Diastereoselective synthesis of spiro[indene-2,2′-pyrazolo[1,2-a]pyrazoles] and spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] via 1,3-dipolar cycloaddition

Yu-Ling Lu, Jing Sun*, Yan-Hong Jiang and Chao-Guo Yan*
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China. E-mail: cgyan@yzu.edu.cn

Received 26th January 2016 , Accepted 19th May 2016

First published on 20th May 2016


Abstract

The 1,3-dipolar cycloaddition of cyclic azomethine imines with 2-arylideneindene-1,3-diones in refluxing acetonitrile afforded predominately cis-1,3-diaryl-substituted spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole] derivatives in good yields. Significantly, the similar cycloaddition reaction of cyclic azomethine imines with 3-phenacylideneoxindoles gave polysubstituted spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] in good yields and with high diastereoselectivity.


Introduction

Among various nitrogen-containing heterocycles, pyrazolo[1,2-a]pyrazolone is a privileged heterocyclic ring system that is featured in a large number of medicinally relevant compounds exhibiting biological activities.1–3 For example, Lilly's γ-lactam antibiotics LY 186826, LY 193239, and LY 255262 are pyrazolo[1,2-a]pyrazolone based peptidomimetics.4a Pyrazolo[1,2-a]pyrazolones are also used as herbicides5a and inhibitors of acetyl-CoA carboxylase5b and sarco(endo)plasmic reticulum Ca2+–ATPase.5c These potential properties have prompted many efforts toward the synthesis of various pyrazolo[1,2-a]pyrazolone derivatives.6,7 1,3-Dipolar cycloaddition reaction has proved to be the most powerful protocol for various five-membered heterocyclic compounds.8,9 Thus, the common method for the preparation of pyrazolo[1,2-a]pyrazolone derivatives was the 1,3-dipolar cycloaddition of cyclic azomethine imines to olefinic and acetylenic dipolarophiles.10,11 For this purpose, many elegant synthetic methodologies and procedures have been developed for efficient and stereoselective synthesis of highly functionalized pyrazolo[1,2-a]pyrazolones.12,13 Despite these extensive efforts, the application of cyclic azomethine imines for synthesis of spirocyclic pyrazolo[1,2-a]pyrazolone derivatives has rarely been reported in the literature.14 Against this situation and on the our continual aim to providing concise construction protocol for spiroheterocyclic system,15,16 we proposed to design the 1,3-dipolar cycloaddition by using cyclic azomethine imines and cyclic dipolarophiles to synthesize spirocyclic pyrazolo[1,2-a]pyrazolones. Herein we wish to report the diastereoselective synthesis of polysubstituted spiro[indene-2,2′-pyrazolo[1,2-a]pyrazoles] and spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] via 1,3-dipolar cycloaddition.

Results and discussion

According to the previously reported 1,3-dipolar cycloaddition of cyclic azomethine imine for synthesis of functionalized pyrazolo[1,2-a]pyrazolones, the reaction conditions were examined by employing the 1,3-dipolar reaction of 2-benzylidene-5-oxopyrazolidiniumide and 2-(m-methoxybenzylidene)indene-1,3-dione as model reaction. When the reaction was carried out at room temperature in solvent such as methanol, ethanol and acetonitrile, the reaction proceeded very slowly and cannot be finished after 36 hours. If the reaction was carried out in refluxing methylene dichloride, toluene and acetonitrile, the expected product 1a can be obtained in about 27%, 34% and 70% yields, respectively. If methanol, ethanol and DMF were used as solvent, no expected product was obtained both at room temperature and at the elevated temperature. It is also observed that acidic catalyst such as p-toluenesulfonic acid, and Lewis acid copper chloride, copper acetate, etc., did not increase the yield of product. On the other hand, the reaction would be greatly hindered in the presences of the base such as triethylamine, piperidine and DBU. Finally, the reaction would cause formation of some byproducts in refluxing acetonitrile. It is better to carry the reaction in acetontrile at 70–75 °C, and the reaction would be finished in eight hours to give the expected product 1a in 75% yield. Thus, the best reaction condition is carrying out this 1,3-dipolar cycloaddition in the solvent of acetonitrile at 70–75 °C.

After obtaining the optimized reaction conditions, various cyclic azomethine imines and 2-arylidieneindene-1,3-diones were employed in the reaction. The results are summarized in Table 1 it can be seen that all reaction proceeded very smoothly to give the polysubstituted spiro[indene-2,2′-pyrazolo[1,2-a]pyrazoles] 1a–1q in satisfactory yields. The different aryl groups showed marginal effect on the yields of products. o-Hydroxyphenyl substituted azomethine imine also afforded the spiro product 1n in god yield.

Table 1 Synthesis of spiro[indene-2,2′-pyrazolo[1,2-a]pyrazoles] 1a–1qa

image file: c6ra02358d-u1.tif

Entry Compd Ar Ar′ Yieldb (%)
a Reaction condition: cyclic azomethine imine (0.5 mmol), 2-arylideneindene-1,3-dione (0.5 mmol) CH3CN (15.0 mL), 70–75 °C 8 h.b Isolated yields.
1 1a C6H5 m-CH3OC6H4 75
2 1b C6H5 p-BrC6H4 67
3 1c p-CH3C6H4 p-CH3C6H4 82
4 1d p-CH3C6H4 m-CH3OC6H4 67
5 1e p-CH3C6H4 p-ClC6H4 70
6 1f p-CH3C6H4 p-BrC6H4 59
7 1g p-CH3C6H4 m-NO2C6H4 86
8 1h m-CH3C6H4 p-ClC6H4 73
9 1i p-CH3OC6H4 m-CH3OC6H4 75
10 1j p-CH3OC6H4 p-BrC6H4 60
11 1k p-ClC6H4 m-CH3OC6H4 70
12 1l p-ClC6H4 p-ClC6H4 69
13 1m p-ClC6H4 p-BrC6H4 72
14 1n p-BrC6H4 m-CH3OC6H4 65
15 1o p-BrC6H4 p-BrC6H4 68
16 1p m-NO2C6H4 p-ClC6H4 80
17 1q o-HOC6H4 p-BrC6H4 55


The structures of the obtained products 1a–1q were fully characterized by IR, HRMS, 1H and 13C NMR spectroscopy. Because the two aryl groups can exist in cis/trans-configuration, the obtained products 1a–1q might have two diastereoisomers. The 1H and 13C NMR spectra always display one set of typical absorptions for the characteristic groups in the molecules, which definitely indicated that the products 1a–1q existed in only one diastereoisomer. For an example, the compound 1a display two singlets at 5.72, and 4.38 ppm for the two CH units in newly-formed pyrazole ring and a singlet at 3.61 ppm for methoxy group in m-methoxyphenyl group. The two CH2 units in original pyrazole ring show three mixed peaks with 1[thin space (1/6-em)]:[thin space (1/6-em)]2[thin space (1/6-em)]:[thin space (1/6-em)]1 integral. In order to confirm the configuration of the compounds 1a–1q, the single crystal structures of the compounds 1c (Fig. 1), 1e, 1k, 1m, 1n (Fig. 2) and 1o were successfully determined by X-ray diffraction method. As showed in Fig. 1, the two p-methylphenyl group exists in the cis-configuration. It also can be seen that the m-methoxyphenyl group and p-bromophenyl group also stand in cis-position (Fig. 2). The other four molecules also have cis-configuration (Fig. s1–s4). Thus, we could concluded that the obtained 1a–1q are cis-diastereoisomer, which also indicated that this 1,3-dipolar cycloaddition reaction is a regioselective and diastereoselective reaction.

image file: c6ra02358d-u2.tif


image file: c6ra02358d-f1.tif
Fig. 1 Molecular structure of compound 1c.

image file: c6ra02358d-f2.tif
Fig. 2 Molecular structure of compound 1n.

To further illustrate the synthetic value of 1,3-dipolar cycloaddition reaction for the synthesis of spiroheterocycles, 3-phenacylideneoxindoles were employed to react with cyclic azomethine imines under same reaction conditions. The results are summarized in Table 2. Various 3-phenacylideneoxindoles with different substituents afforded the expected spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] 2a–2j in high yields. It should be pointed out that 3-phenacylideneoxindoles without N-substituent also gave the spiro compound 2h in good yield. The structures of the spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] 2a–2j were also established by spectroscopy. The 1H and 13C NMR spectra of compounds 2a–2j showed one set of typical absorptions for the characteristic groups in the molecules, which clearly indicated that only one diastereoisomer exists in the products 2a–2j. Single crystal structures of two representative compounds 2a and 2f displayed that the 1′-aryl group, 3-benzoyl group and the phenyl group of the oxindole moiety all exist in cis-configuration in the newly-formed pyrazole ring (Fig. 3 and 4). On the basis of 1H NMR spectra and single crystal structures, it can be concluded that the 1,3-dipolar cycloaddition of cyclic azomethine imines with 3-phenacylideneoxindoles predominately produced the cis-diastereoisomer of the polysubstituted spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] 2a–2j. Recently, it has reported that Cu(OAc)2 catalyzed 1,3-dipolar cycloaddition of cyclic azomethine imines with some 3-(ethoxycarbonylmethylene)oxindoles mainly afforded the trans-diastereoisomer of spiro[pyrazolidin-3,3′-oxindoles].14 Although the two reactions are similar 1,3-dipolar cycloaddition of cyclic azomethine imines with 3-methyleneoxindoles, the configuration of the product is different.

Table 2 Synthesis of spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazoles] 2a–2ja

image file: c6ra02358d-u3.tif

Entry Compd Ar R R′ Ar′ Yieldb (%)
a Reaction condition: cyclic azomethine imines (0.5 mmol), 3-phenacylideneoxindole (0.5 mmol) in CH3CN (15.0 mL), reflux, 7 h.b Isolated yields.
1 2a C6H5 CH3 Bn p-CH3C6H4 56
2 2b C6H4 Cl Bn p-CH3C6H4 60
3 2c p-CH3C6H4 Cl Bn p-CH3C6H4 68
4 2d p-CH3OC6H4 CH3 Bn p-CH3C6H4 70
5 2e p-CH3OC6H4 Cl Bn p-CH3C6H4 55
6 2f p-ClC6H4 Cl Bn p-CH3C6H4 65
7 2g p-BrC6H4 CH3 Bn p-CH3C6H4 62
8 2h p-BrC6H4 CH3 H p-ClC6H4 65
9 2i p-BrC6H4 Cl Bn p-CH3C6H4 58
10 2j p-BrC6H4 Cl Bn p-ClC6H4 69



image file: c6ra02358d-f3.tif
Fig. 3 Molecular structure of compound 2a.

image file: c6ra02358d-f4.tif
Fig. 4 Molecular structure of compound 2f.

Conclusion

In summary, we have successfully developed concise protocol for the construction of spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole] and spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]. This method originated from the 1,3-dipolar cycloaddition reaction of cyclic azomethine imines with 2-arylideneindene-1,3-diones and 3-phenacyliceneoxindoles. It also provided new way to further exploiting 1,3-dipolar cycloaddition for the regioselective and diastereoselective synthesis of nitrogen-containing spiroheterocycles. This reaction also has the advantages of using readily variable substrates, simple reaction condition, without using catalyst, easiness of handling, satisfactory yields and wide variety of substrates.

Experimental section

1. General procedure for 1,3-dipolar cycloaddition reaction of cyclic azomethine imines with 2-arylideneindene-1,3-dione

A mixture of cyclic azomethine imines (0.5 mmol) and 2-arylideneindene-1,3-dione (0.5 mmol) in acetonitrile (15.0 mL) was heated to 70–75 °C for eight hours. After cooling, the resulting precipitate was collected by filtration to give crude product, which was subjected to column chromatography with light petroleum and ethyl acetate (v/v = 3[thin space (1/6-em)]:[thin space (1/6-em)]1) as elute to give pure product for analysis.
3′-(3-Methoxyphenyl)-1′-phenyl-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1a). White solid, 75%, mp 168–170 °C; 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J = 7.6 Hz, 1H, ArH), 7.71 (t, J = 7.6 Hz, 1H, ArH), 7.60 (t, J = 7.6 Hz, 1H, ArH), 7.43 (d, J = 8.0 Hz, 1H, ArH), 7.22–7.20 (m, 2H, ArH), 7.11–7.09 (m, 3H, ArH), 7.05 (t, J = 8.0 Hz, 1H, ArH), 6.67–6.62 (m, 3H, ArH), 5.77 (s, 1H, CH), 4.43–4.42 (m, 1H, CH), 3.88–3.84 (m, 1H, CH), 3.62 (s, 3H, OCH3), 3.12–3.04 (m, 2H, CH), 2.93–2.88 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 198.2, 194.4, 172.6, 159.6, 143.1, 141.2, 136.7, 136.3, 135.5, 131.5, 129.5, 128.8, 128.5, 127.8, 123.2, 118.0, 113.6, 111.3, 72.0, 63.2, 55.1, 48.2, 32.6; IR (KBr) ν: 2958, 2838, 1740, 1708, 1646, 1597, 1489, 1464, 1432, 1338, 1260, 1235, 1176, 1125, 1098, 1072, 1037, 948, 889, 861, 790, 770, 746, 719, 698 cm−1; MS (m/z): HRMS (ESI) calcd for C27H23N2O4 ([M + H]+): 439.1652. Found: 439.1654.
3′-(4-Bromophenyl)-1′-phenyl-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1b). White solid, 67%, mp 164–166 °C; 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J = 8.0 Hz, 1H, ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.61 (t, J = 7.6 Hz, 1H, ArH), 7.43 (d, J = 7.6 Hz, 1H, ArH), 7.30–7.28 (m, 2H, ArH), 7.18–7.16 (m, 2H, ArH), 7.11–7.10 (m, 3H, ArH), 6.98 (d, J = 8.4 Hz, 2H, ArH), 5.73 (s, 1H, CH), 4.40 (s, 1H, CH), 3.86–3.81 (m, 1H, CH), 3.11–3.05 (m, 2H, CH), 2.94–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 197.9, 194.5, 172.6, 142.9, 141.1, 136.5, 135.7, 134.4, 131.5, 131.3, 128.9, 128.5, 127.7, 127.6, 123.3, 121.9, 71.9, 62.6, 48.1, 32.4; IR (KBr) ν: 2957, 1711, 1491, 1413, 1343, 1274, 1231, 1174, 1078, 1012, 868, 811, 763 cm−1; MS (m/z): HRMS (ESI) calcd for C26H20BrN2O3 ([M + H]+): 487.0652. Found: 487.0653.
1′,3′-Di-p-tolyl-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1c). White solid, 82%, mp 168–170 °C; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J = 7.6 Hz, 1H, ArH), 7.71 (t, J = 7.6 Hz, 1H, ArH), 7.59 (t, J = 7.6 Hz, 1H, ArH), 7.43 (d, J = 7.6 Hz, 1H, ArH), 7.08 (d, J = 8.0 Hz, 2H, ArH), 6.94–6.89 (m, 6H, ArH), 5.76 (s, 1H, CH), 4.39 (s, 1H, CH), 3.83–3.78 (m, 1H, CH), 3.11–3.02 (m, 2H, CH), 2.90–2.84 (m, 1H, CH), 2.19 (s, 3H, CH3), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 198.3, 194.8, 171.8, 143.1, 141.3, 138.6, 137.4, 136.2, 135.5, 132.0, 129.1, 129.1, 128.4, 127.7, 125.6, 123.2, 123.2, 72.0, 63.2, 48.5, 32.8, 21.1, 21.0; IR (KBr) ν: 3030, 2950, 1706, 1589, 1811, 1451, 1413, 1342, 1241, 1176, 1120, 1083, 1027, 964, 906, 864, 793, 748 cm−1; MS (m/z): HRMS (ESI) calcd for C28H25N2O3 ([M + H]+): 437.1860. Found: 437.1868.
3′-(3-Methoxyphenyl)-1′-(p-tolyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1d). White solid, 67%, mp 194–196 °C; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J = 7.6 Hz, 1H, ArH), 7.71 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 1H, ArH), 7.60 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.44 (d, J = 7.6 Hz, 1H, ArH), 7.09–7.03 (m, 3H, ArH), 6.90 (d, J = 8 Hz, 2H, ArH), 6.66–6.63 (m, 2H, ArH), 6.59–6.58 (m, 1H, ArH), 5.75 (s, 1H, CH), 4.37 (s, 1H, CH), 3.82–3.78 (m, 1H, CH), 3.61 (s, 3H, OCH3), 3.08–3.00 (m, 2H, CH), 2.91–2.86 (m, 1H, CH), 2015 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 198.3, 194.5, 172.5, 159.5, 143.2, 141.2, 138.7, 136.7, 136.2, 135.5, 131.7, 129.6, 129.5, 129.1, 128.4, 127.7, 123.2, 123.2, 118.0, 113.6, 111.2, 71.9, 63.3, 55.1, 48.2, 32.5, 21.0; IR (KBr) ν: 2960, 2837, 1741, 1707, 1597, 1513, 1490, 1466, 1433, 1351, 1278, 1260, 1236, 1178, 1095, 956, 921, 891, 862, 791, 746 cm−1; MS (m/z): HRMS (ESI) calcd for C28H24N2NaO4 ([M + Na]+): 475.1628. Found: 475.1631.
3′-(4-Chlorophenyl)-1′-(p-tolyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1e). White solid, 70%, mp 156–158 °C; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J = 7.6 Hz, 1H, ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.62 (t, J = 7.6 Hz, 1H, ArH), 7.46 (d, J = 8.0 Hz, 1H, ArH), 7.13 (d, J = 8.4 Hz, 2H, ArH), 7.08–7.03 (m, 4H, ArH), 6.91 (d, J = 8.4 Hz, 2H, ArH), 5.73 (s, 1H, CH), 4.39 (s, 1H, CH), 3.86–3.81 (m, 1H, CH), 3.10–3.03 (m, 2H, CH), 2.91–2.86 (m, 1H, CH), 2.16 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 198.0, 194.6, 172.5, 143.0, 141.2, 138.8, 136.4, 135.7, 133.8, 133.7, 129.2, 128.6, 128.1, 127.6, 127.3, 123.3, 123.3, 71.8, 62.7, 48.2, 32.4, 21.0; IR (KBr) ν: 2922, 2839, 1708, 1590, 1491, 1419, 1345, 1297, 1252, 1175, 1121, 1086, 1010, 868, 821, 788, 743 cm−1; MS (m/z): HRMS (ESI) calcd for C27H22ClN2O3 ([M + H]+): 457.1313. Found: 457.1318.
3′-(4-Bromophenyl)-1′-(p-tolyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1f). White solid, 59%, mp 158–160 °C; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J = 7.6 Hz, 1H, ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.62 (t, J = 7.2 Hz, 1H, ArH), 7.46 (d, J = 7.6 Hz, 1H, ArH), 7.29–7.28 (m, 2H, ArH), 7.06 (d, J = 8.0 Hz, 2H, ArH), 6.98 (d, J = 8.0 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 2H, ArH), 5.71 (s, 1H, CH), 4.37 (s, 1H, CH), 3.83–3.79 (m, 1H, CH), 3.09–3.02 (m, 2H, CH), 2.91–2.86 (m, 1H, CH), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 198.0, 194.6, 172.5, 143.0, 141.2, 138.8, 136.4, 135.7, 134.4, 131.5, 129.2, 128.2, 127.6, 127.6, 127.6, 123.4, 123.3, 121.9, 71.8, 62.7, 48.1, 32.5, 21.0; IR (KBr) ν: 2950, 1705, 1489, 1407, 1340, 1231, 1176, 1118, 1080, 1008, 864, 782, 741 cm−1; MS (m/z): HRMS (ESI) calcd for C27H22BrN2O3 ([M + H]+): 501.0808. Found: 501.0807.
3′-(3-Nitrophenyl)-1′-(p-tolyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1g). White solid, 86%, mp 196–198 °C; 1H NMR (600 MHz, CDCl3) δ: 8.02–7.98 (m, 3H, ArH), 7.75 (t, J = 7.2 Hz, 1H, ArH), 7.61 (t, J = 7.2 Hz, 1H, ArH), 7.45 (d, J = 7.2 Hz, 1H, ArH), 7.40–7.35 (m, 2H, ArH), 7.04 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 7.2 Hz, 2H, ArH), 5.82 (s, 1H, CH), 4.37 (s, 1H, CH), 3.86–3.81 (m, 1H, CH), 3.12–3.07 (m, 1H, CH), 3.05–2.99 (m, 1H, CH); 2.93–2.87 (m, 1H, CH); 2.15 (s, 3H, CH3); 13C NMR (150 MHz, CDCl3) δ: 197.7, 194.5, 174.0, 148.2, 142.9, 141.1, 139.0, 138.2, 136.6, 136.0, 132.2, 129.4, 129.2, 128.1, 127.7, 123.5, 123.2, 122.9, 121.3, 77.7, 71.9, 62.3, 47.2, 31.6, 21.0; IR (KBr) ν: 3051, 1711, 1587, 1529, 1343, 1262, 1186, 1095, 956, 892, 834, 812, 758, 733 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21N3NaO5 ([M + Na]+): 490.1373. Found: 490.1383.
3′-(4-Chlorophenyl)-1′-(m-tolyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1h). White solid, 73%, mp 156–158 °C; 1H NMR (600 MHz, CDCl3) δ: 7.95 (d, J = 7.2 Hz, 1H, ArH), 7.72 (t, J = 7.2 Hz, 1H, ArH), 7.61 (t, J = 7.2 Hz, 1H, ArH), 7.43 (d, J = 7.2 Hz, 1H, ArH), 7.13 (d, J = 8.4 Hz, 2H, ArH), 7.04 (d, J = 7.2 Hz, 2H, ArH), 6.98–6.95 (m, 3H, ArH), 6.89 (d, J = 7.2 Hz, 1H, ArH), 5.74 (s, 1H, CH), 4.35 (s, 1H, CH), 3.83–3.82 (m, 1H, CH), 3.08–3.02 (m, 2H, CH), 2.91–2.85 (m, 1H, CH), 2.14 (s, 3H, CH3); 13C NMR (150 MHz, CDCl3) δ: 197.9, 194.5, 172.6, 143.1, 141.3, 138.3, 136.4, 135.6, 133.9, 133.7, 131.3, 129.7, 128.6, 128.4, 128.3, 127.3, 124.9, 123.3, 123.2, 77.5, 72.1, 62.6, 48.1, 32.4, 29.7, 21.1; IR (KBr) ν: 2919, 2849, 1740, 1710, 1588, 1543, 1491, 1338, 1256, 1188, 1091, 1042, 1013, 943, 866, 785, 701 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21ClN2NaO3 ([M + Na]+): 479.1133. Found: 479.1139.
3′-(3-Methoxyphenyl)-1′-(4-methoxyphenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1i). White solid, 75%, mp 184–186 °C; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J = 7.2 Hz, 1H, ArH), 7.72 (t, J = 7.2 Hz, 1H, ArH), 7.64–7.60 (m, 1H, ArH), 7.47–7.45 (m, 1H, ArH), 7.14 (d, J = 8.4 Hz, 2H, ArH), 7.05 (t, J = 7.6 Hz, 1H, ArH), 6.66–6.62 (m, 5H, ArH), 5.75 (s, 1H, CH), 4.37 (s, 1H, CH), 3.84–3.80 (m, 1H, CH), 3.66 (s, 3H, OCH3), 3.62 (s, 3H, OCH3) 3.11–3.01 (m, 2H, CH), 2.92–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 198.3, 194.7, 172.6, 159.8, 159.6, 143.2, 141.2, 136.8, 136.3, 135.5, 129.5, 129.1, 123.2, 129.2, 118.0, 113.8, 113.6, 111.2, 71.9, 63.2, 55.1, 48.1, 32.5; IR (KBr) ν: 3009, 2956, 2835, 1740, 1706, 1602, 1516, 1490, 1466, 1436, 1358, 1301, 1258, 1177, 1096, 1037, 959, 916, 893, 834, 789, 746 cm−1; MS (m/z): HRMS (ESI) calcd for C28H24N2NaO5 ([M + Na]+): 491.1577. Found: 491.1579.
3′-(4-Bromophenyl)-1′-(4-methoxyphenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1j). White solid, 60%, mp 160–162 °C; 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J = 7.6 Hz, 1H, ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.64 (d, J = 7.2 Hz, 1H, ArH), 7.47 (d, J = 7.6 Hz, 1H, ArH), 7.29–7.27 (m, 2H, ArH), 7.21 (d, J = 8.4 Hz, 2H, ArH), 6.97 (d, J = 8.4 Hz, 2H, ArH), 6.62 (d, J = 8.4 Hz, 2H, ArH), 5.71 (s, 1H, CH), 4.34 (s, 1H, CH), 3.81–3.77 (m, 1H, CH), 3.66 (s, 3H, OCH3), 3.08–3.01 (m, 2H, CH), 2.91–2.86 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 198.0, 194.8, 172.6, 159.8, 145.3, 143.0, 141.2, 136.5, 135.7, 135.6, 135.4, 134.4, 132.1, 131.5, 129.0, 127.5, 123.5, 123.3, 123.3, 122.9, 121.8, 113.9, 71.9, 62.6, 55.1, 48.0, 32.4; IR (KBr) ν: 2921, 2835, 1703, 1508, 1347, 1299, 1250, 1179, 1082, 1036, 808, 769 cm−1; MS (m/z): HRMS (ESI) calcd for C27H22BrN2O4([M + H]+): 517.0757. Found: 517.0754.
[1′-(4-Chlorophenyl)-3′-(3-methoxyphenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1k). White solid, 70%, mp 200–202 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.75 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 1H, ArH), 7.64 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.46 (d, J = 7.6 Hz, 1H, ArH), 7.17 (d, J = 8.8 Hz, 2H, ArH), 7.09 (d, J = 8.4 Hz, 2H, ArH), 7.04 (t, J = 8.0 Hz, 1H, ArH), 6.67–6.58 (m, 3H, ArH), 5.72 (s, 1H, CH), 4.39 (s, 1H, CH), 3.84–3.79 (m, 1H, CH), 3.61 (s, 3H, OCH3), 3.08–3.03 (m, 2H, CH), 2.92–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 198.1, 194.3, 172.7, 159.6, 143.1, 141.1, 136.5, 136.5, 135.7, 134.7, 130.3, 129.5, 129.2, 128.7, 123.3, 123.3, 118.0, 113.7, 111.4, 76.3, 71.7, 63.5, 55.1, 48.0, 32.3; IR (KBr) ν: 3087, 2960, 2904, 2834, 1740, 1707, 1597, 1489, 1466, 1433, 1379, 1340, 1307, 1279, 1260, 1235, 1176, 1091, 1040, 1015, 955, 921, 890, 849, 821, 789, 755, 730 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21ClN2NaO4 ([M + Na]+): 495.1082. Found: 495.1084.
1′,3′-Bis(4-chlorophenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1l). White solid, 69%, mp 170–172 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.77 (t, J = 7.6 Hz, 1H, ArH), 7.67 (t, J = 7.6 Hz, 1H, ArH), 7.47 (d, J = 7.6 Hz, 1H, ArH), 7.16–7.09 (m, 6H, ArH), 7.02 (d, J = 8.4 Hz, 2H, ArH), 5.71 (s, 1H, CH), 4.37 (s, 1H, CH), 3.82–3.78 (m, 1H, CH), 3.06–3.01 (m, 2H, CH), 2.92–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 197.8, 194.4, 172.8, 142.9, 141.0, 136.7, 136.0, 134.8, 133.8, 133.6, 130.0, 129.1, 128.8, 128.6, 127.3, 123.4, 123.4, 76.4, 71.6, 62.9, 48.0, 32.2; IR (KBr) ν: 2952, 2842, 1708, 1591, 1489, 1408, 1343, 1232, 1179, 1088, 1009, 964, 904, 804, 740 cm−1; MS (m/z): HRMS (ESI) calcd for C26H19Cl2N2O3 ([M + H]+): 477.0767. Found: 477.0772.
3′-(4-Bromophenyl)-1′-(4-chlorophenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1m). White solid, 72%, mp 174–176 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.77 (t, J = 7.2 Hz, 1H, ArH), 7.67 (t, J = 7.6 Hz, 1H, ArH), 7.47 (d, J = 7.6 Hz, 1H, ArH), 7.29–7.27 (m, 2H, ArH), 7.15 (d, J = 8.4 Hz, 2H, ArH), 7.10 (d, J = 8.4 Hz, 2H, ArH), 6.82 (d, J = 8.4 Hz, 2H, ArH), 5.69 (s, 1H, CH), 4.38 (s, 1H, CH), 3.84–3.78 (m, 1H, CH), 3.08–3.01 (m, 2H, CH), 2.94–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 197.7, 194.4, 172.8, 142.9, 141.0, 136.8, 136.0, 134.8, 132.2, 131.6, 130.0, 129.1, 128.8, 127.6, 123.4, 123.4, 122.0, 76.4, 71.6, 62.9, 47.9, 32.1; IR (KBr) ν: 2950, 1707, 1487, 1407, 1342, 1230, 1179, 1081, 1006, 904, 804, 739 cm−1; MS (m/z): HRMS (ESI) calcd for C26H19BrClN2O3 ([M + H]+): 521.0262. Found: 521.0258.
1′-(4-Bromophenyl)-3′-(3-methoxyphenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1n). White solid, 65%, mp 206–208 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.75 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 1H, ArH), 7.65 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.46 (d, J = 7.6 Hz, 1H, ArH), 7.24–7.23 (m, 2H, ArH), 7.11 (d, J = 8.4 Hz, 2H, ArH), 7.04 (t, J = 8.0 Hz, 1H, ArH), 6.67–6.58 (m, 3H, ArH), 5.72 (s, 1H, CH), 4.38 (s, 1H, CH), 3.84–3.79 (m, 1H, CH), 3.61 (s, 3H, OCH3), 3.08–3.00 (m, 2H, CH), 2.92–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 198.1, 194.2, 172.7, 159.6, 143.1, 141.1, 136.6, 136.5, 135.8, 131.7, 130.8, 129.5, 123.4, 123.0, 118.1, 113.7, 111.4, 76.3, 71.6, 63.6, 55.1, 48.0, 32.3; IR (KBr) ν: 3088, 2960, 2903, 2835, 1741, 1706, 1597, 1488, 1466, 1432, 1352, 1260, 1235, 1177, 1094, 1040, 1012, 956, 921, 890, 847, 822, 789, 752, 728 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21BrN2NaO4 ([M + Na]+): 539.0577. Found: 539.0575.
1′,3′-Bis(4-bromophenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1o). White solid, 68%, mp 180–182 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.77 (t, J = 7.6 Hz, 1H, ArH), 7.67 (t, J = 7.6 Hz, 1H, ArH), 7.48 (d, J = 7.6 Hz, 1H, ArH), 7.29–7.27 (m, 4H, ArH), 7.09 (d, J = 8.4 Hz, 2H, ArH), 6.95 (d, J = 8.0 Hz, 2H, ArH), 5.67 (s, 1H, CH), 4.37 (s, 1H, CH), 3.82–3.78 (m, 1H, CH), 3.10–3.01 (m, 2H, CH), 2.94–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 197.7, 194.3, 172.7, 142.9, 141.0, 136.8, 136.0, 134.1, 131.8, 131.6, 130.6, 129.4, 127.6, 123.5, 123.4, 123.1, 122.0, 76.4, 71.5, 63.0, 48.0, 32.2; IR (KBr) ν: 2950, 1707, 1589, 1483, 1406, 1342, 1229, 1178, 1115, 1076, 1005, 904, 802, 738 cm−1; MS (m/z): HRMS (ESI) calcd for C26H19Br2N2O3 ([M + H]+): 564.9757. Found: 564.9754.
3′-(4-Chlorophenyl)-1′-(3-nitrophenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1p). White solid, 80%, mp 184–186 °C; 1H NMR (600 MHz, CDCl3) δ: 8.08–8.01 (m, 3H, ArH), 7.80 (s, 1H, ArH), 7.66–7.61 (m, 2H, ArH), 7.43–7.35 (m, 2H, ArH), 7.14 (m, 2H, ArH), 7.03 (m, 2H, ArH), 5.70 (s, 1H, CH), 4.53 (s, 1H, CH), 3.86 (s, 1H, CH), 3.72 (s, 1H, CH), 3.07–3.05 (m, 2H, CH); 13C NMR (150 MHz, CDCl3) δ: 197.5, 194.0, 173.1, 148.2, 142.9, 141.0, 136.9, 136.2, 134.4, 134.0, 129.7, 128.7, 127.6, 123.9, 123.7, 123.4, 123.0, 75.3, 71.5, 63.4, 47.8, 31.8, 29.7; IR (KBr) ν: 2920, 1741, 1707, 1585, 1532, 1492, 1406, 1351, 1260, 1236, 1181, 1088, 1013, 867, 815, 755, 727 cm−1; MS (m/z): HRMS (ESI) calcd for C26H18N3ClNaO5 ([M + Na]+): 510.0827. Found: 510.0829.
3′-(4-Bromophenyl)-1′-(2-hydroxyphenyl)-6′,7′-dihydro-1′H-spiro[indene-2,2′-pyrazolo[1,2-a]pyrazole]-1,3,5′(3′H)-trione (1q). White solid, 55%, mp 176–178 °C; 1H NMR (400 MHz, CDCl3) δ: 8.00 (d, J = 7.6 Hz, 1H, ArH), 7.77 (t, J = 7.6 Hz, 1H, ArH), 7.68–7.64 (m, 1H, ArH), 7.50 (d, J = 7.6 Hz, 1H, ArH), 7.29–7.27 (m, 3H, ArH), 7.01–6.94 (m, 3H, ArH), 6.73 (d, J = 8.4 Hz, 1H, ArH), 6.61–6.60 (m, 1H, ArH), 6.47 (d, J = 7.2 Hz, 1H, ArH), 5.67 (s, 1H, CH), 4.53 (s, 1H, CH), 3.97–3.90 (m, 1H, CH), 3.28–3.20 (m, 1H, CH), 3.14–3.05 (m, 1H, CH), 2.97–2.90 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 197.4, 194.5, 172.7, 155.9, 145.3, 142.7, 141.5, 136.7, 136.0, 135.4, 133.6, 132.1, 131.6, 130.4, 128.4, 127.7, 123.5, 123.5, 123.5, 122.1, 119.5, 117.9, 110.0, 71.7, 62.8, 48.6, 32.0; IR (KBr) ν: 3853, 3730, 3452, 2862, 1708, 1654, 1491, 1453, 1410, 1348, 1246, 1182, 1119, 1078, 1005, 817, 758, 722 cm−1; MS (m/z): HRMS (ESI) calcd for C26H20BrN2O4 ([M + H]+): 503.0601. Found: 503.0597.

2. General procedure for 1,3-dipolar cycloaddition reaction of cyclic azomethine imines with 3-phenacylideneoxindoles

A mixture of cyclic azomethine imine (0.5 mmol) and 3-phenacylideneoxindole (0.5 mmol) in acetonitrile (15.0 mL) was refluxed for seven hours. In most cases, the resulting precipitate was collected by filtration and washed with little cold alcohol to give pure product. In few case, the obtained solid was subjected to column chromatography with light petroleum and ethyl acetate (v/v = 1[thin space (1/6-em)]:[thin space (1/6-em)]1) as elute to give pure product for analysis.
1-Benzyl-5-methyl-3′-(4-methylbenzoyl)-1′-phenyl-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2a). White solid, 56%, mp 180–182 °C; 1H NMR (400 MHz, CDCl3) δ: 7.33 (s, 1H, ArH), 7.30 (s, 1H, ArH), 7.28–7.16 (m, 4H, ArH), 7.11–7.02 (m, 5H, ArH), 6.97 (d, J = 8 Hz, 2H, ArH), 6.85 (d, J = 7.2 Hz, 2H, ArH), 6.61 (d, J = 8 Hz, 1H, ArH), 6.03 (s, 1H, ArH), 5.87 (d, J = 8 Hz, 1H, CH), 4.91 (d, J = 16 Hz, 1H, CH), 4.40 (s, 1H, CH), 4.15 (d, J = 16 Hz, 1H, CH), 3.90–3.86 (m, 1H, CH), 3.14–3.09 (m, 2H, CH), 2.94–2.92 (m, 1H, CH), 2.30 (s, 3H, CH3), 2.25 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.7, 174.0, 143.6, 139.5, 134.8, 132.8, 131.8, 131.6, 128.9, 128.8, 128.7, 128.5, 128.4, 127.9, 127.8, 127.4, 126.9, 123.6, 108.0, 78.2, 65.6, 64.7, 47.7, 43.9, 32.6, 21.6, 20.9; IR (KBr) ν: 2963, 1706, 1640, 1555, 1495, 1421, 1363, 1245, 1191, 1119, 978, 819, 784, 734 cm−1; MS (m/z): HRMS (ESI) calcd for C35H31N3NaO3 ([M + Na]+): 564.2258. Found: 564.2277.
1-Benzyl-5-chloro-3′-(4-methylbenzoyl)-1′-phenyl-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2b). White solid, 60%, mp 200–202 °C; 1H NMR (400 MHz, CDCl3) δ: 7.49 (s, 1H, ArH), 7.32 (d, J = 7.6 Hz, 2H, ArH), 7.22–7.16 (m, 3H, ArH), 7.10–7.05 (m, 5H, ArH), 6.98–6.96 (m, 2H, ArH), 6.82–6.76 (m, 3H, ArH), 6.01 (s, 1H, ArH), 5.88 (d, J = 8.4 Hz, 1H, CH), 4.87 (d, J = 16 Hz, 1H, CH), 4.37 (s, 1H, CH), 4.16 (d, J = 16 Hz, 1H, CH), 3.88–3.81 (m, 1H, CH), 3.15–3.02 (m, 2H, CH), 2.96–2.89 (m, 1H, CH), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.4, 173.8, 172.6, 144.0, 140.4, 134.2, 132.6, 131.1, 129.0, 128.7, 128.6, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 126.9, 125.5, 109.3, 78.0, 65.5, 64.7, 47.3, 44.1, 32.2, 21.7; IR (KBr) ν: 2918, 2865, 1716, 1607, 1483, 1422, 1350, 1302, 1255, 1217, 1176, 1129, 1067, 1018, 972, 895, 821, 778, 735 cm−1; MS (m/z): HRMS (ESI) calcd for C34H28ClN3NaO ([M + Na]+): 584.1711. Found: 584.1714.
1-Benzyl-5-chloro-3′-(4-methylbenzoyl)-1′-(p-tolyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2c). White solid, 68%, mp 202–204 °C; 1H NMR (400 MHz, CDCl3) δ: 7.51–7.50 (m, 1H, ArH), 7.32 (d, J = 8 Hz, 2H, ArH), 7.23–7.20 (m, 1H, ArH), 7.16–7.12 (m, 2H, ArH), 6.98–6.93 (m, 4H, ArH), 6.88–6.86 (m, 2H, ArH), 6.78 (d, J = 7.6 Hz, 3H, ArH), 6.00 (s, 1H, ArH), 5.87 (d, J = 8.4 Hz, 1H, CH), 4.89 (d, J = 16 Hz, 1H, CH), 4.33 (s, 1H, CH), 4.14 (d, J = 16 Hz, 1H, CH), 3.85–3.81 (m, 1H, CH), 3.10–3.04 (m, 2H, CH), 2.90 (s, 1H, CH), 2.30 (s, 3H, CH3), 2.19 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.4, 173.8, 172.5, 143.9, 140.5, 138.5, 134.2, 132.7, 128.9, 128.9, 128.6, 128.5, 128.2, 127.9, 127.8, 127.6, 126.9, 125.7, 109.3, 78.1, 65.5, 64.7, 47.3, 44.0, 32.2, 21.6, 21.1; IR (KBr) ν: 2920, 2860, 1715, 1606, 1562, 1480, 1422, 1349, 1300, 1254, 1217, 1175, 1127, 1061, 972, 896, 818, 769, 729 cm−1; MS (m/z): HRMS (ESI) calcd for C35H30ClN3NaO3 ([M + Na]+): 598.1868. Found: 598.1871.
1-Benzyl-1′-(4-methoxyphenyl)-5-methyl-3′-(4-methylbenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2d). White solid, 70%, mp 188–189 °C; 1H NMR (400 MHz, CDCl3) δ: 7.30 (s, 1H, ArH), 7.25 (s, 2H, ArH), 7.19–7.14 (m, 3H, ArH), 6.97–6.93 (m, 4H, ArH), 6.81–6.80 (m, 2H, ArH), 6.61–6.60 (m, 1H, ArH), 6.55–6.53 (m, 2H, ArH), 5.99 (s, 1H, ArH), 5.86 (d, J = 8 Hz, 1H, CH), 4.89 (d, J = 16 Hz, 1H, CH), 4.30 (s, 1H, CH), 4.10 (d, J = 16 Hz, 1H, CH), 3.80–3.78 (m, 1H, CH), 3.67 (s, 3H, OCH3), 3.10–3.03 (m, 2H, CH), 2.91–2.86 (m, 1H, CH), 2.29 (s, 3H, CH3), 2.24 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.7, 174.1, 172.0, 159.5, 143.6, 139.6, 134.8, 132.8, 131.8, 129.1, 128.9, 128.8, 128.6, 128.4, 127.8, 127.4, 126.9, 123.8, 123.3, 113.3, 108.1, 78.0, 65.6, 64.7, 55.1, 47.7, 43.8, 32.6, 21.6, 21.0; IR (KBr) ν: 2917, 2865, 1711, 1610, 1502, 1420, 1358, 1303, 1251, 1183, 1140, 1028, 979, 898, 841, 775, 733 cm−1; MS (m/z): HRMS (ESI) calcd for C36H33N3NaO4 ([M + Na]+): 594.2363. Found: 594.2380.
1-Benzyl-5-chloro-1′-(4-methoxyphenyl)-3′-(4-methylbenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2e). White solid, 55%, mp 219–221 °C; 1H NMR (400 MHz, CDCl3) δ: 7.50–7.49 (m, 1H, ArH), 7.33 (d, J = 7.6 Hz, 2H, ArH), 7.23–7.20 (m, 1H, ArH), 7.17–7.14 (m, 2H, ArH), 6.99–6.95 (m, 4H, ArH), 6.80 (d, J = 7.2 Hz, 3H, ArH), 6.58 (d, J = 4.4 Hz, 2H, ArH), 6.00 (s, 1H, ArH), 5.90 (d, J = 8.4 Hz, 1H, CH), 4.88 (d, J = 16 Hz, 1H, CH), 4.31 (s, 1H, CH), 4.15 (d, J = 16 Hz, 1H, CH), 3.84–3.80 (m, 1H, CH), 3.68 (s, 3H, OCH3), 3.08–3.04 (m, 2H, CH), 2.90 (s, 1H, CH), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.5, 173.9, 172.6, 159.8, 144.1, 140.6, 134.3, 132.8, 129.1, 129.0, 128.8, 128.7, 128.1, 127.9, 127.7, 127.0, 125.8, 122.9, 113.7, 109.4, 78.0, 65.6, 64.8, 55.2, 55.2, 47.3, 44.1, 32.3, 21.8; IR (KBr) ν: 2919, 2858, 1715, 1609, 1566, 1513, 1479, 1423, 1349, 1302, 1252, 1217, 1175, 1134, 1025, 977, 897, 824, 772, 732 cm−1; MS (m/z): HRMS (ESI) calcd for C35H30ClN3NaO4 ([M + Na]+): 614.1817. Found: 614.1833.
1-Benzyl-5-chloro-1′-(4-chlorophenyl)-3′-(4-methylbenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2f). White solid, 65%, mp 222–224 °C; 1H NMR (400 MHz, CDCl3) δ: 7.48–7.47 (m, 1H, ArH), 7.32 (d, J = 8 Hz, 2H, ArH), 7.24 (d, J = 7.2 Hz, 1H, ArH), 7.20–7.17 (m, 2H, ArH), 7.04–7.02 (m, 2H, ArH), 6.99–6.96 (m, 4H, ArH), 6.84–6.81 (m, 1H, ArH), 6.80–6.78 (m, 2H, ArH), 6.00 (s, 1H, ArH), 5.95 (d, J = 8.4 Hz, 1H, CH), 4.86 (d, J = 16 Hz, 1H, CH), 4.32 (s, 1H, CH), 4.17 (d, J = 16 Hz, 1H, CH), 3.83–3.79 (m, 1H, CH), 3.10–3.03 (m, 2H, CH), 2.92–2.87 (m, 1H, CH), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.2, 173.5, 172.5, 144.1, 140.4, 134.6, 134.1, 132.5, 129.6, 129.0, 129.0, 128.6, 128.4, 128.1, 128.0, 127.9, 127.8, 126.9, 125.2, 109.5, 109.5, 77.4, 65.4, 65.4, 64.6, 47.3, 44.0, 32.1, 21.7, 21.7; IR (KBr) ν: 2994, 2919, 2862, 1861, 1714, 1605, 1483, 1420, 1350, 1301, 1255, 1217, 1176, 1128, 1091, 1016, 972, 894, 822, 772, 729 cm−1; MS (m/z): HRMS (ESI) calcd for C34H27Cl2N3NaO3 ([M + Na]+): 618.1322. Found: 618.1338.
1-Benzyl-1′-(4-bromophenyl)-5-methyl-3′-(4-methylbenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2g). White solid, 62%, mp 218–220 °C; 1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 2H, ArH), 7.24–7.23 (m, 2H, ArH), 7.21–7.17 (m, 2H, ArH), 7.15–7.12 (m, 2H, ArH), 6.95 (s, 1H, ArH), 6.93–6.92 (m, 2H, ArH), 6.90 (s, 1H, ArH), 6.80 (d, J = 7.2 Hz, 2H, ArH), 6.64 (d, J = 8 Hz, 1H, ArH), 5.98 (s, 1H, ArH), 5.91 (d, J = 8 Hz, 1H, CH), 4.87 (d, J = 16 Hz, 1H, CH), 4.29 (s, 1H, CH), 4.13 (d, J = 16 Hz, 1H, CH), 3.81–3.78 (m, 1H, CH), 3.11–3.03 (m, 2H, CH), 2.92–2.87 (m, 1H, CH), 2.29 (s, 3H, CH3), 2.24 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.5, 173.7, 143.8, 139.5, 134.7, 132.7, 132.0, 131.2, 130.6, 129.4, 129.2, 128.8, 128.6, 128.5, 127.8, 127.6, 126.9, 123.3, 122.5, 108.3, 77.7, 65.5, 64.6, 47.7, 43.8, 32.6, 21.6, 21.0; IR (KBr) ν: 2913, 2856, 1705, 1553, 1493, 1423, 1362, 1302, 1250, 1188, 1068, 976, 902, 820, 776, 733 cm−1; MS (m/z): HRMS (ESI) calcd for C35H30BrN3NaO3 ([M + Na]+): 642.1363. Found: 642.1375.
1′-(4-Bromophenyl)-3′-(4-chlorobenzoyl)-5-methyl-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2h). White solid, 65%, mp 241–242 °C; 1H NMR (400 MHz, DMSO-d6) δ: 10.48 (s, 1H, NH), 7.40–7.38 (m, 2H, ArH), 7.32–7.29 (m, 4H, ArH), 6.97–6.95 (m, 3H, ArH), 6.67 (d, J = 8 Hz, 1H, ArH), 6.11 (d, J = 8 Hz, 1H, CH), 5.69 (s, 1H, CH), 4.28 (s, 1H, CH), 3.72–3.67 (m, 1H, CH), 3.07–3.02 (m, 1H, CH), 2.93–2.87 (m, 2H, CH), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ:191.7, 174.8, 174.4, 138.7, 138.0, 133.5, 131.6, 130.7, 129.9, 129.3, 129.0, 128.8, 128.6, 127.6, 123.8, 121.1, 108.7, 75.9, 65.8, 64.0, 45.8, 30.6, 20.5; IR (KBr) ν: 2821, 1720, 1660, 1542, 1486, 1409, 1320, 1250, 1208, 1091, 979, 830, 787, 734 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21BrClN3NaO3 ([M + Na]+): 572.0347. Found: 572.0352.
1-Benzyl-1′-(4-bromophenyl)-5-chloro-3′-(4-methylbenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2i). White solid, 58%, mp 221–223 °C; 1H NMR (400 MHz, CDCl3) δ: 7.48 (s, 1H, ArH), 7.32 (d, J = 7.6 Hz, 2H, ArH), 7.25–7.23 (m, 1H, ArH), 7.21–7.17 (m, 4H, ArH), 6.98 (d, J = 8 Hz, 2H, ArH), 6.91 (d, J = 8 Hz, 2H, ArH), 6.84–6.82 (m, 1H, ArH), 6.80–6.78 (m, 2H, ArH), 6.00 (s, 1H, ArH), 5.95 (d, J = 8.4 Hz, 1H, CH), 4.87 (d, J = 16 Hz, 1H, CH), 4.30 (s, 1H, CH), 4.16 (d, J = 16 Hz, 1H, CH), 3.83–3.79 (m, 1H, CH), 3.07–3.04 (m, 2H, CH), 2.91 (s, 1H, CH), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 191.2, 173.5, 172.5, 144.2, 140.4, 134.1, 132.5, 131.4, 130.2, 129.3, 129.0, 129.0, 128.7, 128.0, 128.0, 127.9, 127.8, 126.9, 125.2, 122.9, 109.6, 77.48, 65.4, 64.6, 47.3, 44.0, 32.2, 21.7; IR (KBr) ν: 2989, 2912, 2875, 1714, 1609, 1482, 1423, 1349, 1298, 1253, 1217, 1176, 1134, 1065, 968, 901, 820, 771, 728 cm−1; MS (m/z): HRMS (ESI) calcd for C34H27BrClN3Na ([M + Na]+): 662.0817. Found: 662.0815.
1-Benzyl-1′-(4-bromophenyl)-5-chloro-3′-(4-chlorobenzoyl)-6′,7′-dihydro-1′H-spiro[indoline-3,2′-pyrazolo[1,2-a]pyrazole]-2,5′(3′H)-dione (2j). White solid, 69%, mp 202–204 °C; 1H NMR (400 MHz, CDCl3) δ: 7.46–7.45 (m, 1H, ArH), 7.34 (d, J = 8.4 Hz, 2H, ArH), 7.24–7.18 (m, 5H, ArH), 7.14 (d, J = 8.8 Hz, 2H, ArH), 6.91–6.86 (m, 3H, ArH), 6.81 (d, J = 7.2 Hz, 2H, ArH), 6.03 (d, J = 8.4 Hz, 1H, CH), 5.95 (s, 1H, ArH), 4.84 (d, J = 16 Hz, 1H, CH), 4.30 (s, 1H, CH), 4.24 (d, J = 16 Hz, 1H, CH), 3.86–3.82 (m, 1H, CH), 3.11–3.04 (m, 2H, CH), 2.94–2.87 (m, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 190.7, 173.3, 140.4, 139.7, 133.9, 133.4, 131.5, 129.9, 129.2, 129.2, 129.1, 128.7, 128.7, 128.1, 128.0, 127.0, 125.0, 123.0, 109.7, 77.5, 65.5, 64.4, 47.1, 44.1, 31.9; IR (KBr) ν: 2916, 2387, 1709, 1647, 1485, 1422, 1349, 1241, 1215, 1177, 1187, 1000, 980, 955, 900, 820, 773, 736, 701 cm−1; MS (m/z): HRMS (ESI) calcd for C33H24BrCl2N3NaO3 ([M + Na]+): 682.0270. Found: 682.0277.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21272200) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant BK2013016). We also thank Analysis and Test Center of Yangzhou University providing all analytical instruments.

References

  1. (a) R. M. Claramunt and J. Elguero, Org. Prep. Proced. Int., 1991, 23, 273–320 CrossRef CAS; (b) U. Grošelj and J. Svete, ARKIVOC, 2015, 6, 175–205 Search PubMed.
  2. (a) L. N. Jungheim, S. K. Sigmund and J. W. Fisher, Tetrahedron Lett., 1987, 28, 285–288 CrossRef CAS; (b) L. N. Jungheim and S. K. Sigmund, J. Org. Chem., 1987, 52, 4007–4013 CrossRef CAS; (c) J. M. Indelicato and C. E. Pasini, J. Med. Chem., 1988, 31, 1227–1230 CrossRef CAS PubMed; (d) R. J. Ternansky and S. E. Draheim, Tetrahedron Lett., 1990, 31, 2805–2808 CrossRef CAS.
  3. (a) R. E. Holmes and D. A. Neel, Tetrahedron Lett., 1990, 31, 5567–5570 CrossRef CAS; (b) K. S. Kim and P. Ryan, Heterocycles, 1990, 31, 79–86 CrossRef CAS; (c) R. J. Ternansky and S. E. Draheim, Tetrahedron, 1992, 48, 777–796 CrossRef CAS.
  4. (a) D. B. Boyd, J. Med. Chem., 1993, 36, 1443–1449 CrossRef CAS PubMed; (b) L. N. Jungheim, S. K. Sigmund, R. E. Holmes, C. J. Barnett and R. J. Ternansky, Eur. Pat. Appl. EP 202046, A119861120, 1986Chem. Abstr. 1987, 106, 119880 Search PubMed; (c) C. J. Barnett, R. E. Holmes, L. N. Jungheim, S. Kay and R. J. Ternansky, Eur. Pat. Appl. EP 310214 19890405, 1989Chem. Abstr. 1989, 111, 134143 Search PubMed.
  5. (a) M. Michel, B. Manfred, C. Fredrik, C. Derek, A. A. Friedmann, G. Jutta, N. Thierry, S. Andre and W. Trixie, Bioorg. Med. Chem., 2009, 17, 4241–4256 CrossRef PubMed; (b) M. Kamata, T. Yamashita, A. Kina, M. Tawada, S. Endo, A. Mizukami, M. Sasaki, A. Tani, Y. Nakano, Y. Watanabe, N. Furuyama, M. Funami, N. Amano and K. Fukatsu, Bioorg. Med. Chem. Lett., 2012, 22, 4769–4772 CrossRef CAS PubMed; (c) Y. Sheng, G. Daniel, W. Katharina, L. Bettina, S. Michael and S. Juergen, Bioorg. Med. Chem., 2011, 19, 4669–4678 CrossRef PubMed.
  6. (a) K. Ogawa, T. Terada and T. Honna, Chem. Pharm. Bull., 1984, 32, 930–939 CrossRef CAS; (b) H. Z. Shams, M. H. Helal and F. A. Mohamed, Phosphorus, Sulfur Silicon Relat. Elem., 2001, 174, 255–267 CrossRef CAS; (c) C. Turk, L. Golic, L. Selic, J. Svete and B. Stanovnik, ARKIVOC, 2001, 5, 87–97 Search PubMed.
  7. (a) W. J. Liu, Y. Xu, X. X. Sun, D. P. Lu and L. J. Guo, Synlett, 2014, 25, 1093–1096 CrossRef; (b) Z. Li, H. Yu, H. L. Liu, L. Zhang, H. Jiang, B. Wang and H. C. Guo, Chem.–Eur. J., 2014, 20, 1731–1736 CrossRef CAS PubMed; (c) J. C. Jung, W. E. Blake and M. A. Avery, Heterocycles, 2005, 65, 77–94 CrossRef CAS.
  8. (a) I. Coldham and R. Hufton, Chem. Rev., 2005, 105, 2765–2810 CrossRef CAS PubMed; (b) G. Pandey, P. Banerjee and S. R. Gadre, Chem. Rev., 2006, 106, 4484–4517 CAS; (c) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887–2902 CrossRef CAS PubMed; (d) J. Adrio and J. C. Carretero, Chem. Commun., 2011, 47, 6784–6794 RSC.
  9. (a) R. Narayan, M. Potowski, Z. J. Jia, A. P. Antonchick and H. Waldmann, Acc. Chem. Res., 2014, 47, 1296–1310 CrossRef CAS PubMed; (b) X. F. Xu and M. P. Doyle, Acc. Chem. Res., 2014, 47, 1396–1405 CrossRef CAS PubMed.
  10. (a) R. S. Na, C. F. Jing, Q. H. Xu, H. Jiang, X. Wu, J. Y. Shi, J. C. Zhong, M. Wang, D. Benitez, E. Tkatchouk, W. A. Goddard III, H. C. Guo and O. Kwon, J. Am. Chem. Soc., 2011, 133, 13337–13348 CrossRef CAS PubMed; (b) T. Imaizumi, Y. Yamashita and S. Kobayashi, J. Am. Chem. Soc., 2012, 134, 20049–20052 CrossRef CAS PubMed; (c) R. Y. Zhu, C. S. Wang, J. Zheng, F. Shi and S. J. Tu, J. Org. Chem., 2014, 79, 9305–9312 CrossRef CAS PubMed.
  11. (a) L. Pezdirc, D. Bevk, U. Grošelj, A. Meden, B. Stanovnik and J. Svete, J. Comb. Chem., 2007, 9, 717–723 CrossRef CAS PubMed; (b) R. S. Na, H. L. Liu, Z. Li, B. Wang, J. Liu, M. A. Wang, M. Wang, J. C. Zhong and H. C. Guo, Tetrahedron, 2012, 68, 2349–2356 CrossRef CAS; (c) A. Novak, A. Testen, J. Bezensek, U. Groselj, M. Hrast, M. Kasunic, S. Gobec, B. Stanovnik and J. Svete, Tetrahedron, 2013, 69, 6648–6665 CrossRef CAS.
  12. (a) W. Chen, X. H. Yuan, R. Li, W. Du, Y. Wu, L. S. Ding and Y. C. Chen, Adv. Synth. Catal., 2006, 348, 1818–1822 CrossRef CAS; (b) W. Chen, W. Du, Y. Z. Duan, Y. Wu, S. Y. Yang and Y. C. Chen, Angew. Chem., Int. Ed., 2007, 46, 7667–7670 CrossRef CAS PubMed; (c) H. Suga, T. Arikawa, K. Itoh, Y. Okumura, A. Kakehi and M. Shiro, Heterocycles, 2010, 81, 1669–1688 CrossRef CAS; (d) L. Hong, M. Kai, C. Y. Wu, W. S. Sun, G. M. Zhu, G. F. Li, X. J. Yao and R. Wang, Chem. Commun., 2013, 49, 6713–6715 RSC.
  13. (a) R. Shintani and T. Hayashi, J. Am. Chem. Soc., 2006, 128, 6330–6331 CrossRef CAS PubMed; (b) A. Chan and K. A. Scheidt, J. Am. Chem. Soc., 2007, 129, 5334–5335 CrossRef CAS PubMed; (c) N. D. Shapiro, Y. Shi and F. D. Toste, J. Am. Chem. Soc., 2009, 131, 11654–11655 CrossRef CAS PubMed; (d) Q. Yu, J. Z. Peter, W. Hu and M. P. Doyle, Org. Lett., 2013, 15, 1564–1567 CrossRef PubMed; (e) G. M. Zhu, W. S. Sun, C. Y. Wu, G. F. Li, L. Hong and R. Wang, Org. Lett., 2013, 15, 4988–4991 CrossRef CAS PubMed; (f) Z. Li, H. Yu, L. H. Liu, L. Zhang, H. Jiang, B. Wang and H. C. Guo, Chem.–Eur. J., 2014, 20, 1731–1736 CrossRef CAS PubMed.
  14. D. Zhang, D. M. Zhang, G. Y. Xu and J. T. Sun, Chin. Chem. Lett., 2015, 26, 301–303 CrossRef CAS.
  15. (a) J. Sun, E. Y. Xia, Q. Wu and C. G. Yan, Org. Lett., 2010, 12, 3678–3681 CrossRef CAS PubMed; (b) J. Sun, Q. Wu, E. Y. Xia and C. G. Yan, Eur. J. Org. Chem., 2011, 2981–2986 CrossRef CAS; (c) J. Sun, Y. Sun, E. Y. Xia and C. G. Yan, ACS Comb. Sci., 2011, 13, 436–441 CrossRef CAS PubMed; (d) J. Sun, Y. Sun, H. Gong, Y. J. Xie and C. G. Yan, Org. Lett., 2012, 14, 5172–5275 CrossRef CAS PubMed; (e) H. Gao, J. Sun and C. G. Yan, J. Org. Chem., 2014, 79, 4131–4136 CrossRef CAS PubMed; (f) J. Zhang and C. G. Yan, Eur. J. Org. Chem., 2014, 5598–5602 CrossRef CAS.
  16. (a) Y. J. Xie, J. Sun and C. G. Yan, RSC Adv., 2014, 4, 44537–44546 RSC; (b) D. Zhu, J. Sun and C. G. Yan, RSC Adv., 2014, 4, 62817–62826 RSC; (c) F. Yang, L. J. Zhang and C. G. Yan, RSC Adv., 2014, 4, 64466–64475 RSC; (d) G. L. Shen, J. Sun and C. G. Yan, RSC Adv., 2015, 5, 4475–4483 RSC; (e) F. Yang, J. Sun, H. Gao and C. G. Yan, RSC Adv., 2015, 5, 32786–32794 RSC; (f) J. Sun, L. Chen, H. Gong and C. G. Yan, Org. Biomol. Chem., 2015, 13, 5905–5917 RSC.

Footnote

Electronic supplementary information (ESI) available: Experimental details and detailed spectroscopic data of all new compounds. CCDC 1418868–1418875. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ra02358d

This journal is © The Royal Society of Chemistry 2016