Issue 30, 2016

hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs

Abstract

Selenium nanoparticles (SeNPs) have attracted great attention because of their superior optical properties and wide utilization in biological and biomedical studies. This paper reports an environmentally benign procedure of greener monodispersible SeNP synthesis using the reducing power of Trigonella foenum-graecum extract, characterization and their protective effect against unfolded (Herring sperm DNA) hsDNA. We investigated the anti-cancer activity of SeNPs against MCF-7, MDA MB 435 and COLO-205 cells. The photocatalytic activity of SeNPs was investigated for the degradation of a Sunset Yellow FCF (SYFCF) dye using ultraviolet-B light. The reduction of the Se ion to SeNPs was monitored by ultraviolet-visible spectroscopy (UV-vis). The size and morphology of the SeNPs were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Dynamic Light Scattering (DLS). The SeNPs were stable, and the diameter was homogeneous at around 5–12 nm. Interactions of various concentrations of SeNPs with hsDNA were systematically investigated by UV-vis, fluorescence, circular dichroism (CD), polarimetry and FTIR spectroscopy under physiological conditions. The results from fluorescence spectroscopy indicated that SeNPs quenched the fluorescence intensity of hsDNA with increasing concentrations. The modified Stern–Volmer quenching rate constant Ksv, binding constant K and binding sites n at different temperatures and the corresponding thermodynamic parameters ΔH°, ΔG° and ΔS° were calculated. Hoechst 33258 and methyl green (MG) site markers, melting experiment (Tm), viscosity measurements and sequence specificity verification by DNA bases clarified that SeNPs bind to hsDNA via a groove site. The rate of photocatalytic degradation of the SYFCF dye in the presence and absence of photocatalysts (SeNPs) was studied using UV-vis, the results showed appreciable degradation of the SYFCF dye. Our results suggested that nano Se can be used as a promising selenium species with potential application in cancer treatment. These nanoparticles were found to be the most active cytotoxic agent prepared in a new green synthesis manner, causing >50% inhibition of MCF-7, MDA MB-435 and COLO-205 cell proliferation at concentrations <10−7 M. Hence these SeNPs could be recognized as promising materials for biomedical applications.

Graphical abstract: hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2016
Accepted
28 Jun 2016
First published
12 Jul 2016

Dalton Trans., 2016,45, 12144-12155

hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs

A. V. Pansare, D. K. Kulal, A. A. Shedge and V. R. Patil, Dalton Trans., 2016, 45, 12144 DOI: 10.1039/C6DT01457G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements