh, C. A. Kalyan, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokale and M. Raut, Bioorg. Med. Chem., 2007, 15, 3997 CrossRef CAS PubMed; (c) Z. Xin, Z. Yang-fang, W. Jia, J. Wei, H. Liang and G. Ping, Chem. Res. Chin. Univ., 2006, 22, 459 CrossRef; (d) P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti and F. Zani, Bioorg. Med. Chem., 2006, 14, 3859 CrossRef CAS PubMed; (e) O. B. Dundar, O. Ozgen, A. Mentese, N. Altanlar, O. Ath, E. Kendj and R. Ertan, Bioorg. Med. Chem., 2007, 15, 6012 CrossRef PubMed; (f) A. Cukurovali, I. Yilmaz, S. Gur and C. Kazaz, Eur. J. Med. Chem., 2006, 41, 201 CrossRef CAS PubMed; (g) G. T. Zitouni, Z. A. Kaplancıklı, M. T. Yıldız, P. Chevallet and D. Kaya, Eur. J. Med. Chem., 2005, 40, 607 CrossRef PubMed; (h) B. F. Abdel-Wahab, H. A. Abdel-Aziz and E. M. Ahmed, Eur. J. Med. Chem., 2009, 44, 2632 CrossRef CAS PubMed; (i) P. Karegoudar, M. S. Karthikeyan, D. J. Prasad, M. Mahalinga, B. S. Holla and N. S. Kumari, Eur. J. Med. Chem., 2008, 43, 261 CrossRef CAS PubMed.
  24. (a) A. Kumar, C. S. Rajput and S. K. Bhati, Bioorg. Med. Chem., 2007, 15, 3089 CrossRef CAS PubMed; (b) B. S. Holla, K. V. Malini, B. S. Rao, B. K. Sarojini and N. S. Kumari, Eur. J. Med. Chem., 2003, 38, 313 CrossRef CAS PubMed; (c) R. G. Kalkhambkar, G. M. Kulkarni, H. Shivkumar and N. R. Rao, Eur. J. Med. Chem., 2007, 42, 1272 CrossRef CAS PubMed; (d) S. A. F. Rostom, I. M. El-Ashmawy, H. A. Abd El Razik, M. H. Badr and H. M. A. Ashour, Bioorg. Med. Chem., 2009, 17, 882 CrossRef CAS PubMed.
  25. (a) M. R. Shiradkar, K. K. Murahari, H. R. Gangadasu, T. Suresh, C. A. Kalyan, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokalec and M. Raut, Bioorg. Med. Chem., 2007, 15, 3997 CrossRef CAS PubMed; (b) M. Shiradkar, G. V. S. Kumar, V. Dasari, S. Tatikonda, K. C. Akula and R. Shah, Eur. J. Med. Chem., 2007, 42, 807 CrossRef CAS PubMed; (c) G. Aridoss, S. Amirthaganesan, M. S. Kima, J. T. Kim and Y. T. Jeong, Eur. J. Med. Chem., 2009, 44, 4199 CrossRef CAS PubMed.
  26. (a) K. M. Amin, A. D. E. Rahman and Y. A. Al-Eryani, Bioorg. Med. Chem., 2008, 16, 5377 CrossRef CAS PubMed; (b) K. M. Dawood, H. A. Gawad, E. A. Rageb, M. Ellithey and H. A. Mohamed, Bioorg. Med. Chem., 2006, 14, 3672 CrossRef CAS PubMed.
  27. A. Andreani, M. Rambaldi, G. Mascellani and P. Rugarli, Eur. J. Med. Chem., 1987, 22, 19 CrossRef CAS.
  28. (a) M. Koufaki, C. Kiziridi, F. Nikoludaki and M. N. Alexis, Bioorg. Med. Chem. Lett., 2007, 17, 4223 CrossRef CAS PubMed; (b) M. H. Shih and K. F. Ying, Bioorg. Med. Chem., 2004, 12, 4633 CrossRef CAS PubMed.
  29. (a) M. Chatterji, et al., J. Med. Chem., 2014, 57, 6572 CrossRef PubMed; (b) L. Hui, L. Zongcheng and A. Thoreleif, Molecules, 2000, 5, 1055 CrossRef; (c) T. Tomasic, S. Katsamakas, Z. Hodnik, J. Ilas, M. Brvar, T. Solmajer, S. M. P. Tammela, M. Banjanac, G. Ergovic, M. Anderluh, L. P. Masic and D. Kikelj, J. Med. Chem., 2015, 58, 5501 CrossRef CAS PubMed; (d) F. W. Bell, A. S. Cantrell, M. Hoegberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordon, M. D. Kinnick, P. Lind, J. M. Morin Jr, R. Noreen, B. O’berg, J. A. Palkowitz, C. A. Parrish, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang and X.-X. Zhou, J. Med. Chem., 1995, 38, 4929 CrossRef CAS PubMed; (e) T. F. A. F. Reji, S. K. C. Devi, K. K. Thomas, K. G. Sreejalekshmi, S. L. Manju and K. N. Rajasekharan, Indian J. Chem., 2008, 47, 1145 Search PubMed; (f) T. H. Al-Tel, R. A. Al-Qawasmeh and R. Zaarour, Eur. J. Med. Chem., 2011, 46, 1874 CrossRef CAS PubMed; (g) P. Ioan, E. Carosati, M. Micucci, G. Cruciani, F. Broccatelli, B. S. Zhorov, A. Chiarini and R. Budriesi, Curr. Med. Chem., 2011, 18, 4901 CrossRef CAS PubMed; (h) E. Carosati, P. Ioan, M. Micucci, F. Broccatelli, G. Cruciani, B. S. Zhorov, A. Chiarini and R. Budriesi, Curr. Med. Chem., 2012, 19, 4306 CrossRef CAS PubMed; (i) A. M. Frag, A. S. Mayhoub, S. E. Barakat and A. H. Bayomi, Bioorg. Med. Chem., 2008, 16, 4569 CrossRef PubMed; (j) N. Y. Wang, Y. Xu, W. Q. Zuo, K. J. Xiao, L. Liu, X. X. Zeng, X. Y. You, L. D. Zhang, C. Gao, Z. H. Liu, T. H.Ye, Y. Xia, Y. Xiong, X. J. Song, Q. Lei, C. T. Peng, H. Tang, S. Y. Yang, Y. Q. Wei and L. T. Yu, J. Med. Chem., 2015, 58, 2764 CrossRef CAS PubMed.
  30. (a) J. V. Madhav, B. S. Kuarm and B. Rajitha, Synth. Commun., 2008, 38, 3514 CrossRef CAS; (b) B. Das, V. S. Reddy and R. Ramu, J. Mol. Catal. A: Chem., 2006, 252, 235 CrossRef CAS; (c) D. Goff and J. Fernandez, Tetrahedron Lett., 1999, 40, 423 CrossRef CAS; (d) M. Narender, M. Somi Reddy, V. P. Kumar, V. P. Reddy, Y. V. D. Nageswar and K. R. Rao, J. Org. Chem., 2007, 72, 1849 CrossRef CAS PubMed; (e) U. Bhoga, Eur. J. Med. Chem., 2007, 42, 1144 CrossRef CAS PubMed; (f) J. Banothu, K. Vaarla, R. Bavantula and P. A. Crooks, Chin. Chem. Lett., 2014, 25, 172 CrossRef CAS; (g) V. Narsaiah, R. S. Ghogare and D. O. Biradar, Org. Commun., 2011, 4, 75 Search PubMed; (h) T. M. Potewar, S. A. Ingale and K. V. Srinivasan, Tetrahedron, 2008, 64, 5019 CrossRef CAS; (i) D. Zhu, J. Chen, H. Xiao, M. Liu, J. Ding and H. Wu, Synth. Commun., 2009, 39, 2895 CrossRef CAS; (j) T. M. Potewar, S. A. Ingale and K. V. Srinivasan, ARKIVOC, 2008, 12, 117 Search PubMed.
  31. (a) S. Mishra, K. Monir, S. Mitra and A. Hajra, Org. Lett., 2014, 16, 6084 CrossRef CAS PubMed; (b) S. Kamila, K. Mendoza and E. R. Biehl, Tetrahedron Lett., 2012, 53, 4921 CrossRef CAS PubMed; (c) I. M. Mahdavi, M. Asadi, M. Saeedi, M. Ebrahimi, M. A. Rasouli, P. R. Ranjbar, A. Foroumadi and A. Shafiee, Synthesis, 2012, 44, 3649 CrossRef; (d) S. Kumar and D. P. Sahu, ARKIVOC, 2008, xv, 88 Search PubMed.
  32. (a) M. Srivastava, P. Rai, J. Singh and J. Singh, RSC Adv., 2013, 3, 16994 RSC; (b) M. Srivastava, P. Rai, J. Singh and J. Singh, New J. Chem., 2014, 38, 302 RSC; (c) S. Yadav, M. Srivastava, P. Rai, J. Singh and J. Singh, New J. Chem., 2015, 39, 4556 RSC; (d) S. Yadav, M. Srivastava, P. Rai, J. Singh and J. Singh, Tetrahedron Lett., 2015, 56, 5831 CrossRef CAS.
  33. (a) M. C. Pirrung, Chem.–Eur. J., 2006, 12, 1312 CrossRef CAS PubMed; (b) T. S. Shaikh, J. D. Patil, D. S. Gaikwad, P. G. Hegade, P. B. Patil, K. A. Undale, M. M. Mane and D. M. Pore, Indian J. Chem., 2014, 53, 1288 Search PubMed.
  34. C. Bodhak, A. Kundu and A. Pramanik, RSC Adv., 2015, 5, 85202 RSC.
  35. M. Pelaez, et al., Appl. Catal., B, 2012, 125, 331 CrossRef CAS.
  36. V. P. Srivastava, A. K. Yadav and L. D. S. Yadav, Synlett, 2013, 24, 465 CrossRef CAS.
  37. A. T. Veetil, T. Solomek, B. P. Ngoy, N. Pavlíkova, D. Heger and P. Klan, J. Org. Chem., 2011, 76, 8232 CrossRef PubMed.
  38. J. Renaud and J. C. Scaiano, Can. J. Chem., 1996, 74, 1724 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra05385h

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.