Issue 4, 2016

Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro

Abstract

An intrinsic property of many anticancer drugs including niclosamide is poor water solubility, which hindered their translation from laboratory to clinics. In an effort to enhance their water solubility and bioavailability, we have developed simplistic strategies based on the solvent evaporation and amorphous solid dispersion methods. Among various solvent evaporation methods, electrospinning was adopted in the present work. Poly(ethylene oxide) (PEO) was selected as the polymeric solid dispersion matrix of the drug based on various advantageous properties of PEO. Moreover PEO could also serve as a template for the in situ synthesis of silver nanoparticles (Ag NPs). Furthermore the co-delivery of multiple anticancer drugs within a nanocarrier is a promising approach to overcome the drug resistance and to achieve synergistic therapy. To achieve this goal, the drugs (niclosamide (nic)) and Ag NPs were loaded separately and together (nic@Ag NPs) into the nanofiber. The as-prepared various formulations of composite nanofibers were well-characterized by different techniques. The in vitro release and kinetic studies suggest the sustained release of niclosamide which followed Fickian diffusion kinetics. The anticancer potential of the drugs alone and the nic@Ag NPs loaded nanofibers were evaluated by MTT assay against A549 (lung carcinoma) and MCF-7 (breast carcinoma) cell lines. The co-delivery of anticancer drugs nic@Ag NPs from nanofibers displayed superior anticancer potential in vitro when compared to nic alone or Ag NPs composite nanofibers. Additionally nic@Ag NPs showed better therapeutic efficacy against MCF-7 cells. To confirm the mechanism of cell death by nic@Ag NP composite nanofibers on MCF-7 cells, various cell based assays were done. Our finding clearly explains that a combination of drugs with the diverse anticancer mechanism remarkably improved the therapeutic potential of drugs. Therefore, the nic@Ag NPs composite nanofiber as a co-delivery system might have potential applications in combination cancer therapy.

Graphical abstract: Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2015
Accepted
17 Dec 2015
First published
18 Dec 2015

J. Mater. Chem. B, 2016,4, 726-742

Author version available

Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro

P. Dubey and P. Gopinath, J. Mater. Chem. B, 2016, 4, 726 DOI: 10.1039/C5TB02351C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements