Issue 37, 2016

A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure

Abstract

A strong drawback of the photoinitiators of cationic polymerization or photoacids is the photosensitivity for short and energetic wavelengths preventing their general use (specialized photochemical equipment with safety concerns must be used). In the present paper, a novel iodonium salt bearing a naphthalimide moiety (naphthalimide-Ph-I+-Ph) is proposed as a one-component photoinitiator/photoacid operating at longer and safer wavelengths (i.e. violet light emitting diodes at 365, 385 nm and 395 nm). It allows the polymerization of various formulations (methacrylates, epoxides, vinyl ethers). A high reactive function conversion for multifunctional monomers can be achieved: e.g. 50% for a diepoxide under air, >90% for a divinylether (with a very high rate of polymerization Rp), almost 100% for an epoxide/vinyl ether blend (very high Rp) under air, and 85% for methacrylates (high Rp) in laminate (43% under air). These results are above the ones obtained with a thianthrenium salt chosen as a reference e.g. a lower epoxy conversion ∼25% and a clearly lower Rp for the diepoxide polymerization. ESR-spin trapping, laser flash photolysis, steady state photolysis and molecular orbitals calculations support the formation of Ph˙ and naphthalimide-Ph-I˙+ as well as the generation of H+, thereby explaining the photoinitiation step mechanism.

Graphical abstract: A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure

Article information

Article type
Paper
Submitted
27 Jul 2016
Accepted
30 Aug 2016
First published
31 Aug 2016

Polym. Chem., 2016,7, 5873-5879

A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure

N. Zivic, M. Bouzrati-Zerrelli, S. Villotte, F. Morlet-Savary, C. Dietlin, F. Dumur, D. Gigmes, J. P. Fouassier and J. Lalevée, Polym. Chem., 2016, 7, 5873 DOI: 10.1039/C6PY01306F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements