Issue 39, 2015

Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization

Abstract

Polycarbonate urethane (PCU) elastomeric materials have been developed for vascular prosthesis applications, because of their excellent mechanical and physical properties. However, thrombosis and inflammation often limit their usage as small-diameter vascular grafts. Herein, we focused on the design and functionalization of a PCU elastomer with enhanced hemocompatibility, rapid endothelialization and antimicrobial properties. An atom transfer radical polymerization (ATRP) technique was utilized to graft random copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) and eugenyl methacrylate (EgMA) onto a PCU surface, and subsequently the cysteine-terminated CREDV peptide sequence was directly linked onto the surface by a thiol–ene click reaction to prepare a series of REDV peptide functionalized surfaces. The chemical compositions of the modified surfaces were quantified by X-ray photoelectron spectroscopy (XPS), and the hydrophilicity was evaluated by water contact analysis and water uptake. The surface hemocompatibility was verified by platelet adhesion assays, and the results demonstrated that platelet adhesion was significantly reduced on the modified surface. More importantly, the functionalized surfaces with high hydrophilicity and cell specific adhesive REDV peptide could selectively enhance the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) but they suppressed these behaviors in human arterial smooth muscle cells (HASMCs). Moreover, these surfaces showed excellent antibacterial properties, which originate from the EgMA moieties of the copolymers. The successful fabrication of multifunctional surfaces with excellent hemocompatibility, rapid endothelialization, and good antimicrobial activity through a feasible route could be an attractive platform for tissue engineering applications.

Graphical abstract: Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2015
Accepted
18 Aug 2015
First published
04 Sep 2015

J. Mater. Chem. B, 2015,3, 7682-7697

Author version available

Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization

J. Yang, M. Khan, L. Zhang, X. Ren, J. Guo, Y. Feng, S. Wei and W. Zhang, J. Mater. Chem. B, 2015, 3, 7682 DOI: 10.1039/C5TB01155H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements