Issue 43, 2016

Microscopic investigations of site and functional selectivity of triazole for CO2 capture and catalytic applications

Abstract

Ab initio and DFT studies on CO2 interacting with different tautomers and isomers of triazole (TZ) are carried out to understand the adsorption mechanism and their mutual preferential sites. We used post Hartree–Fock methods (MP2, CCSD(T), and CCSD(T)-F12) and various DFTs (PBE, PBE0, M05-2X, and M11) with and without considering the dispersion correction for comparison. We determined hence the equilibrium structures, vibrational frequencies and binding energies of TZ–CO2 clusters and mapped their potential energy surfaces along the intermonomer coordinates. We find that the most stable TZ–CO2 clusters, some of them are already known, are not relevant for CO2 capture in porous materials. In addition, we show that the bonding between TZ and CO2 is due to various kinds of noncovalent interactions such as π-stacking, acid–base pair electron donor–electron acceptor (EDA) interactions along with N–H⋯O and C–H⋯O H-bonds with CO2. Our analysis reveals the existence of site selectivity effects when CO2 binds to TZ. These effects are related to the magnitude of the interaction potentials, in the order EDA (+N–H⋯O) > EDA (+C–H⋯O) > Cδ+⋯N[double bond, length as m-dash]N > π-stacking > σ type N–H⋯O > C–H⋯O H-bonds. This is the first report on the importance of competition between EDA, π-stacking and σ-bonds for CO2 capture and catalytic applications. Findings from this work may be used to give insights into the site specific CO2 capture ability of porous materials such as metal organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) or functionalized polymers. Finally, we show that IR spectroscopy of CO2 within the pores is neither a specific nor an efficient marker in probe-molecule experiments.

Graphical abstract: Microscopic investigations of site and functional selectivity of triazole for CO2 capture and catalytic applications

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2016
Accepted
07 Oct 2016
First published
07 Oct 2016

Phys. Chem. Chem. Phys., 2016,18, 29709-29720

Microscopic investigations of site and functional selectivity of triazole for CO2 capture and catalytic applications

R. Boulmène, M. Prakash and M. Hochlaf, Phys. Chem. Chem. Phys., 2016, 18, 29709 DOI: 10.1039/C6CP04650A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements