Issue 12, 2016

The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism

Abstract

The objective of the current research was to investigate the effects of starch nanoparticles (SNPs) prepared from waxy maize, potato, normal corn, and tapioca starches on the activity of tyrosinase. As a main polyphenol oxidase, tyrosinase not only induces fruit and vegetable browning but also causes skin diseases by overproducing melanin. Herein, for the first time, we evaluated the inhibitory kinetics of SNPs on tyrosinase. It turned out that SNPs inhibited tyrosinase activity reversibly. The IC50 values of hollow nanoparticles, amylopectin nanoparticles, corn starch nanoparticles, and tapioca starch nanoparticles were 0.308, 0.669, 1.490, and 4.774 μM, respectively. Assay of fluorescence spectra demonstrated that SNPs quenched the tyrosinase intrinsic fluorescence. Moreover, binding constant and binding sites found that SNPs were bound to tyrosinase through van der Waals forces, hydrogen bonds, as well as electrostatic interactions. Analysis of circular dichroism indicated that the incorporation of SNPs into tyrosinase prompted conformational alteration of the enzyme. Furthermore, inhibition of browning by SNPs loading with L-dopa compound indicated that not only the tyrosinase activity was inhibited, but also SNPs decreased free dopa content by adsorption. This research on SNPs as potential inhibitors could give rise to advancement in the realm of anti-tyrosinase and have versatile applications in medicine, food, cosmetics, materials and drugs.

Graphical abstract: The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2016
Accepted
02 Nov 2016
First published
22 Nov 2016

Food Funct., 2016,7, 4804-4815

The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism

J. Yang, R. Chang, S. Ge, M. Zhao, C. Liang, L. Xiong and Q. Sun, Food Funct., 2016, 7, 4804 DOI: 10.1039/C6FO01228K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements