Open Access Article
S. A.
Papadimitriou
a,
M. P.
Robin
b,
D.
Ceric
c,
R. K.
O'Reilly
b,
S.
Marino
c and
M.
Resmini
*a
aSchool of Biological and Chemical Science, Queen Mary University of London, London E1 4NS, UK. E-mail: m.resmini@qmul.ac.uk
bDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, UK
cBlizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, UK
First published on 27th September 2016
Nanomaterials are emerging as strong candidates for applications in drug delivery and offer an alternative platform to modulate the differentiation and activity of neural stem cells. Herein we report the synthesis and characterization of two different classes of polymeric nanoparticles: N-isopropylacrylamide-based thermoresponsive nanogels RM1 and P(TEGA)-b-P(D,LLA)2 nano-micelles RM2. We covalently linked the nanoparticles with fluorescent tags and demonstrate their ability to be internalized and tracked in neural stem cells from the postnatal subventricular zone, without affecting their proliferation, multipotency and differentiation characteristics up to 150 μg ml−1. The difference in chemical structure of RM1 and RM2 does not appear to impact toxicity however it influences the loading capacity. Nanogels RM1 loaded with retinoic acid improve solubility of the drug which is released at 37 °C, resulting in an increase in the number of neurons, comparable to what can be obtained with a solution of the free drug solubilised with a small percentage of DMSO.
A more recent and attractive approach has focused on targeting endogenous neural stem cells (NSC), an important reservoir of self-renewing and multipotent cells that can drive regeneration and repair, hence conferring a certain degree of plasticity to the adult brain.2 The subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the dentate gyrus are the best characterized neurogenic areas in the adult mammalian brain.3,4 Their identification and characterization has opened novel opportunities to design strategies aiming at replenishing depleted neurons by means of increasing the pool of endogenous progenitors, and controlling the differentiation towards a specific lineage.5
In recent years developments in nanotechnology, in particular with novel functional nanomaterials characterized by high surface to volume ratio, very small size and low polydispersity, have led to interesting results in the field of drug delivery, especially targeting the brain.6 Among the different materials investigated poly(alky cyanoacrylates), such as poly(butyl cyanoacrylate) (PBCA)7 or poly(isohexyl cyanoacrylate) (PIHCA),8 poly(lactic acid) (PLA),9 human serum albumin (HSA),10 chitosan11 and magnetic nanoparticles12 have shown promising results.13 These materials frequently function as excipients but are commonly described as drug delivery systems. The cargos include a variety of small molecule drugs as well as growth factors, proteins and macromolecules, well known for their pharmacological activities in the brain, like nerve growth factor (NGF),7 doxorubicin,8 siRNA,14 curcumin and retinoic acid.15 More recently the potential application of polyethyleneimine (PEI) based nanoparticles for neural drug delivery has also been reported using retinoic acid, a drug known to promote neuronal differentiation but limited by low solubility in aqueous solutions and rapid cellular metabolism.16
The cationic nature of PEI allows disruption of the endosomes and phagosomes created during the internalization of the nanoparticles from the cells, via the ‘proton sponge’ effect, allowing the release of the encapsulated drug in the cytosol.17,18 The ability of PEI to mediate endocytosis of nanoparticles was demonstrated with magnetic polymeric nanospheres,19 using a fluorescent tag encapsulated in the polymer matrix. However the concerns and data available regarding the cytotoxicity of PEI based delivery agents, as a result of their polycationic nature represent a limitation to such systems.20,21
The literature available on this topic suggests that the morphology and physical chemical characteristics of the nano-systems have considerable impact on their suitability to be used for drug delivery in vivo. The flexibility of the matrices and their stability in aqueous environment can influence their membrane permeability and ultimately the bioavailability of the drug.
The aim of this work was to develop fluorescent polymeric nanoparticles that could act as delivery vehicle for neural stem cells, allowing tracking of cell internalization by fluorescence microscopy, and contribute to the understanding of how nanoparticle morphology can impact suitability for drug delivery applications. We synthesized and characterized two different types of polymeric nanoparticles, a thermoresponsive N-isopropylacrylamide (NIPAM) based crosslinked nanogel and a self-assembled block copolymer micelle system, and we covalently tagged the two nanosystems with fluorescent labels.22,23 We demonstrate that both sets of nanoparticles are efficiently internalized in murine neural stem cells, show no evidence of toxicity and do not impact on proliferation, self-renewal and differentiation, in concentrations up to 150 μg ml−1. Successful loading of retinoic acid24,25 was achieved, although the different rigidity of the polymeric systems has a significant effect on the loading capacity of the two nanoparticles. NIPAM based nanogels were selected for in vitro experiments on SVZ CD 133+ murine neural stem cells, based on their ability to encapsulate a higher amount of pharmaceutically active ingredient. Their pharmacological activity as drug delivery systems was evaluated in comparison to the free drug in solution.
Given the different type of polymeric systems chosen, two fluorophores were identified. For the polymeric NIPAM nanogels, a naphthalimide-based fluorescent probe was selected, as its versatile structure allows easy chemical modification depending on the required application. The polymerizable fluorescent probe N-2-(6-(4-methylpiperazin-1-yl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl-ethyl)acrylamide (FIM) previously reported by our group23 was included as co-monomer in the nanogel preparation.
In the case of the block copolymer micelles, it is highly desirable to know the precise location of the fluorescent probe within the core–corona structure. This knowledge was achieved through the use of block-dye-block polymer containing the highly emissive dithiomaleimide (DTM) fluorophore, previously developed in our group, which allows precise dye incorporation at the core–corona interface of the resultant micelles.27 This strategy has been shown to inhibit self-quenching leading to concentration-independent emission, with these particles previously demonstrated as in vitro contrast agents.28 In both cases the fluorescent molecules were covalently attached to the polymer backbone, thus avoiding issues of leaking from the polymer-matrix, and generating misleading results, while the similar spectral properties of naphthalimide and DTM enabled identical imaging conditions for both systems.
One of the two systems used here is based on NIPAM nanogels. The main advantages of NIPAM-based nanoparticles are high solubility and stability, as well as ability to change the conformation, in response to variations in temperature, which allows the release of the entrapped drug. These features with their structural characteristics29 make them strong candidates for drug delivery.
Fluorescent thermoresponsive NIPAM (RM1) based nanogels were obtained by high dilution radical polymerization, a method that allows the preparation of nanoparticles with small size (10 to 30 nm) and low polydispersity,30 by varying the concentration of monomers and crosslinker. The best nanogel preparation was obtained by reacting 75% NIPAM, 20% methylenebisacrylamide (MBA) as crosslinker, and 5% of fluorescent probe in DMSO with a total monomer concentration (Cm) of 1%, initiated by 1% AIBN (Scheme 1). The presence of the same polymerizable unit on all reagents ensures similar reactivity rates and incorporation ratio, while the concentration of fluorescent monomer was kept low to avoid significant increase in hydrophobicity and size of the nanoparticles. The RM1 nanogels were obtained with >60% yield, were shown to have good solubility in water up to 2 mg ml−1 and DLS analysis of 1 mg ml−1 solution in water showed particle size comprised between 10–20 nm (Table 1, Fig. S1 and Table S1†), a range also confirmed by TEM, (Fig. 1A). Zeta potential was measured as −21 mV, showing that the nanogels had a slightly negative surface charge (Fig. S3†). Comparison with NIPAM nanogel particles, made in identical experimental conditions and with same percentage of crosslinker but without fluorescent co-monomer, shows similar characteristics in terms of size (Fig. S2†) and solubility, confirming the hypothesis that the introduction of the fluorescent tag in such small quantity does not significantly impact the polymer's morphological characteristics.
![]() | ||
| Fig. 1 Dry-state TEM images of (A) NIPAM nanogels RM1 and (B) micelles, RM2, unstained on a graphene oxide substrate. | ||
DTM-labelled block copolymer micelles (RM2) were prepared according to our previously reported strategy.27 The highly emissive DTM fluorophore was incorporated into a dual functional initiator, with subsequent ring-opening polymerization of D,L-lactide, followed by reversible addition–fragmentation chain transfer (RAFT) polymerization of triethyleneglycol acrylate (TEGA) producing an amphiphilic block copolymer (Scheme 1), with Mn,NMR = 28.4 kg mol−1, Mn,SEC = 20.1 kg mol−1, ĐSEC = 1.22. This use of orthogonal polymerization techniques results in the location of the DTM fluorophore between hydrophobic and hydrophilic blocks, so that subsequent self-assembly by direct dissolution in water, produces block copolymer micelles with the DTM fluorophore at the core–corona interface. DLS analysis indicated micelles with a diameter of approximately 50 nm (Fig. S4† and Tables 1, S2†). Zeta potential was measured as −27 mV, showing that the micelles also had a slightly negative surface charge (Fig. S3†). The morphology of the spherical micelles31 was confirmed by TEM (using a graphene oxide substrate), where the size of the particles was consistent with observation of the micelle core (Fig. 1B).
Fluorescently labelled RM1 and RM2 nanoparticles (from 40 to 150 μg ml−1 concentration) were applied to adherent NSC cultures and their uptake monitored at regular intervals, from 4 up to 48 h (see Fig. S5† for data at 48 h). The nanoparticles were well tolerated by the NSC, as assessed by morphological evaluation, although mild flattening of the processes was observed in the cultures treated with RM2 (Fig. 2a–f) and they could be identified within the cytoplasm of the cells (additional images in Fig. S6†). In the case of PLGA nanoparticles, with an average particle size of 200 nm, the internalization was observed 3 h post treatment while for the majority of the other nanoparticles 24 hours were required to observe internalization.15 The minimum time for the internalization of nanoparticles in NSC is reported to be one hour for PEI based nanoparticles with a size of 224 nm. Nanoparticles can still be identified mainly in the cytoplasm of the NSC after 18–24 hours.4 We observed internalization of both RM1 and RM2 nanoparticles (at a minimal concentration of 70 μg ml−1) after 4 hours. The nanoparticles were identified in the cytoplasm of NSC with a punctate distribution, while the nucleus was spared, an observation which is in line with previous reports.19 The fluorescence of the nanoparticles was not quantified in these experiments, as the confocal microscopy only provides qualitative measurements. The purpose of these studies carried out using fluorescent nanoparticles was to confirm internalisation and therefore validate the data obtained from the MTT proliferation assay.
Next, we set up to assess whether essential biological functions of NSC were altered by the nanoparticles. Viability/proliferation was assessed at two different time points (4 and 24 hours) post treatment with different concentrations of RM1 and RM2 (40, 70 and 150 μm ml−1) (Fig. 2g and h). Cell viability/proliferation, as assessed by the MTT assay, was not significantly affected at 4 hours by any concentration of nanoparticles (mean viability ≥95% as compared to 100% viability in the control sample where no nanoparticles were added, Fig. 2g). Only a mild but significant reduction of viability was noted for RM2 (≥90% as compared to untreated cells, Fig. 2h) 24 hours after treatment. In general, NIPAM based nanoparticles (RM1) were better tolerated in comparison with RM2, regardless of the concentration. However, viability was high (at above 90%) for both NPs.
The data obtained indicate that RM1 and RM2 nanoparticles are not toxic for NSC, as assessed by morphology and viability, at a concentration equal or below 150 μg ml−1.
To assess the self-renewal capacity of NSC treated with the nanoparticles, adherent monolayers, which had been treated with 70 μg ml−1 of either RM1 or RM2, were allowed to grow to confluency and then replated in neurosphere inducing conditions.32 The formation of neurospheres was recorded and the cultures dissociated and replated three times (Fig. 4). Neurospheres were obtained in all cultures and no significant impact on the efficiency of neurosphere formation was observed (Fig. 4).
Taken together these experiments demonstrate that NCSs treated with RM1 or RM2 at a concentration up to 70 μg ml−1 retain their cardinal features of multipotency and self-renewal and raise the possibility that they could be used as a drug delivery vehicle to NSC. Interestingly the data suggest that the differences in chemical structure, with RM1 being a covalently cross-linked system and RM2 a self-assembled micelle matrix, do not significantly impact their potential as drug delivery systems for NSC. This may suggest that size, which is in fact comparable between the two systems, is playing a major role in determining toxicity and cellular uptake.
For the uploading of retinoic acid on the thermoresponsive nanoparticle, RM1, a modified version of a previously published protocol was utilized.36 Retinoic acid was diluted in an appropriate solvent containing the dispersed nanogels. In an effort to maximize the uploading, the experiment was conducted at 4 °C. At this temperature the cross-linked network of nanogel is swollen, allowing the dissolved molecules of the drug to be incorporated with the possible creation of hydrogen bonds. The RM1 nanoparticles and retinoic acid solution were stirred for 72 hours to promote formation of a complex between the carboxylic acid of retinoic acid and secondary amine groups of the fluorescent tag available on the polymeric cross-linked network. The nanogels were then isolated by dialysis and freeze dried. The yield as well as drug loading and entrapment efficiency for sample RM1 were determined by UV-Vis spectroscopy (Table 2), using the calibration curve (Fig. S7†).
| Sample | Yield, % | Drug loading, % | Entrapment efficiency, % |
|---|---|---|---|
| RM1 | 72 | 4.72 | 35.9 |
| RM2 | 84 | 0.11 | 9.2 |
Unlike the cross-linked nanogels, the spherical micelles were not stable to organic solvent; therefore particles were loaded via self-assembly in the presence of retinoic acid. Polymer and retinoic acid were mixed in a solution of dichloromethane, before removal of the solvent. Addition of water achieved self-assembly by direct dissolution, with dialysis to remove non-encapsulated retinoic acid. A portion of the resultant micelle solution was freeze-dried, allowing yield, drug loading and entrapment efficiency to be determined by UV-Vis spectroscopy.
Comparison of data obtained for the two sets of nanoparticles demonstrated that in the case of RM2 both drug loading and entrapment efficiency were considerably lower than for NIPAM-based nanogels (RM1). Attempts to increase encapsulation efficiency for RM2 by using a 100× higher quantity of retinoic acid were unsuccessful, with only 0.11% drug loading obtained. It has been previously reported that polymeric micelles with an unmodified polyester core have low entrapment efficiencies,37 leading to the decision of evaluating the pharmacological activity using only RM1 nanogels.
The NIPAM based nanogels were also chosen because of their thermoresponsive characteristics, which allows them to undergo conformational changes as a function of temperature. This property is dependent on the chemical structure of the nanogel and the degree of crosslinking. The thermoresponsive characteristics of RM1 were studied using UV-vis spectroscopy and monitoring the change of transmittance as a function of temperature in both water and medium. The data (Fig. S8†) show that RM1 nanogels respond around 37 °C in water, and around 38.5 °C in medium. This ensured that the drug would be released when the loaded nanogels were incubated with the cells.
In order to evaluate the pharmacological effect to the NSC, retinoic acid loaded nanogels (RM1 + Ret), at a concentration of 70 μg ml−1, were incubated for 48 hours with neural stem cells in medium not containing growth factors at 37 °C. After this time the nanoparticles were removed, new fresh medium, without growth factors, was added and the cells were allowed to differentiate for 5 days. We already demonstrated that at 70 μg ml−1, nanogels do not affect the main characteristics of viability, multipotency and self-renewal of the NSC. Based on the entrapment efficiency calculated for RM1, the maximum concentration of the RA delivered to the SVZ NSC would be 4.6 nM. In order to evaluate the pharmacological effect of the cargo release, a solution of RA of similar concentration was also added. However given the almost complete insolubility of RA in water, 0.6% of DMSO had to be added. As previously reported, most in vitro studies using cultures of NSC isolated from the SVZ and hippocampus, suggest that RA exposure stimulates neurogenesis and neuronal maturation.38
Fig. 5 shows the results which clearly indicate that there is a significant increase in the percentage of neurons formed in both samples, the one treated with the loaded nanogels (RM1 + Ret) as well as the positive control (+Ret). Given that it was previously demonstrated that RM1 nanogels had no impact on differentiation, this result can only be attributed to the release of retinoic acid. The observation that the RA-loaded RM1 particles provide very similar results to the positive control demonstrates the potential efficiency of the delivery system. Our results are in good correlation with previous reports where the formation of neurons can be enhanced with concentrations of retinoic acid between 4 and 40 nM.4 Given the drawbacks of retinoic acid as NSC drug e.g. its extremely low water solubility, the formulation of this drug into nanoparticles may be an alternative approach for delivering such hydrophobic drug in the brain. NIPAM based nanogels are uptaken by the NSC, where they remain in the cytoplasm for at least 24 hours as demonstrated by the data. This time length is sufficient for the nanogels to react in terms of thermoresponsiveness to the temperature of the environment. At 37 °C, the nanogels shrink allowing the loaded retinoic acid to be released by diffusion and give rise to the pharmacological effect of the enhanced formation of neurons.
:
5
:
20 respectively, were dissolved in anhydrous DMSO with 1% AIBN and reacted at 70 °C for two days. The clear solution was dialyzed against water for 2 days with frequent changes. Nanogel solution was frozen and lyophilized to give a white dry powder, which was stored at room temperature.
000 g mol−1) were used with a 500 μl sample loop. The mobile phase was tetrahydrofuran with 2% triethylamine at a flow rate of 5.0 ml min−1.
Particle sizes and zeta potentials were determined using light scattering via Malvern Zeta-Sizer, with solutions filtered before analysis. Micelles (RM2) were analyzed directly after self-assembly, while nanogels (RM1) were suspended in water (0.1 mg ml−1) and sonicated for a short time (1 min). Size Measurements were performed at 25 °C. All measurements were performed in triplicates and the results were reported in terms of mean diameter ± SD.
200 M−1 cm−1 previously determined from the calibration curve. The loading was therefore determined by difference between the amount of drug added to the solution and the drug that remained unloaded. The nanogels obtained after centrifugation were stored under vacuum at 4 °C until further experimental use. All samples were analyzed in triplicate. Nanoparticle yield, drug loading and drug entrapment efficiency were calculated based on previously described equations.42
Encapsulation of retinoic acid, into the polymer micelles (RM2) was achieved as described below. Retinoic acid was dissolved in dichloromethane to give a stock solution of 0.15 mM. Polymer (9.7 mg), retinoic acid stock solution (0.65 ml) and dichloromethane (9.05 ml) were mixed to give a final polymer concentration of 1 g L−1 and final retinoic acid concentration of 15 μM. Dichloromethane was removed in vacuo, before addition of water (18.2 MΩ cm) and sonication to effect micelle self-assembly via direct dissolution. Excess retinoic acid was removed by dialysis against water (18.2 MΩ cm). To determine the yield, drug loading and entrapment efficiency 1 ml of the micelle solution was freeze-dried and redissolved in dichloromethane. A UV-vis spectrum was recorded, and compared with individual spectra of the polymer (Fig. S5†), and with a retinoic acid calibration curve. From these spectra the drug loading could be calculated, using the measured extinction coefficients of retinoic acid (ε364 = 60
200 M−1 cm−1) and RM2 (ε305 = 18
400 M−1 cm−1).
:
1 in trypan blue (Fluka) to assess cell viability and counted in a Neubauer chamber. The cells were MACS-sorted for CD133 (prominin1) according to the manufacturer's protocol (Miltenyi Biotech) and the eluted CD133+ cells counted with a Neubauer chamber and plated in pre-heated stem cell culture media in ultra low attachment 6-well plates (Corning) with a concentration of 10
000–20
000 cells per cm2 in 2 ml stem cell culture medium per well. The culture media was composed of DMEM-F12 (GIBCO) supplemented with basic fibroblast growth factor, 20 ng ml−1 (bFGF) (Peprotech), epidermal growth factor, 20 ng ml−1 (EGF) (Peprotech) and 1% B27 (Invitrogen). Adherent monolayers of NSC were cultured in multi well plates or flasks, which had been coated with Matrigel (BD Bioscience).
000 cells per well in 500 μl cell culture medium. 24–48 hours after plating, different amounts of fluorescent nanogels or self-assembled polymeric nanoparticles were added to the wells. Cells were incubated with nanoparticles up to 4 h at 37 °C 5% CO2, then the medium was removed and fresh medium was added. Cells were incubated for 0, 24 and 48 h, then washed with PBS and fixed with 4% paraformaldehyde (PFA) for 10 minutes at room temperature. After further washing, plates were mounted using Vectashield mounting medium (VECTOR). Fluorescent images were acquired using an inverted confocal microscope (Zeiss 510, Inverted Meta Confocal).
000 cells per well in 500 μl cell culture medium as aforementioned. At least 24 hours after plating, different amounts of nanogels or self-assembled polymeric nanoparticles were added to the wells. Cells were incubated with nano-matrices for 4 hours at 37 °C 5% CO2. The MTT assay was performed at 4 hours and at 24 hours. Media was removed from the wells and the cells washed with PBS. MTT solution (stock solution: 5 mg ml−1 in PBS pH 7.4) was added into each well in a ratio 1
:
10 (MTT stock solution: medium) and plates were incubated at 37 °C for 24 h. The medium was removed, 300 μl isopropanol was added in each well and agitated thoroughly to dissolve the formazan crystals. The solution was transferred to 96-well plates and immediately read by a microplate reader at 570 nm wavelength. The experiments were performed in triplicates.
000 cells per well in 500 μl cell culture medium and allowed to attach for at least 24–48 hours. Almost confluent adherent monolayers of NSC were treated with loaded or un-loaded nano-matrices dispersed in differentiating media, for at least 4 hours (minimum time period for internalization) and up to 48 hours. The medium was then removed, fresh media was added and cells were allowed to differentiate for 5 days in vitro. The differentiating media was composed of serum free neurobasal media (GIBCO) supplemented with 1% of B27. After five days of incubation the cover slips were washed with PBS, fixed with 4% PFA, rewashed with PBS and processed for immunocytochemistry. At least three biological replicas were used for the experiments.
000 cells per well in 500 μl cell culture medium as aforementioned. At least 24–48 hours after plating, fluorescent nanogels or self-assembled polymeric nanoparticles were added to the wells. Cells were incubated with nano-matrices for 4 h at 37 °C 5% CO2. After four hours the excess of nano-matrices was removed and fresh media was added. Cells were incubated until almost confluent and passaged to uncoated plates, allowed to form neurospheres. The neurospheres were dissociated and replated three times.
:
400) (DAKO); mouse monoclonal anti-MAP2 (1
:
400) (Sigma); mouse monoclonal anti-O4 (1
:
400) (Millipore). Secondary antibodies: Alexa Fluor 546 mouse anti-rabbit (1
:
1000); Alexa Fluor 488 anti-mouse (1
:
1000) (Invitrogen). Slides were washed three times in PBS for 5 minutes and mounted with DAPI mounting media (VECTOR). Fluorescent images, five for each sample, magnification 40×, were acquired using an epifluorescent Leica microscope.
Footnote |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr06440j |
| This journal is © The Royal Society of Chemistry 2016 |