Oxidative addition of a C–H σ bond to M(PH3)2 (M = Pd or Pt). An ab initio molecular orbital study on the chelate phosphine effect[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Shigeyoshi Sakaki, Bishajit Biswas and Manabu Sugimoto


Abstract

All the reactants, transition states and products of the oxidative addition of a C–H σ bond to M(PH3)2 (M = Pd or Pt) were optimized at the second-order Møller-Plesset perturbation (MP2) level and the energy changes in the reaction were evaluated by ab initio molecular orbital/MP4, SD-CI (single- and double-excitation configuration interaction) and CCD (coupled cluster with double substitutions) methods. In the model complexes of a monodentate phosphine this reaction requires a considerably high activation energy (Ea), 30 and 37 kcal mol-1 for M = Pt and Pd (MP4SDQ values), respectively. However, this reaction proceeds with a much lower activation energy when two PH3 ligands are positioned so as to mimic a chelate phosphine, e.g. a diphosphinomethane; for instance, Ea = 20.0 and 3.8 kcal mol-1 for M = Pd and Pt, respectively. This significant effect of a chelate phosphine is discussed in detail from the point of view of the frontier orbital, electronic reorganization and distortion energies of M(PH3)2.


References

  1. J. J. Low and W. A. Goddard, J. Am. Chem. Soc., 1986, 108, 6115 CrossRef CAS; Organometallics, 1986, 5, 609 Search PubMed.
  2. S. Sakaki and M. Ieki, J. Am. Chem. Soc., 1993, 115, 2373 CrossRef CAS.
  3. Y. Yamamoto, M. Al-Masum and N. Asao, J. Am. Chem. Soc., 1994, 116, 6019 CrossRef CAS.
  4. B. M. Trost and V. J. Gerusz, J. Am. Chem. Soc., 1995, 117, 5156 CrossRef CAS.
  5. P. Hoffmann, J. Heiss, P. Neiteler, G. Müller and J. Lachmann, Angew. Chem., Int. Ed. Engl., 1990, 29, 880 CrossRef.
  6. R. McCrindle, G. J. Arsenault, A. Gupta, M. J. Hampden-Smith, R. E. Rice and A. J. McAlees, J. Chem. Soc., Dalton Trans., 1991, 949 RSC; R. McCrindle, G. Ferguson, A. J. McAlees, G. J. Arsenault, A. Gupta and M. C. Jennings, Organometallics, 1995, 14, 2741 CrossRef CAS.
  7. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284 CrossRef CAS.
  8. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299 CrossRef CAS.
  9. S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam, 1984 Search PubMed.
  10. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, ed. H. F. Schaeffer, Plenum, New York, 1977, vol. 4, p. 1 Search PubMed.
  11. J. Chandrasekhar, J. G. Andrade and P. R. Schleyer, J. Am. Chem. Soc., 1981, 103, 5609 CrossRef CAS.
  12. A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, Chem. Phys. Lett., 1993, 208, 111 CrossRef CAS.
  13. S. Sakaki, M. Ogawa and M. Kinoshita, J. Phys. Chem., 1995, 99, 9933 CrossRef CAS.
  14. K. Raghavachari, J. Chem. Phys., 1985, 82, 4607 CrossRef CAS.
  15. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92, Gaussian Inc., Pittsburgh, PA, 1992.
  16. G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, Princeton, NJ, 1967, vol. 3, p. 610 Search PubMed.
  17. Y. Pan, J. T. Mague and M. J. Fink, Organometallics, 1992, 11, 5495.
  18. R. K. Merwin, R. C. Schnabel, J. D. Koola and D. M. Roddick, Organometallics, 1992, 11, 2972 CrossRef CAS.
  19. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 1974, 8, 61 CrossRef CAS.
  20. E. R. Davidson and D. W. Silver, Chem. Phys. Lett., 1977, 52, 403 CrossRef CAS.
  21. J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quantum Chem., Symp., 1977, 11, 149 Search PubMed.
  22. R. Seeger and J. A. Pople, J. Chem. Phys., 1977, 66, 3045 CrossRef CAS.
  23. P. E. M. Siegbahn and M. Svensson, Chem. Phys. Lett., 1993, 216, 147 CrossRef CAS; P. E. M. Siegbahn, M. R. A. Blomberg and M. Svensson, J. Am. Chem. Soc., 1993, 115, 4191 CrossRef CAS; M. R. A. Blomberg, P. E. M. Siegbahn and M. Svensson, J. Phys. Chem., 1994, 98, 2062 CrossRef CAS; P. E. M. Siegbahn and M. R. A. Blomberg, Organometallics, 1994, 13, 354 CrossRef CAS; P. E. M. Siegbahn and M. Svensson, J. Am. Chem. Soc., 1994, 116, 10124 CrossRef CAS.
  24. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
  25. K. Tamao, S. Okazaki and M. Kumada, J. Organomet. Chem., 1978, 146, 87 CrossRef CAS; H. Watanabe, M. Kobayashi, K. Higuchi and Y. Nagai, J. Organomet. Chem., 1980, 186, 51 CrossRef CAS; Y. Ito, M. Suginome and M. Murakami, J. Am. Chem. Soc., 1988, 110, 3692 CrossRef CAS; T. Hayashi, Y. Matsumoto and Y. Ito, J. Am. Chem. Soc., 1988, 110, 5579 CrossRef CAS; T. Hayashi, T. Kobayashi, A. M. Kawamoto, H. Yamashita and M. Tanaka, Organometallics, 1990, 9, 280 CrossRef CAS; Y. Ito, T. Matsuura and M. Murakami, J. Org. Chem., 1991, 56, 1948 CrossRef CAS; M. Murakami, P. G. Andersson, M. Suginome and Y. Ito, J. Am. Chem. Soc., 1991, 113, 3987 CrossRef CAS; Y. Tsuji, R. M. Lago, S. Tomohiro and H. Tsuneishi, Organometallics, 1992, 11, 2353 CrossRef CAS.
  26. K. Tatsumi, R. Hoffmann, A. Yamamoto and J. K. Still, Bull. Chem. Soc. Jpn., 1981, 54, 1857 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.