DOI: 
10.1039/C6RA02343F
(Paper)
RSC Adv., 2016, 
6, 44774-44781
Synthesis of 4-trifluoromethanesulfonate substituted 3,6-dihydropyrans and their application in various C–C coupling reactions†
Received 
26th January 2016
, Accepted 21st April 2016
First published on 27th April 2016
Abstract
The triflic acid mediated Prins cyclization of homopropargylic alcohols with aldehydes afforded 3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonates efficiently and highly regioselectively. The dihydropyran thus formed is transformed into different 4-alkyl and aryl substituted products using Suzuki, Heck, Stille and Sonogashira coupling reactions.
Introduction
Substituted pyran motifs constitute the core structural unit in numerous biologically active natural products such as calixyn L,1 ambruticin,2 kendomycin3 (Fig. 1) and have diverse applications in cosmetics and agro chemicals as well.4 The dihydropyran skeleton of this family is distinctly important since functionalized dihydropyrans are versatile building blocks widely used in the synthesis of biologically active molecules5 and this structural moiety exists in many natural products such as laulimalide6 and aspergillide C (Fig. 1).7 The presence of double bond in cyclic system is not only responsible for their biological properties but also serve as a functional group for further manipulations in organic synthesis.8 They can also be used as building blocks in organic synthesis.9 Triflates, present at vinylic position, in general are valuable substrates for a number of organic reactions such as electrophilic aromatic substitution reaction10 and various metal catalyzed cross-coupling reactions such as Suzuki,11 Heck,12 Stille,13 and Sonogashira coupling.14 Therefore, the synthesis of such valuable units in an easier and economical method is of value to organic chemists. There are different methods towards the construction of dihydropyrans including hetero-Diels–Alder reactions,15 olefin metathesis,16 base promoted cyclizations of sulfenyl dienols,17 oxonium–ene reactions,18 [4 + 2] annulations,19 intramolecular C–C bond formation of alkyne-epoxide,20 and Prins cyclization reactions.21
|  | 
|  | Fig. 1  Structures of natural products containing pyran ring. |  | 
Among various methods available, Prins cyclization is considered to be the most convenient tool as it provides the desired product in a single step with high diastereoselectivity. On the other hand, one pot, multi component and selective reactions are considered as green synthetic routes.22 Considering these and in continuation of our research on Prins cyclization reaction,23 herein, we report a one pot, three component and highly selective Prins cyclization reaction for efficient synthesis of 3,6-dihydro-2H-pyran-4-yl trifluoromethane-sulfonates from homopropargylic alcohols and aldehydes mediated by triflic acid in which triflic acid acts as Brønsted acid as well as a nucleophile. Although there are several reports which illustrate the preparation of 4-halotetrahydropyran derivatives, there are only a couple of reports which demonstrated the preparation of 4-halo-3,6-dihydro-2H-pyrans mediated by Lewis acids. Use of Fe(III) salts by Martin and co-workers have resulted in 2-alkyl-4-halo-3,6-dihydro-2H-pyrans.9g,21h,i The presence of the triflate group at the vinylic position of dihydropyran ring, which can be used in many coupling reactions, has not been reported so far.
Results and discussion
To start with homopropargyl alcohol 1 (1.5 equiv.) and benzaldehyde 2a (1.0 equiv.) were treated with 1.2 equivalents of triflic acid in dry dichloromethane at room temperature for 12 h and 3,6-dihydro-2-phenyl-2H-pyran-4-yl trifluoromethane-sulfonate 3a was obtained in 92% yield. The reaction is regioselective and only 3,6-dihydropyrans was formed in the reaction. The stereochemistry of the compounds was determined by 1H, 13C, DEPT and HMQC analysis. Finally the structure is confirmed by X-ray crystallographic analysis (Fig. 2).24 The scope of the reaction was examined with variety of aliphatic and aromatic aldehydes (Table 1). It was observed from the Table 1 that both aromatic and aliphatic aldehydes gave the good yields. Aromatic aldehydes are better substrates than the aliphatic substrates. There is no major role of electron withdrawing and donating groups on the aromatic rings, both groups are providing comparable yields. To study the steric effect, ortho-, meta- and para-chlorobenazaldehydes (entries 4–6) were reacted with alcohol 1, but the effect is not noticeable. On the other hand, highly sterically hindered 2,6-dichlorobenzaldehyde (entry 7) and 4-chloro-3-nitrobenzaldehyde (entry 12) gave low yields. 4-Methoxybenzaldehyde was found to be decomposed under these reaction conditions. Reaction of 2p gave two inseparable diastereomers with a ratio of 2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1, which was determined by 1H NMR.
1, which was determined by 1H NMR.
|  | 
|  | Fig. 2  X-ray crystallographic structure of 3n. |  | 
Table 1 Synthesis of dihydropyransa
		 
The mechanism of the reaction can be explained as follows. The acidic proton activates the aldehyde for nucleophilic attack by homopropargylic alcohols to form oxocarbenium ion 5, which after Prins cyclization generates carbocation 6. The carbocation 6 is then attacked by triflate ion to give dihydropyran 3 (Scheme 1).
|  | 
|  | Scheme 1  Mechanism of the reaction. |  | 
The reaction is further utilized for the synthesis of 4-arylated dihydropyrans. It may be noted that 4-arylated tetrahydropyrans are found in many biologically active natural products.1 Generally 4-aryl tetrahydropyrans are prepared by Prins–Friedel–Crafts reactions.23b,c,25 The major drawback of the existing methods is that the electron deficient aromatic rings cannot participate in this reaction. Therefore, use of triflates 3 as an arylating unit via Suzuki coupling would be a better alternative for introduction of various aryl groups including both electron donating and electron withdrawing groups. Thus the reaction of 3a with different aryl and heteroaryl boronic acids 7a–f under Suzuki coupling conditions afforded 4-aryl-dihydropyrans 8a–f in good yields (Table 2). Similarly, Heck, Stille and Sonogashira coupling of 3a produce corresponding coupling products 9, 10 and 11, respectively, in excellent yields (Schemes 2–4).
Table 2 Suzuki coupling reaction
		
|  | 
|  | Scheme 2  Heck coupling reaction. |  | 
|  | 
|  | Scheme 3  Stille coupling reaction. |  | 
|  | 
|  | Scheme 4  Sonogashira coupling reaction. |  | 
Conclusions
In conclusion, we have developed one pot, three component, mild and efficient method for the synthesis of 4-trifluoromethanesulfonate substituted dihydropyrans via Prins cyclization reaction in good yields. The reaction is compatible with a wide range of functional groups such as ester, ether, nitro, and bromo. The aspect of this reaction is that it introduces trifluoromethanesulfonate group at 4-position of the dihydropyrans, which can be used for subsequent coupling reactions such as Suzuki, Heck, Stille and Sonogashira coupling reactions.
Experimental
General information
All the reagents were of reagent grade (AR grade) and were used as purchased without further purification. Silica gel (60–120 mesh size) was used for column chromatography. Reactions were monitored by TLC on silica gel GF254 (0.25 mm). Melting points were recorded in an open capillary tube and are uncorrected. Fourier transform-infra red (FT-IR) spectra were recorded as neat liquid or KBr pellets. NMR spectra were recorded in CDCl3 with tetramethylsilane as the internal standard for 1H (600 MHz, 400 MHz) or 13C (150 MHz, 100 MHz) NMR. Chemical shifts (δ) are reported in ppm and spin–spin coupling constants (J) are given in Hz. HRMS spectra were recorded using Q-TOF mass spectrometer.
General procedure for the formation of 4-trifluoromethanesulfonate 3,6-dihydropyan
To a stirring solution of aldehyde (1.0 equiv.) and 3-butyn-1-ol (1.5 equiv.) in dry dichloromethane (5.0 mL) was added triflic acid (1.2 equiv.) dropwise at 0 °C. The reaction mixture was brought to room temperature and stirred for a specific time. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluents. After completion of the reaction, the reaction mixture was treated with saturated sodium bicarbonate solution (5.0 mL). The product was extracted with CH2Cl2 (2 × 10.0 mL) and washed with brine. Organic layer was separated and dried over anhydrous Na2SO4 and evaporated using rotary evaporator to obtain the crude product. The crude product was purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford the cyclic compounds.
Synthesis of 6-phenyl-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate (3a). To a stirring solution of benzaldehyde (0.1 mL, 1 mmol) and 3-butyn-1-ol (0.11 mL, 1.5 mmol) in CH2Cl2 (5 mL) was added TfOH (0.1 mL, 1.2 mmol) dropwise at 0 °C. The reaction mixture was brought to room temperature and stirred for 12 h. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluents. After completion of the reaction, CH2Cl2 (10 mL) was added and the reaction mixture was washed with saturated sodium bicarbonate solution and brine solution. The organic layer was separated and dried over anhydrous Na2SO4 and evaporated using rotary evaporator to leave the crude product which was purified by column chromatography over silica gel using ethyl acetate and hexane as eluents to give 6-phenyl-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate 3a; colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.20; yield 292 mg, 92%; 1H NMR (400 MHz, CDCl3) δ 2.05 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.73 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.26 (d, J = 4.0 Hz, 1H), 5.93 (s, 1H), 7.34–7.38 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 28.5, 63.1, 75.8, 118.7 (q, J = 318.0 Hz), 120.2, 127.8, 128.9, 128.9, 139.0, 146.9; 19F NMR (376 MHz, CDCl3/TFA) δ 2.03 (s, –F); IR (KBr, neat) 2929, 2869, 1690, 1455, 1422, 1351, 1246, 1141, 1029, 894, 762 cm−1; HRMS (ESI) calcd for C12H12F3O4S (M + H)+ 309.0403, found 309.0408.
1) 0.20; yield 292 mg, 92%; 1H NMR (400 MHz, CDCl3) δ 2.05 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.73 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.26 (d, J = 4.0 Hz, 1H), 5.93 (s, 1H), 7.34–7.38 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 28.5, 63.1, 75.8, 118.7 (q, J = 318.0 Hz), 120.2, 127.8, 128.9, 128.9, 139.0, 146.9; 19F NMR (376 MHz, CDCl3/TFA) δ 2.03 (s, –F); IR (KBr, neat) 2929, 2869, 1690, 1455, 1422, 1351, 1246, 1141, 1029, 894, 762 cm−1; HRMS (ESI) calcd for C12H12F3O4S (M + H)+ 309.0403, found 309.0408. 
6-(p-Tolyl)-3,6-dihydro-2H-pyran-4-yl trifluoromethane-sulfonate (3b). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.21; yield 257 mg, 80%; 1H NMR (400 MHz, CDCl3) δ 2.34 (s, 3H), 2.40 (dd, J = 12.0 and 4.0 Hz, 1H), 2.65–2.70 (m, 1H), 3.83 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.22 (d, J = 4.0 Hz, 1H), 5.91 (s, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.23 (d, J = 7.2 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 21.3, 28.5, 62.9, 75.5, 118.7 (q, J = 318.0 Hz), 120.3, 127.7, 129.6, 136.0, 138.8, 146.8; 19F NMR (376 MHz, CDCl3/TFA) δ 1.99 (s, –F); IR (KBr, neat) 2926, 2866, 1689, 1420, 1349, 1212, 1142, 1071, 899, 816 cm−1; HRMS (ESI) calcd for C13H14F3O4S (M + H)+ 323.0559, found 323.0565.
1) 0.21; yield 257 mg, 80%; 1H NMR (400 MHz, CDCl3) δ 2.34 (s, 3H), 2.40 (dd, J = 12.0 and 4.0 Hz, 1H), 2.65–2.70 (m, 1H), 3.83 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.22 (d, J = 4.0 Hz, 1H), 5.91 (s, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.23 (d, J = 7.2 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 21.3, 28.5, 62.9, 75.5, 118.7 (q, J = 318.0 Hz), 120.3, 127.7, 129.6, 136.0, 138.8, 146.8; 19F NMR (376 MHz, CDCl3/TFA) δ 1.99 (s, –F); IR (KBr, neat) 2926, 2866, 1689, 1420, 1349, 1212, 1142, 1071, 899, 816 cm−1; HRMS (ESI) calcd for C13H14F3O4S (M + H)+ 323.0559, found 323.0565. 
6-(2-Chlorophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3d). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.2; yield 246 mg, 72%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.70–2.76 (m, 1H), 3.88 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.16 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.70 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.24–7.29 (m, 2H), 7.39 (dd, J = 7.2 and 4.0 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.4, 72.4, 117.4 (q, J = 319.5 Hz), 119.7, 127.3, 128.9, 129.9, 130.0, 133.1, 136.4, 147.1; 19F NMR (376 MHz, CDCl3/TFA) δ 2.01 (s, –F); IR (KBr, neat) 2928, 2872, 1690, 1420, 1219, 1142, 1065, 764 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0010.
1) 0.2; yield 246 mg, 72%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.70–2.76 (m, 1H), 3.88 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.16 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.70 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.24–7.29 (m, 2H), 7.39 (dd, J = 7.2 and 4.0 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.4, 72.4, 117.4 (q, J = 319.5 Hz), 119.7, 127.3, 128.9, 129.9, 130.0, 133.1, 136.4, 147.1; 19F NMR (376 MHz, CDCl3/TFA) δ 2.01 (s, –F); IR (KBr, neat) 2928, 2872, 1690, 1420, 1219, 1142, 1065, 764 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0010. 
6-(3-Chlorophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3e). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.2; yield 253 mg, 74%; 1H NMR (400 MHz, CDCl3) δ 2.41 (dd, J = 12.0 and 4.0 Hz, 1H), 2.66–2.73 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.24 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.21–7.23 (m, 1H), 7.31–7.32 (m, 2H), 7.35 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.1, 75.0, 118.7 (q, J = 318.0 Hz), 119.7, 125.7, 127.9, 129.0, 130.2, 134.8, 141.1, 147.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.08 (s, –F); IR (KBr, neat) 2928, 2870, 1689, 1421, 1214, 1142, 1073, 875 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0035.
1) 0.2; yield 253 mg, 74%; 1H NMR (400 MHz, CDCl3) δ 2.41 (dd, J = 12.0 and 4.0 Hz, 1H), 2.66–2.73 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.24 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.21–7.23 (m, 1H), 7.31–7.32 (m, 2H), 7.35 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.1, 75.0, 118.7 (q, J = 318.0 Hz), 119.7, 125.7, 127.9, 129.0, 130.2, 134.8, 141.1, 147.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.08 (s, –F); IR (KBr, neat) 2928, 2870, 1689, 1421, 1214, 1142, 1073, 875 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0035. 
6-(4-Chlorophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3f). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.2; yield 256 mg, 75%; 1H NMR (400 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 6.0 Hz, 1H), 2.67–2.74 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.16 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.25 (d, J = 6.0 Hz, 1H), 5.89 (s, 1H), 7.28 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 28.3, 63.0, 74.9, 115.4 (q, J = 318.0 Hz), 120.2, 129.0 (2C), 134.6, 137.6, 147.1; 19F NMR (376 MHz, CDCl3/TFA) δ 1.97 (s, –F); IR (KBr, neat) 2929, 2869, 1692, 1421, 1213, 1148, 1091, 1066, 900, 765, 613 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0017.
1) 0.2; yield 256 mg, 75%; 1H NMR (400 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 6.0 Hz, 1H), 2.67–2.74 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.16 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.25 (d, J = 6.0 Hz, 1H), 5.89 (s, 1H), 7.28 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 28.3, 63.0, 74.9, 115.4 (q, J = 318.0 Hz), 120.2, 129.0 (2C), 134.6, 137.6, 147.1; 19F NMR (376 MHz, CDCl3/TFA) δ 1.97 (s, –F); IR (KBr, neat) 2929, 2869, 1692, 1421, 1213, 1148, 1091, 1066, 900, 765, 613 cm−1; HRMS (ESI) calcd for C12H11ClF3O4S (M + H)+ 343.0013, found 343.0017. 
6-(2,6-Dichlorophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3g). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.19; yield 225 mg, 60%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.81–2.91 (m, 1H), 3.88 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.24 (dd, J = 12.0 and 4.0 Hz, 1H), 5.78 (s, 1H), 5.97 (s, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.1, 65.2, 72.7, 118.6 (q, J = 318.0 Hz), 119.7, 129.6, 130.5, 133.1, 136.1, 146.9; 19F NMR (376 MHz, CDCl3/TFA) δ 1.91 (s, –F); IR (KBr, neat) 2923, 2857, 1659, 1437, 1219, 1119, 1052, 775 cm−1; HRMS (ESI) calcd for C12H10Cl2F3O4S (M + H)+ 376.9623, found 376.9627.
1) 0.19; yield 225 mg, 60%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.81–2.91 (m, 1H), 3.88 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.24 (dd, J = 12.0 and 4.0 Hz, 1H), 5.78 (s, 1H), 5.97 (s, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.1, 65.2, 72.7, 118.6 (q, J = 318.0 Hz), 119.7, 129.6, 130.5, 133.1, 136.1, 146.9; 19F NMR (376 MHz, CDCl3/TFA) δ 1.91 (s, –F); IR (KBr, neat) 2923, 2857, 1659, 1437, 1219, 1119, 1052, 775 cm−1; HRMS (ESI) calcd for C12H10Cl2F3O4S (M + H)+ 376.9623, found 376.9627. 
6-(3-Bromophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3h). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.18; yield 301 mg, 78%; 1H NMR (400 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 4.0 Hz, 1H), 2.66–2.74 (m, 1H), 3.87 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.24 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.46–7.51 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.1, 74.9, 118.6 (q, J = 319.5 Hz), 119.7, 122.9, 126.2, 130.5, 130.8, 131.9, 141.4, 147.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.04 (s, –F); IR (KBr, neat) 2871, 1690, 1420, 1213, 1141, 1072, 784 cm−1; HRMS (ESI) calcd for C12H11BrF3O4S (M + H)+ 386.9508, found 386.9520.
1) 0.18; yield 301 mg, 78%; 1H NMR (400 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 4.0 Hz, 1H), 2.66–2.74 (m, 1H), 3.87 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.11 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.24 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.46–7.51 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.1, 74.9, 118.6 (q, J = 319.5 Hz), 119.7, 122.9, 126.2, 130.5, 130.8, 131.9, 141.4, 147.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.04 (s, –F); IR (KBr, neat) 2871, 1690, 1420, 1213, 1141, 1072, 784 cm−1; HRMS (ESI) calcd for C12H11BrF3O4S (M + H)+ 386.9508, found 386.9520. 
6-(4-Fluorophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3i). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.19; yield 228 mg, 70%; 1H NMR (600 MHz, CDCl3) δ 2.41 (dd, J = 12.0 and 6.0 Hz, 1H), 2.67–2.74 (m, 1H), 3.86 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.11 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.25 (d, J = 6.0 Hz, 1H), 5.90 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.0, 75.0, 115.7, 118.7 (q, J = 318.0 Hz), 119.9, 129.4, 134.9, 147.0, 163.0 (q, J = 246.0 Hz); 19F NMR (376 MHz, CDCl3/TFA) δ 2.06 (s, –F); IR (KBr, neat) 2925, 2869, 1690, 1421, 1219, 1141, 1071, 897, 775 cm−1; HRMS (ESI) calcd for C12H11F4O4S (M + H)+ 327.0309, found 327.0313.
1) 0.19; yield 228 mg, 70%; 1H NMR (600 MHz, CDCl3) δ 2.41 (dd, J = 12.0 and 6.0 Hz, 1H), 2.67–2.74 (m, 1H), 3.86 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.11 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.25 (d, J = 6.0 Hz, 1H), 5.90 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.0, 75.0, 115.7, 118.7 (q, J = 318.0 Hz), 119.9, 129.4, 134.9, 147.0, 163.0 (q, J = 246.0 Hz); 19F NMR (376 MHz, CDCl3/TFA) δ 2.06 (s, –F); IR (KBr, neat) 2925, 2869, 1690, 1421, 1219, 1141, 1071, 897, 775 cm−1; HRMS (ESI) calcd for C12H11F4O4S (M + H)+ 327.0309, found 327.0313. 
6-(4-(Trifluoromethyl)phenyl)-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate (3j). Pale yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.20; yield 244 mg, 65%; 1H NMR (600 MHz, CDCl3) δ 2.42 (dd, J = 18.0 and 6.0 Hz, 1H), 2.69–2.76 (m, 1H), 3.90 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.14 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.33 (d, J = 6.0 Hz, 1H), 5.92 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.3, 75.1, 118.7 (q, J = 319.5 Hz), 119.5, 121.9, 124.1 (q, J = 270.0 Hz), 126.0, 128.0, 130.3, 143.0, 147.3; 19F NMR (376 MHz, CDCl3/TFA) δ 2.20 (s, –F), 13.27 (s, –F); IR (KBr, neat) 2928, 2872, 1622, 1421, 1327, 1216, 1130, 1069, 858, 792 cm−1; HRMS (ESI) calcd for C13H11F6O4S (M + H)+ 377.0277, found 377.0249.
1) 0.20; yield 244 mg, 65%; 1H NMR (600 MHz, CDCl3) δ 2.42 (dd, J = 18.0 and 6.0 Hz, 1H), 2.69–2.76 (m, 1H), 3.90 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.14 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.33 (d, J = 6.0 Hz, 1H), 5.92 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 63.3, 75.1, 118.7 (q, J = 319.5 Hz), 119.5, 121.9, 124.1 (q, J = 270.0 Hz), 126.0, 128.0, 130.3, 143.0, 147.3; 19F NMR (376 MHz, CDCl3/TFA) δ 2.20 (s, –F), 13.27 (s, –F); IR (KBr, neat) 2928, 2872, 1622, 1421, 1327, 1216, 1130, 1069, 858, 792 cm−1; HRMS (ESI) calcd for C13H11F6O4S (M + H)+ 377.0277, found 377.0249. 
6-(2-Nitrophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3k). Yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.25; yield 247 mg, 70%; 1H NMR (600 MHz, CDCl3) δ 2.39 (dd, J = 18.0 and 6.0 Hz, 1H), 2.79–2.85 (m, 1H), 3.91 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.22 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.86 (d, J = 6.0 Hz, 1H), 6.02 (s, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.3, 63.9, 71.4, 118.6 (q, J = 318.0 Hz), 119.9, 124.8, 129.3, 129.4, 133.9, 134.6, 147.1, 148.2; 19F NMR (376 MHz, CDCl3/TFA) δ 1.97 (s, –F); IR (KBr, neat) 2929, 2873, 1689, 1531, 1419, 1353, 1211, 1141, 1073, 901, 789, 751 cm−1; HRMS (ESI) calcd for C12H11F3NO6S (M + H)+ 354.0259, found 354.0259.
1) 0.25; yield 247 mg, 70%; 1H NMR (600 MHz, CDCl3) δ 2.39 (dd, J = 18.0 and 6.0 Hz, 1H), 2.79–2.85 (m, 1H), 3.91 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.22 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.86 (d, J = 6.0 Hz, 1H), 6.02 (s, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.3, 63.9, 71.4, 118.6 (q, J = 318.0 Hz), 119.9, 124.8, 129.3, 129.4, 133.9, 134.6, 147.1, 148.2; 19F NMR (376 MHz, CDCl3/TFA) δ 1.97 (s, –F); IR (KBr, neat) 2929, 2873, 1689, 1531, 1419, 1353, 1211, 1141, 1073, 901, 789, 751 cm−1; HRMS (ESI) calcd for C12H11F3NO6S (M + H)+ 354.0259, found 354.0259. 
6-(4-Chloro-3-nitrophenyl)-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate (3l). Yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.25; yield 236 mg, 61%; 1H NMR (600 MHz, CDCl3) δ 2.44 (dd, J = 18.0 and 6.0 Hz, 1H), 2.70–2.76 (m, 1H), 3.90 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.13 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.33 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.89 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.3, 63.3, 74.0, 118.6, 118.7 (q, J = 318.0 Hz), 124.6, 127.3, 131.9, 132.5, 139.8, 147.8, 148.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.1 (s, –F); IR (KBr, neat) 2927, 2873, 1690, 1539, 1421, 1353, 1214, 1141, 1073, 888, 792 cm−1; HRMS (ESI) calcd for C12H9F3NO6SNa (M + Na)+ 409.9689, found 409.9691.
1) 0.25; yield 236 mg, 61%; 1H NMR (600 MHz, CDCl3) δ 2.44 (dd, J = 18.0 and 6.0 Hz, 1H), 2.70–2.76 (m, 1H), 3.90 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.13 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.33 (d, J = 4.0 Hz, 1H), 5.90 (s, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.89 (d, J = 7.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 28.3, 63.3, 74.0, 118.6, 118.7 (q, J = 318.0 Hz), 124.6, 127.3, 131.9, 132.5, 139.8, 147.8, 148.2; 19F NMR (376 MHz, CDCl3/TFA) δ 2.1 (s, –F); IR (KBr, neat) 2927, 2873, 1690, 1539, 1421, 1353, 1214, 1141, 1073, 888, 792 cm−1; HRMS (ESI) calcd for C12H9F3NO6SNa (M + Na)+ 409.9689, found 409.9691. 
Methyl 4-(4-(((trifluoromethyl)sulfonyl)oxy)-3,6-dihydro-2H-pyran-2-yl)benzoate (3m). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.23; yield 263 mg, 72%; 1H NMR (600 MHz, CDCl3) δ 2.41 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.74 (m, 1H), 3.88 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 3.91 (s, 3H), 4.12 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.31 (s, 1H), 5.91 (s, 1H), 7.42 (d, J = 7.2 Hz, 2H), 8.04 (d, J = 7.2 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 52.4, 63.2, 75.2, 118.6 (q, J = 319.5 Hz), 119.7, 127.5, 130.2, 130.6, 144.0, 147.1, 166.8; 19F NMR (376 MHz, CDCl3/TFA) δ 2.07 (s, –F); IR (KBr, neat) 2925, 2850, 1725, 1690, 1418, 1282, 1213, 1142, 1113, 1072, 860, 771 cm−1; HRMS (ESI) calcd for C14H14F3O6S (M + H)+ 367.0458, found 367.0465.
1) 0.23; yield 263 mg, 72%; 1H NMR (600 MHz, CDCl3) δ 2.41 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.74 (m, 1H), 3.88 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 3.91 (s, 3H), 4.12 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 5.31 (s, 1H), 5.91 (s, 1H), 7.42 (d, J = 7.2 Hz, 2H), 8.04 (d, J = 7.2 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 28.4, 52.4, 63.2, 75.2, 118.6 (q, J = 319.5 Hz), 119.7, 127.5, 130.2, 130.6, 144.0, 147.1, 166.8; 19F NMR (376 MHz, CDCl3/TFA) δ 2.07 (s, –F); IR (KBr, neat) 2925, 2850, 1725, 1690, 1418, 1282, 1213, 1142, 1113, 1072, 860, 771 cm−1; HRMS (ESI) calcd for C14H14F3O6S (M + H)+ 367.0458, found 367.0465. 
6-(Naphthalen-2-yl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (3n). Colourless solid; mp 71–73 °C Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.20; yield 261 mg, 73%; 1H NMR (600 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 4.0 Hz, 1H), 2.67–2.83 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.10 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.39 (d, J = 4.0 Hz, 1H), 5.99 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.47–7.50 (m, 2H), 7.77 (s, 1H), 7.81–7.85 (m, 3H); 13C NMR (150 MHz, CDCl3) δ 28.5, 62.9, 75.7, 118.7 (q, J = 318.0 Hz), 120.1, 125.2, 126.5, 126.6, 127.0, 127.9, 128.3, 128.9, 133.3, 133.5, 136.4, 147.0; 19F NMR (376 MHz, CDCl3/TFA) δ 2.04 (s, –F); IR (KBr, neat) 2976, 2868, 1689, 1464, 1422, 1244, 1114, 1058, 886, 757 cm−1; HRMS (ESI) calcd for C16H14F3O4S (M + H)+ 359.0559, found 359.0564.
1) 0.20; yield 261 mg, 73%; 1H NMR (600 MHz, CDCl3) δ 2.42 (dd, J = 12.0 and 4.0 Hz, 1H), 2.67–2.83 (m, 1H), 3.86 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.10 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.39 (d, J = 4.0 Hz, 1H), 5.99 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.47–7.50 (m, 2H), 7.77 (s, 1H), 7.81–7.85 (m, 3H); 13C NMR (150 MHz, CDCl3) δ 28.5, 62.9, 75.7, 118.7 (q, J = 318.0 Hz), 120.1, 125.2, 126.5, 126.6, 127.0, 127.9, 128.3, 128.9, 133.3, 133.5, 136.4, 147.0; 19F NMR (376 MHz, CDCl3/TFA) δ 2.04 (s, –F); IR (KBr, neat) 2976, 2868, 1689, 1464, 1422, 1244, 1114, 1058, 886, 757 cm−1; HRMS (ESI) calcd for C16H14F3O4S (M + H)+ 359.0559, found 359.0564. 
6-Isobutyl-3,6-dihydro-2H-pyran-4-yl trifluoromethane-sulfonate (3o). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.20; yield 193 mg, 67%; 1H NMR (600 MHz, CDCl3) δ 0.93 (s, 3H), 0.94 (s, 3H), 1.27–1.32 (m, 1H), 1.55–1.60 (m, 1H), 1.79–1.87 (m, 1H), 2.26 (dd, J = 12.0 and 4.0 Hz, 1H), 2.58–2.64 (m, 1H), 3.71 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.09 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.27 (d, J = 6.0 Hz, 1H), 5.72 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 22.1, 23.3, 24.5, 28.6, 43.8, 63.2, 71.9, 117.6 (q, J = 318.0 Hz), 121.2, 146.4; 19F NMR (376 MHz, CDCl3/TFA) δ 2.05 (s, –F); IR (KBr, neat) 2960, 2872, 1690, 1442, 1211, 1143, 1072, 884, 614 cm−1; HRMS (ESI) calcd for C10H16F3O4S (M + H)+ 289.0721, found 289.0715.
1) 0.20; yield 193 mg, 67%; 1H NMR (600 MHz, CDCl3) δ 0.93 (s, 3H), 0.94 (s, 3H), 1.27–1.32 (m, 1H), 1.55–1.60 (m, 1H), 1.79–1.87 (m, 1H), 2.26 (dd, J = 12.0 and 4.0 Hz, 1H), 2.58–2.64 (m, 1H), 3.71 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.09 (ddd, J = 12.0, 6.0 and 6.0 Hz, 1H), 4.27 (d, J = 6.0 Hz, 1H), 5.72 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 22.1, 23.3, 24.5, 28.6, 43.8, 63.2, 71.9, 117.6 (q, J = 318.0 Hz), 121.2, 146.4; 19F NMR (376 MHz, CDCl3/TFA) δ 2.05 (s, –F); IR (KBr, neat) 2960, 2872, 1690, 1442, 1211, 1143, 1072, 884, 614 cm−1; HRMS (ESI) calcd for C10H16F3O4S (M + H)+ 289.0721, found 289.0715. 
6-(1-Phenylethyl)-3,6-dihydro-2H-pyran-4-yl trifluoro-methanesulfonate (diastereomeric mixture, 2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/b_char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/b_char_2009.gif) 1, 3p). Colourless oil; Rf (hexane/EtOAc 50
1, 3p). Colourless oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.20; yield 215 mg, 64%; 1H NMR (400 MHz, CDCl3) δ 1.30 (d, J = 4.0 Hz, 3H, minor), 1.35 (d, J = 8.0 Hz, 3H, major), 2.07–2.12 (m, 1H, minor), 2.16–2.24 (m, 1H, major), 2.56–2.64 (m, 1H), 2.82–2.89 (m, 1H, major), 3.08–3.15 (m, 1H, minor), 3.62–3.71 (m, 1H), 4.09–4.13 (m, 1H), 4.24–4.26 (m, 1H, major), 4.36–4.37 (m, 1H, minor), 5.54 (s, 1H, major), 5.68 (s, 1H, minor), 7.20–7.26 (m, 3H), 7.29–7.35 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 15.0, 17.0, 28.4, 43.6, 44.7, 63.4, 63.8, 78.1, 78.2, 118.6 (q, J = 319.5 Hz), 119.7, 126.9, 127.0, 128.0, 128.1, 128.6, 128.7, 142.1, 142.9, 147.0, 147.3; 19F NMR (376 MHz, CDCl3/TFA) δ 1.9 (s, –F); IR (KBr, neat) 2972, 2873, 1690, 1420, 1213, 1143, 1073, 891, 763 cm−1; HRMS (ESI) calcd for C14H16F3O4S (M + H)+ 337.0716, found 337.0722.
1) 0.20; yield 215 mg, 64%; 1H NMR (400 MHz, CDCl3) δ 1.30 (d, J = 4.0 Hz, 3H, minor), 1.35 (d, J = 8.0 Hz, 3H, major), 2.07–2.12 (m, 1H, minor), 2.16–2.24 (m, 1H, major), 2.56–2.64 (m, 1H), 2.82–2.89 (m, 1H, major), 3.08–3.15 (m, 1H, minor), 3.62–3.71 (m, 1H), 4.09–4.13 (m, 1H), 4.24–4.26 (m, 1H, major), 4.36–4.37 (m, 1H, minor), 5.54 (s, 1H, major), 5.68 (s, 1H, minor), 7.20–7.26 (m, 3H), 7.29–7.35 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 15.0, 17.0, 28.4, 43.6, 44.7, 63.4, 63.8, 78.1, 78.2, 118.6 (q, J = 319.5 Hz), 119.7, 126.9, 127.0, 128.0, 128.1, 128.6, 128.7, 142.1, 142.9, 147.0, 147.3; 19F NMR (376 MHz, CDCl3/TFA) δ 1.9 (s, –F); IR (KBr, neat) 2972, 2873, 1690, 1420, 1213, 1143, 1073, 891, 763 cm−1; HRMS (ESI) calcd for C14H16F3O4S (M + H)+ 337.0716, found 337.0722. 
General procedure of Suzuki coupling reaction
To a solution of 3 (1.0 mmol) in THF (4.0 mL) were added PPh3 (5 mol%), PdCl2 (5 mol%), boronic acid 7 (1.56 mmol) and 2 M aqueous solution of Na2CO3 (2.0 mL) under inert atmosphere. The reaction mixture was stirred at 40 °C for 1 h. Then water was added to reaction mixture and extracted with EtOAc (3 × 10 mL). Combined organic layer was dried and concentrated under reduced pressure. Residue obtained was purified by silica gel column chromatography using EtOAc/hexane as eluent to furnish the compound 8.
Synthesis of 4,6-diphenyl-3,6-dihydro-2H-pyran (8a). To a solution of 3,6-dihydro-2-phenyl-2H-pyran-4-yl trifluoromethanesulfonate 3a (308 mg, 1 mmol) in THF (4.0 mL) were added PPh3 (14 mg, 5 mol%), PdCl2 (9 mg, 5 mol%), phenyl boronic acid 7a (183 mg, 1.56 mmol) and 2 M aqueous solution of Na2CO3 (2.0 mL) under inert atmosphere. The reaction mixture was stirred at 40 °C for 1 h. Then water was added to reaction mixture and extracted with EtOAc (3 × 10 mL). Combined organic layer was dried and concentrated under reduced pressure. Residue obtained was purified by silica gel column chromatography using EtOAc/hexane as eluent to furnish the 2,4-diphenyl-3,6-dihydro-2H-pyran as a yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.3; yield 224 mg, 95%; 1H NMR (400 MHz, CDCl3) δ 2.49 (dd, J = 12.0 and 4.0 Hz, 1H), 2.71–2.80 (m, 1H), 2.92 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.31 (d, J = 4.0 Hz, 1H), 6.22 (s, 1H), 7.27–7.39 (m, 6H), 7.41–7.45 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 27.2, 63.6, 76.9, 125.1, 125.5, 127.7, 127.8, 128.2, 128.6, 128.7, 135.0, 140.2, 141.5; IR (KBr, neat) 2924, 2853, 1600, 1493, 1263, 1120, 1029, 771 cm−1; HRMS (ESI) calcd for C17H17O (M + H)+ 237.1274, found 237.1277.
1) 0.3; yield 224 mg, 95%; 1H NMR (400 MHz, CDCl3) δ 2.49 (dd, J = 12.0 and 4.0 Hz, 1H), 2.71–2.80 (m, 1H), 2.92 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.31 (d, J = 4.0 Hz, 1H), 6.22 (s, 1H), 7.27–7.39 (m, 6H), 7.41–7.45 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 27.2, 63.6, 76.9, 125.1, 125.5, 127.7, 127.8, 128.2, 128.6, 128.7, 135.0, 140.2, 141.5; IR (KBr, neat) 2924, 2853, 1600, 1493, 1263, 1120, 1029, 771 cm−1; HRMS (ESI) calcd for C17H17O (M + H)+ 237.1274, found 237.1277. 
4-(4-Chlorophenyl)-6-phenyl-3,6-dihydro-2H-pyran (8b). Pale yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.28; yield 251 mg, 93%; 1H NMR (400 MHz, CDCl3) δ 2.44 (dd, J = 12.0 and 4.0 Hz, 1H), 2.67–2.76 (m, 1H), 3.91 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.29 (d, J = 4.0 Hz, 1H), 6.20 (s, 1H), 7.29–7.42 (m, 9H); 13C NMR (100 MHz, CDCl3) δ 27.2, 63.5, 76.8, 126.1, 126.4, 127.7, 128.2, 128.8 (2C), 133.5, 134.0, 138.6, 141.2; IR (KBr, neat) 2924, 2853, 1598, 1493, 1368, 1177, 1074, 762 cm−1; HRMS (ESI) calcd for C17H16ClO (M + H)+ 271.0884, found 271.0886.
1) 0.28; yield 251 mg, 93%; 1H NMR (400 MHz, CDCl3) δ 2.44 (dd, J = 12.0 and 4.0 Hz, 1H), 2.67–2.76 (m, 1H), 3.91 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.29 (d, J = 4.0 Hz, 1H), 6.20 (s, 1H), 7.29–7.42 (m, 9H); 13C NMR (100 MHz, CDCl3) δ 27.2, 63.5, 76.8, 126.1, 126.4, 127.7, 128.2, 128.8 (2C), 133.5, 134.0, 138.6, 141.2; IR (KBr, neat) 2924, 2853, 1598, 1493, 1368, 1177, 1074, 762 cm−1; HRMS (ESI) calcd for C17H16ClO (M + H)+ 271.0884, found 271.0886. 
4-(4-Fluorophenyl)-6-phenyl-3,6-dihydro-2H-pyran (8c). Pale yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.25; yield 238 mg, 94%; 1H NMR (400 MHz, CDCl3) δ 2.45 (dd, J = 16.0 and 4.0 Hz, 1H), 2.68–2.77 (m, 1H), 3.92 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.30 (d, J = 4.0 Hz, 1H), 6.16 (s, 1H), 7.03 (t, J = 8.0 Hz, 2H), 7.29–7.43 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 27.3, 63.6, 76.9, 115.5 (d, J = 21.0 Hz), 125.4, 126.3 (d, J = 8.0 Hz), 127.8, 128.2, 128.7, 134.1, 136.3 (d, J = 3.3 Hz), 141.3, 162.5 (d, J = 245.1 Hz); 19F NMR (376 MHz, CDCl3/TFA) δ −39.2 (s, –F); IR (KBr, neat) 2925, 2854, 1601, 1451, 1275, 1231, 1160, 1071, 836, 700 cm−1; HRMS (ESI) calcd for C17H16FO (M + H)+ 255.1180, found 255.1185.
1) 0.25; yield 238 mg, 94%; 1H NMR (400 MHz, CDCl3) δ 2.45 (dd, J = 16.0 and 4.0 Hz, 1H), 2.68–2.77 (m, 1H), 3.92 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.19 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.30 (d, J = 4.0 Hz, 1H), 6.16 (s, 1H), 7.03 (t, J = 8.0 Hz, 2H), 7.29–7.43 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 27.3, 63.6, 76.9, 115.5 (d, J = 21.0 Hz), 125.4, 126.3 (d, J = 8.0 Hz), 127.8, 128.2, 128.7, 134.1, 136.3 (d, J = 3.3 Hz), 141.3, 162.5 (d, J = 245.1 Hz); 19F NMR (376 MHz, CDCl3/TFA) δ −39.2 (s, –F); IR (KBr, neat) 2925, 2854, 1601, 1451, 1275, 1231, 1160, 1071, 836, 700 cm−1; HRMS (ESI) calcd for C17H16FO (M + H)+ 255.1180, found 255.1185. 
4-(3-Nitrophenyl)-6-phenyl-3,6-dihydro-2H-pyran (8d). Yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.30; yield 255 mg, 91%; 1H NMR (400 MHz, CDCl3) δ 2.51 (dd, J = 16.0 and 4.0 Hz, 1H), 2.76–2.85 (m, 1H), 3.96 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.25 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.34 (d, J = 4.0 Hz, 1H), 6.38 (s, 1H), 7.31–7.43 (m, 5H), 7.52 (t, J = 8.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.28 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 27.0, 63.4, 76.8, 119.9, 122.4, 127.6, 128.4, 128.8, 129.6, 130.9, 133.1, 140.8, 141.8, 148.7; IR (KBr, neat) 2924, 2855, 1528, 1453, 1349, 1269, 1121, 1063, 892, 737 cm−1; HRMS (ESI) calcd for C17H16NO3 (M + H)+ 282.1125, found 282.1130.
1) 0.30; yield 255 mg, 91%; 1H NMR (400 MHz, CDCl3) δ 2.51 (dd, J = 16.0 and 4.0 Hz, 1H), 2.76–2.85 (m, 1H), 3.96 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.25 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.34 (d, J = 4.0 Hz, 1H), 6.38 (s, 1H), 7.31–7.43 (m, 5H), 7.52 (t, J = 8.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.28 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 27.0, 63.4, 76.8, 119.9, 122.4, 127.6, 128.4, 128.8, 129.6, 130.9, 133.1, 140.8, 141.8, 148.7; IR (KBr, neat) 2924, 2855, 1528, 1453, 1349, 1269, 1121, 1063, 892, 737 cm−1; HRMS (ESI) calcd for C17H16NO3 (M + H)+ 282.1125, found 282.1130. 
Synthesis of 4-(4-methoxyphenyl)-6-phenyl-3,6-dihydro-2H-pyran (8e). A mixture of 3a (308 mg, 1.0 mmol), aqueous sodium carbonate (1.4 mL, 2.80 mmol), lithium chloride (125 mg, 2.98 mmol), Pd(Ph3P)4 (23 mg, 0.02 mmol), 4-methoxyphenylboronic acid (166 mg, 1.09 mmol), and THF (5 mL) was refluxed for 3 h. After completion of the reaction the solvent was removed by evaporation; water was added and the mixture was extracted with ethyl acetate (2 × 10 mL). Combined organic layer was dried and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (ethyl acetate/hexane, 1/4) to give 8e as a pale yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.40; yield 239 mg, 90%; 1H NMR (600 MHz, CDCl3) δ 2.51 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.74 (m, 1H), 3.80 (s, 3H), 3.91 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.17 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.29 (d, J = 4.0 Hz, 1H), 6.12 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.34–7.38 (m, 4H), 7.42 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 27.3, 55.5, 63.7, 76.9, 114.0, 123.8, 126.2, 127.8, 128.1, 128.7, 132.8, 134.4, 141.7, 159.4; IR (KBr, neat) 2957, 2836, 1607, 1456, 1309, 1248, 1180, 1062, 1034, 832, 761, 700 cm−1; HRMS (ESI) calcd for C18H19O2 (M + H)+ 267.1385, found 267.1385.
1) 0.40; yield 239 mg, 90%; 1H NMR (600 MHz, CDCl3) δ 2.51 (dd, J = 16.0 and 6.0 Hz, 1H), 2.68–2.74 (m, 1H), 3.80 (s, 3H), 3.91 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.17 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.29 (d, J = 4.0 Hz, 1H), 6.12 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.34–7.38 (m, 4H), 7.42 (d, J = 8.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 27.3, 55.5, 63.7, 76.9, 114.0, 123.8, 126.2, 127.8, 128.1, 128.7, 132.8, 134.4, 141.7, 159.4; IR (KBr, neat) 2957, 2836, 1607, 1456, 1309, 1248, 1180, 1062, 1034, 832, 761, 700 cm−1; HRMS (ESI) calcd for C18H19O2 (M + H)+ 267.1385, found 267.1385. 
6-Phenyl-4-(thiophen-2-yl)-3,6-dihydro-2H-pyran (8f). Yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.30; yield 222 mg, 92%; 1H NMR (400 MHz, CDCl3) δ 2.49 (dd, J = 16.0 and 4.0 Hz, 1H), 2.71–2.78 (m, 1H), 3.90 (ddd, J = 16.0, 8.0 and 4.0 Hz, 1H), 4.15 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.28 (d, J = 4.0 Hz, 1H), 6.20 (s, 1H), 6.99 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.32–7.42 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 27.6, 63.3, 76.6, 122.5, 124.1, 127.5, 127.8, 128.2, 128.7, 129.7, 141.1, 144.8; IR (KBr, neat) 2924, 2854, 1639, 1453, 1361, 1263, 1116, 1062, 879, 698 cm−1; HRMS (ESI) calcd for C15H15OS (M + H)+ 243.0844, found 243.0851.
1) 0.30; yield 222 mg, 92%; 1H NMR (400 MHz, CDCl3) δ 2.49 (dd, J = 16.0 and 4.0 Hz, 1H), 2.71–2.78 (m, 1H), 3.90 (ddd, J = 16.0, 8.0 and 4.0 Hz, 1H), 4.15 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.28 (d, J = 4.0 Hz, 1H), 6.20 (s, 1H), 6.99 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.32–7.42 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 27.6, 63.3, 76.6, 122.5, 124.1, 127.5, 127.8, 128.2, 128.7, 129.7, 141.1, 144.8; IR (KBr, neat) 2924, 2854, 1639, 1453, 1361, 1263, 1116, 1062, 879, 698 cm−1; HRMS (ESI) calcd for C15H15OS (M + H)+ 243.0844, found 243.0851. 
(E)-6-Phenyl-4-styryl-3,6-dihydro-2H-pyran (9). To a solution of 3 (308 mg, 1.0 mmol) in DMF (10 mL) were added Pd(OAc)2 (11 mg, 5 mol%) and AcOK (196 mg, 2 mmol) under inert atmosphere. The reaction mixture was stirred at 60 °C for overnight. Then water was added to reaction mixture and extracted with EtOAc (3 × 10 mL). Combined organic layer was dried and concentrated under reduced pressure. Residue obtained was purified by silica gel column chromatography using EtOAc/Pet. ether as eluent to furnish the compound 9 as yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.35; yield 222 mg, 85%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.53–2.62 (m, 1H), 3.87 (ddd, J = 16.0, 8.0 and 4.0 Hz, 1H), 4.15 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.27 (d, J = 4.0 Hz, 1H), 5.92 (s, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.81 (d, J = 16.0 Hz, 1H), 7.20–7.25 (m, 1H), 7.30–7.43 (m, 9H); 13C NMR (100 MHz, CDCl3) δ 25.0, 63.4, 76.9, 126.5, 127.3, 127.6, 127.7, 128.2, 128.7, 128.8, 130.2, 130.5, 134.2, 137.4, 141.3; IR (KBr, neat) 2924, 2853, 1593, 1492, 1274, 1118, 1092, 1012, 830, 699 cm−1; HRMS (ESI) calcd for C19H19O (M + H)+ 263.1430, found 263.1436.
1) 0.35; yield 222 mg, 85%; 1H NMR (400 MHz, CDCl3) δ 2.38 (dd, J = 12.0 and 4.0 Hz, 1H), 2.53–2.62 (m, 1H), 3.87 (ddd, J = 16.0, 8.0 and 4.0 Hz, 1H), 4.15 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.27 (d, J = 4.0 Hz, 1H), 5.92 (s, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.81 (d, J = 16.0 Hz, 1H), 7.20–7.25 (m, 1H), 7.30–7.43 (m, 9H); 13C NMR (100 MHz, CDCl3) δ 25.0, 63.4, 76.9, 126.5, 127.3, 127.6, 127.7, 128.2, 128.7, 128.8, 130.2, 130.5, 134.2, 137.4, 141.3; IR (KBr, neat) 2924, 2853, 1593, 1492, 1274, 1118, 1092, 1012, 830, 699 cm−1; HRMS (ESI) calcd for C19H19O (M + H)+ 263.1430, found 263.1436. 
Synthesis of 4-allyl-6-phenyl-3,6-dihydro-2H-pyran (10). A dried reaction tube was charged with triflate 3 (308 mg, 1 mmol). To this PPh3 (14 mg, 5 mol%), PdCl2 (9 mg, 5 mol%) was added and reaction tube was evacuated. Then LiCl (126 mg, 3 mmol), dry DMF (10 mL) and allyltributylstannane (397 mg, 1.21 mmol) were added under nitrogen atmosphere. Reaction mixture was heated at 80 °C for 2 h. Reaction was quenched with saturated NH4Cl solution and extracted with EtOAc (4 × 5 mL). Combined organic layer was dried and concentrated under reduced pressure. Residue obtained was purified by silica gel column chromatography using EtOAc/hexane as eluent to furnish 4-allyl-3,6-dihydro-2-phenyl-2H-pyran 10 (174 mg, 87%) as yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.35; yield 174 mg, 87%; 1H NMR (400 MHz, CDCl3) δ 1.98 (dd, J = 16.0 and 4.0 Hz, 1H), 2.25–2.33 (m, 1H), 2.80 (d, J = 8.0 Hz, 2H), 3.78 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.02 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.05–5.12 (m, 3H), 5.56 (s, 1H), 5.76–5.87 (m, 1H), 7.27–7.37 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 28.4, 41.7, 63.5, 76.4, 116.8, 124.0, 127.6, 127.9, 128.6, 135.3, 135.7, 141.9; IR (KBr, neat) 2924, 2854, 1689, 1450, 1364, 1220, 1075, 771 cm−1; HRMS (ESI) calcd for C14H17O (M + H)+ 201.1274, found 201.1277.
1) 0.35; yield 174 mg, 87%; 1H NMR (400 MHz, CDCl3) δ 1.98 (dd, J = 16.0 and 4.0 Hz, 1H), 2.25–2.33 (m, 1H), 2.80 (d, J = 8.0 Hz, 2H), 3.78 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.02 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.05–5.12 (m, 3H), 5.56 (s, 1H), 5.76–5.87 (m, 1H), 7.27–7.37 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 28.4, 41.7, 63.5, 76.4, 116.8, 124.0, 127.6, 127.9, 128.6, 135.3, 135.7, 141.9; IR (KBr, neat) 2924, 2854, 1689, 1450, 1364, 1220, 1075, 771 cm−1; HRMS (ESI) calcd for C14H17O (M + H)+ 201.1274, found 201.1277. 
Synthesis of 6-phenyl-4-(phenylethynyl)-3,6-dihydro-2H-pyran (11). A dried reaction flask was charged with triflate 3 (308 mg, 1.0 mmol). To this PPh3 (14 mg, 5 mol%), PdCl2 (9 mg, 5 mol%), CuI (19 mg, 1 mol%) were added and the reaction flask was evacuated. Then Et3N (2.5 mL, 18 mmol), dry DMF (10 mL) and phenyl acetylene (0.17 mL, 1.58 mmol) were added under nitrogen atmosphere. Reaction mixture was heated at 80 °C for 2 h. Reaction was quenched with saturated NH4Cl solution and extracted with EtOAc (4 × 5 mL). Combined organic layer was dried and concentrated under reduced pressure. Residue obtained was purified by silica gel column chromatography using EtOAc/hexane as eluent to furnish the 6-phenyl-4-(phenylethynyl)-3,6-dihydro-2H-pyran 11 (247 mg, 95%) as yellow oil; Rf (hexane/EtOAc 50![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) 0.35; yield 247 mg, 95%; 1H NMR (400 MHz, CDCl3) δ 2.28 (dd, J = 12.0 and 4.0 Hz, 1H), 2.53–2.62 (m, 1H), 3.83 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.06 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.23 (d, J = 4.0 Hz, 1H), 6.25 (s, 1H), 7.28–7.32 (m, 4H), 7.33–7.40 (m, 4H), 7.42–7.45 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 29.2, 63.2, 76.6, 89.1, 89.2, 119.6, 123.3, 127.7, 128.3, 128.4, 128.5, 128.8, 131.7, 135.2, 140.6; IR (KBr, neat) 2919, 2850, 1597, 1490, 1450, 1253, 1120, 1062, 756, 699 cm−1; HRMS (ESI) calcd for C19H17O (M + H)+ 261.1274, found 261.1279.
1) 0.35; yield 247 mg, 95%; 1H NMR (400 MHz, CDCl3) δ 2.28 (dd, J = 12.0 and 4.0 Hz, 1H), 2.53–2.62 (m, 1H), 3.83 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 4.06 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H), 5.23 (d, J = 4.0 Hz, 1H), 6.25 (s, 1H), 7.28–7.32 (m, 4H), 7.33–7.40 (m, 4H), 7.42–7.45 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 29.2, 63.2, 76.6, 89.1, 89.2, 119.6, 123.3, 127.7, 128.3, 128.4, 128.5, 128.8, 131.7, 135.2, 140.6; IR (KBr, neat) 2919, 2850, 1597, 1490, 1450, 1253, 1120, 1062, 756, 699 cm−1; HRMS (ESI) calcd for C19H17O (M + H)+ 261.1274, found 261.1279. 
Acknowledgements
PG gratefully acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for her fellowship. Authors are grateful to Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support (Grant No. 02/0159/13/EMR-II). Authors are also thankful to Central Instrument Facility (CIF) of IIT Guwahati for NMR and XRD facilities.
Notes and references
- 
  (a) X. Tian and S. D. Rychnovsky, Org. Lett., 2007, 9, 4955–4958 CrossRef CAS PubMed; 
  (b) T. Washio, H. Nambu, M. Anada and S. Hashimoto, Tetrahedron: Asymmetry, 2007, 18, 2606–2612 CrossRef CAS.
- S. M. Ringel, R. C. Greenough, S. Roemer, D. Connor, A. L. Gutt, B. Blair, G. Kanter and M. von Strandtmann, J. Antibiot., 1977, 30, 371–375 CrossRef CAS PubMed.
- 
  (a) Y. Funahashi, N. Kawamura and T. Ishimaru, JP Patent, 08231551 [A296090],  1996; 
  (b) M. H. Su, M. I. Hosken, B. J. Hotovec and T. L. Johnston, US Pat., 5728727 [A980317],  1998; 
  (c) H. B. Bode and A. Zeeck, J. Chem. Soc., Perkin Trans. 1, 2000, 2665–2670 RSC.
- 
  (a) T. Yasumoto and M. Murata, Chem. Rev., 1993, 93, 1897–1909 CrossRef CAS; 
  (b) D. J. Faulkner, Nat. Prod. Rep., 1984, 1, 251–551 RSC; 
  (c) R. E. Moore, in Marine Natural Products, ed. P. J. Scheuer, Academic Press, New York,  1978, vol. 1, pp. 43–121 Search PubMed.
- 
  (a) M. R. Lambu, S. Kumar, S. K. Yousuf, D. K. Sharma, A. Hussain, A. Kumar, F. Malik and D. Mukherfee, J. Med. Chem., 2013, 56, 6122–6135 CrossRef CAS PubMed; 
  (b) D. S. Reddy, B. Padhi and D. K. Mohapatra, J. Org. Chem., 2015, 80, 1365–1374 CrossRef CAS PubMed; 
  (c) S. Sultana, K. Indukuri, M. J. Deka and A. K. Saikia, J. Org. Chem., 2013, 78, 12182–12188 CrossRef CAS PubMed.
- P. A. Wender, S. G. Hegde, R. D. Hubbard and L. Zhang, J. Am. Chem. Soc., 2002, 124, 4956–4957 CrossRef CAS PubMed.
- T. Nagasawa and S. Kuwahara, Org. Lett., 2009, 11, 761–764 CrossRef CAS PubMed.
- 
  (a) L. Yet, Chem. Rev., 2000, 100, 2963–3007 CrossRef CAS PubMed; 
  (b) T. L. B. Boivin, Tetrahedron, 1987, 43, 3309–3362 CrossRef CAS; 
  (c) L. Coppi, A. Ricci and M. Taddei, J. Org. Chem., 1988, 53, 911–913 CrossRef CAS; 
  (d) C.-J. Li and W.-C. Zhang, Tetrahedron, 2000, 56, 2403–2411 CrossRef; 
  (e) B. Schmidt and M. Westhus, Tetrahedron, 2000, 56, 2421 CrossRef CAS; 
  (f) M. Pham, A. Allatabakhsh and T. G. Minehan, J. Org. Chem., 2008, 73, 741–744 CrossRef CAS PubMed; 
  (g) P. O. Miranda, D. V. Diaz, J. I. Padrón, J. Bermejo and V. S. Martin, Org. Lett., 2003, 5, 1979–1982 CrossRef CAS PubMed.
- 
  (a) B. S. Donslund, A. Monleón, L. Ibsen and K. A. Jørgensen, Chem. Commun., 2015, 51, 13666–13669 RSC; 
  (b) D. J. Mack, B. Guo and J. T. Njardarson, Chem. Commun., 2012, 48, 7844–7846 RSC; 
  (c) P. V. Chouthaiwale and F. Tanaka, Chem. Commun., 2014, 50, 14881–14884 RSC; 
  (d) L. M. Mori-Quiroz and R. E. Maleczka Jr, J. Org. Chem., 2015, 80, 1163–1191 CrossRef CAS PubMed; 
  (e) S. Sun, C. Cheng, J. Yang, A. Tahery, D. Jiang, B. Zhang and Y. Gu, Org. Lett., 2014, 16, 4520–4523 CrossRef CAS PubMed; 
  (f) G. R. Peh and P. E. Floreancig, Org. Lett., 2015, 17, 3750–3753 CrossRef CAS PubMed; 
  (g) M. Isobe, W. C. Chang, P.-K. Tsou, C. Ploysuk and C.-H. J. Yu, Org. Lett., 2015, 80, 6222–6237 CAS; 
  (h) C. F. Weise, V. H. Lauridsen, R. S. Rambo, E. H. Iversen, M.-L. Olsen and K. A. Jørgensen, J. Org. Chem., 2014, 79, 3537–3546 CrossRef CAS PubMed.
- P. J. Stang and A. G. Anderson, J. Am. Chem. Soc., 1978, 100, 1520–1525 CrossRef CAS.
- 
  (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483 CrossRef CAS; 
  (b) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101–4111 CrossRef CAS PubMed; 
  (c) K. Umei, Y. Nishigaya, M. Kamiya, Y. Kohno and S. Seto, Synthesis, 2015, 47, 3221–3230 CrossRef CAS.
- G. T. Crisp and P. T. Glink, Tetrahedron, 1992, 48, 3541–3556 CrossRef CAS.
- S. P. H. Mee, V. Lee and J. E. Baldwin, Angew. Chem., Int. Ed., 2004, 43, 1132–1136 CrossRef CAS PubMed.
- X.-F. Wu, B. Sundararaju, H. Neumann, P. H. Dixneuf and M. Beller, Chem.–Eur. J., 2011, 17, 106–110 CrossRef CAS PubMed.
- 
  (a) S. Sako, T. Kurahashi and S. Matsubara, Chem. Commun., 2011, 47, 6150–6152 RSC; 
  (b) Z. Li, H. Jung, M. Park, M. S. Lah and S. Koo, Adv. Synth. Catal., 2011, 353, 1913–1917 CrossRef CAS; 
  (c) K. Fujiwara, T. Kurahashi and S. Matsubara, J. Am. Chem. Soc., 2012, 134, 5512–5515 CrossRef CAS PubMed; 
  (d) W. Chaladaj, R. Kowalczyk and J. Jurczak, J. Org. Chem., 2010, 75, 1740–1743 CrossRef CAS PubMed; 
  (e) K. Mal, S. Das, N. C. Maiti, R. Natarajan and I. Das, J. Org. Chem., 2015, 80, 2972–2988 CrossRef CAS PubMed.
- 
  (a) B. Schmidt and H. Wildemann, J. Org. Chem., 2000, 65, 5817–5822 CrossRef CAS PubMed; 
  (b) H. Wildemann, P. Dünkelmann, M. Müller and B. Schmidt, J. Org. Chem., 2003, 68, 799–804 CrossRef CAS PubMed; 
  (c) M. Donnard, T. Tschamber, D. L. Nouën, S. Desrat, K. Hinsinger and J. Eustache, Tetrahedron, 2011, 67, 339–357 CrossRef CAS.
- 
  (a) R. F. de la Pradilla and M. Tortosa, Org. Lett., 2004, 6, 2157–2160 CrossRef PubMed; 
  (b) R. F. de la Pradilla, M. Tortosa, N. Lwoff, M. A. del Águila and A. Viso, J. Org. Chem., 2008, 73, 6716–6727 CrossRef PubMed.
- 
  (a) S. Bonbdalapati, U. C. Reddy, P. Saha and A. K. Saikia, Org. Biomol. Chem., 2011, 9, 3428–3438 RSC; 
  (b) P. Saha, P. Ghosh, S. Sultana and A. K. Saikia, Org. Biomol. Chem., 2012, 10, 8730–8738 RSC.
- 
  (a) H. Huang and J. S. Panek, J. Am. Chem. Soc., 2000, 122, 9836–9837 CrossRef CAS; 
  (b) W. Yao, X. Dou and Y. Lu, J. Am. Chem. Soc., 2015, 137, 54–57 CrossRef CAS PubMed.
- P. Ghosh, P. Saha, S. Bondalapati, K. Indukuri and A. K. Saikia, J. Org. Chem., 2014, 79, 4119–4124 CrossRef CAS PubMed.
- 
  (a) E. Arundale and L. A. Mikeska, Chem. Rev., 1952, 52, 505–555 CrossRef; 
  (b) D. R. Adams and S. P. Bhatnagar, Synthesis, 1977, 661–672 CrossRef CAS; 
  (c) B. B. Snider, in The Prins Reaction and Carbonyl Ene Reactions, ed. B. M. Trost, I. Fleming and C. H. Heathcock, Pergamon Press, New York,  1991, vol. 2, pp. 527–561 Search PubMed; 
  (d) L. E. Overman and L. D. Pennington, J. Org. Chem., 2003, 68, 7143–7157 CrossRef CAS PubMed; 
  (e) V. K. Yadav and N. V. Kumar, J. Am. Chem. Soc., 2004, 126, 8652–8653 CrossRef CAS PubMed; 
  (f) J. S. Yadav, N. Thrimurtulu, K. A. Lakshmi, A. R. Prasad and B. V. S. Reddy, Tetrahedron Lett., 2010, 51, 661–663 CrossRef CAS; 
  (g) S. R. Crosby, J. R. Harding, C. D. King, G. D. Parker and C. L. Willis, Org. Lett., 2002, 4, 577–580 CrossRef CAS PubMed; 
  (h) P. O. Miranda, R. M. Carballo, V. S. Martin and J. I. Padrón, Org. Lett., 2009, 11, 357–360 CrossRef CAS PubMed; 
  (i) P. O. Miranda, M. A. Ramírez, V. S. Martin and J. I. Padrón, Org. Lett., 2006, 8, 1633–1636 CrossRef CAS PubMed.
- 
  (a) J. C. Warner, A. S. Cannon and K. M. Dye, Environ. Impact Assess. Rev., 2004, 24, 775–799 CrossRef; 
  (b) P. A. Clarke, S. Santos and W. H. C. Martin, Green Chem., 2007, 9, 438–440 RSC.
- 
  (a) U. C. Reddy, B. R. Raju, E. K. P. Kumar and A. K. Saikia, J. Org. Chem., 2008, 73, 1628–1630 CrossRef CAS PubMed; 
  (b) U. C. Reddy, S. Bondalapati and A. K. Saikia, Eur. J. Org. Chem., 2009, 1625–1629 CrossRef CAS; 
  (c) U. C. Reddy, S. Bondalapati and A. K. Saikia, J. Org. Chem., 2009, 74, 2605–2608 CrossRef CAS PubMed; 
  (d) M. Borah, P. Gogoi, K. Indukuri and A. K. Saikia, J. Org. Chem., 2015, 80, 2641–2648 CrossRef CAS PubMed; 
  (e) A. K. Saikia, K. Indukuri and J. Das, Org. Biomol. Chem., 2014, 12, 7026–7035 RSC; 
  (f) K. Indukuri, R. Unnava, M. J. Deka and A. K. Saikia, J. Org. Chem., 2013, 78, 10629–10641 CrossRef CAS PubMed; 
  (g) P. Gogoi, V. K. Das and A. K. Saikia, J. Org. Chem., 2014, 79, 8592–8598 CrossRef CAS PubMed.
- The crystallographic data for compound 3n has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1433323.
- 
  (a) X. Tian, J. James, J. J. Jaber and S. D. Rychnovsky, J. Org. Chem., 2006, 71, 3176–3183 CrossRef CAS PubMed; 
  (b) M. R. Dintzner, J. J. Maresh, C. R. Kinzie, A. F. Arena and T. Speltz, J. Chem. Educ., 2012, 89, 265–267 CrossRef CAS; 
  (c) K. Indukuri, S. Bondalapati, T. Kotipalli, P. Gogoi and A. K. Saikia, Synlett, 2012, 23, 233–238 CAS; 
  (d) U. C. Reddy and A. K. Saikia, Synlett, 2010, 1027–1032 CAS; 
  (e) M. R. Dintzner, Synlett, 2013, 24, 1091–1092 CrossRef CAS.
| Footnote | 
| † Electronic supplementary information (ESI) available: Experimental procedures, 1H, 13C and HRMS spectra of all new compounds. CCDC 1433323. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ra02343f | 
| 
 | 
| This journal is © The Royal Society of Chemistry 2016 | 
Click here to see how this site uses Cookies. View our privacy policy here.