Hong-Wu Zhao*,
Xiao-Qin Chen,
Zhao Yang,
Ting Tian,
Bo Li,
Wei Meng,
Xiu-Qing Song and
Hai-Liang Pang
College of Life Science and Bio-engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China. E-mail: hwzhao@bjut.edu.cn
First published on 26th November 2015
In the presence of Et3N, the [3 + 2] cycloaddition of isatins, 2-(aminomethyl)pyridine and isatin-based imines proceeded readily, and furnished novel imidazolidine-dispirooxindoles in up to 84% yield with up to >99
:
1 diastereoselectivity. The relative configuration of the imidazolidine-dispirooxindoles was firmly confirmed on the basis of X-ray single crystal structure analysis. The reaction mechanism was assumed to account for the diastereoselective formation of the imidazolidine-dispirooxindoles.
In the recent years, the diastereoselective construction of structurally unique dispirooxindoles consisting of two spirooxindole motifs has gained attentions from several research groups. For example, in 2012 Yuan and co-workers reported the diastereoselective synthesis of dispiro[imidazolidine-2-thione]bisoxindoles through [3 + 2] cycloaddition of 3-isothiocyanato oxindoles with isatinimines.5 In the same year, Taylor research group carried out the diastereoselective construction of spirocyclic bisoxindoles via a double C–H, Ar–H coupling process.6 In 2015, by following a similar self-cycloaddition strategy, Yang7 and Thennarsu8 research groups individually contributed to the first diastereoselective synthesis of imidazolidine-dispirooxindoles including two spirooxindoles at 2,5-positions of imidazolidine ring by treating azomethine ylides with isatin-based imines as shown in Scheme 1 (eqn (1) & (2)). In our work, we first designed the distereoselective three-component [3 + 2] cycloadditions of isatins, 2-(aminomethyl)pyridine and isatin-based imines for the construction of a series of novel imidazolidine-dispirooxindoles bearing two spirooxindoles at 4,5-positions of imidazolidine ring as outlined in Scheme 1 (eqn (3)). The [3 + 2] cycloadditions underwent smoothly, thus providing the designed unprecedented imidazolidine-dispirooxindoles in desirable chemical yields with high diastereoselectivities.
:
8 dr (Table 1, entries 12–23). Considering the chemical yield and diastereoselectivity of 4aa comprehensively, we determined the optimal reaction conditions as below: 1a
:
2
:
3a = 1
:
1
:
1, 50 mol% Et3N, CH2Cl2, room temperature.
| Entry | Solvent | Additive | Time (h) | Yieldb (%) | drc |
|---|---|---|---|---|---|
| a Reaction was conducted with 5-Cl-isatin 1a (0.1 mmol), 2-(aminomethyl)pyridine 2 (0.1 mmol), isatin-based imine 3a (0.1 mmol) in the absence or presence of 10 mol% of additive in the indicated solvents (0.5 mL) at room temperature.b Isolated yield.c Determined by 1H NMR spectroscopy. | |||||
| 1 | THF | — | 24 | 42 | 53 : 47 |
| 2 | Toluene | — | 24 | 15 | 90 : 10 |
| 3 | CH2Cl2 | — | 24 | 53 | 83 : 17 |
| 4 | CH3CN | — | 24 | 33 | 84 : 16 |
| 5 | EtOH | — | 24 | 19 | 72 : 28 |
| 6 | CH2Cl2 | CuI | 40 | Trace | — |
| 7 | CH2Cl2 | Yb(OTf)3 | 40 | 31 | 18 : 81 |
| 8 | CH2Cl2 | MgSO4 | 40 | 44 | 72 : 28 |
| 9 | CH2Cl2 | PhCO2H | 40 | 55 | 70 : 30 |
| 10 | CH2Cl2 | 2,2′-Biphenol | 40 | 61 | 73 : 27 |
| 11 | CH2Cl2 | Stearic acid | 40 | 58 | 74 : 26 |
| 12 | CH2Cl2 | Quinine | 40 | 52 | 85 : 15 |
| 13 | CH2Cl2 | Pyridine | 40 | 64 | 76 : 24 |
| 14 | CH2Cl2 | DIPEA | 40 | 51 | 85 : 15 |
| 15 | CH2Cl2 | DMAP | 40 | 48 | 85 : 15 |
| 16 | CH2Cl2 | DBN | 40 | 47 | 86 : 14 |
| 17 | CH2Cl2 | DBU | 40 | 35 | 88 : 12 |
| 18 | CH2Cl2 | TBD | 40 | 58 | 81 : 19 |
| 19 | CH2Cl2 | Et3N (5 mol%) | 72 | 58 | 88 : 12 |
| 20 | CH2Cl2 | Et3N (10 mol%) | 72 | 65 | 88 : 12 |
| 21 | CH2Cl2 | Et3N (20 mol%) | 72 | 58 | 89 : 11 |
| 22 | CH2Cl2 | Et3N (30 mol%) | 72 | 61 | 89 : 11 |
| 23 | CH2Cl2 | Et3N (50 mol%) | 72 | 70 | 92 : 8 |
Subsequently, we extended the reaction scope as outlined in Table 2 under the optimal reaction conditions by using variable substrates 1 and 3. In most cases, the [3 + 2] cycloadditions gave products 4 in the acceptable chemical yields with excellent diastereoselectivities (entries 1–2, 4, 7, 10–24). As for other cases, products 4 were formed in 63–80% chemical yields with 67
:
33–88
:
12 diastereoselectivities (entries 3, 5–6 and 8–9). Surprisingly, we found that the [3 + 2] cycloaddition of 1a, benzylamine and 3a did not take place at all (entry 25). Moreover, the use of single crystal X-ray analysis determined the relative configuration of 4de as presented in Fig. 2.9 Based on the relative configuration of 4de, the relative configurations of other imidazolidine-dispirooxindoles 4 were similarly assigned as shown in Table 2.
| Entry | 1 (R1, R2) | 3 (R3, R4) | Yieldb (%) | drc |
|---|---|---|---|---|
| a Reactions were conducted with isatins 1 (0.1 mmol), 2-(aminomethyl)pyridine 2 (0.1 mmol), isatin-based imines 3 (0.1 mmol), Et3N (0.05 mmol) in CH2Cl2 (0.5 mL) at room temperature for 72 h.b Isolated yield.c Determined by 1H NMR spectroscopy.d Benzylamine was used.e No reaction. | ||||
| 1 | 1a (5-Cl, H) | 3a (H, H) | 70 (4aa) | 92 : 8 |
| 2 | 1b (H, H) | 3a (H, H) | 76 (4ba) | >99 : 1 |
| 3 | 1b (H, H) | 3b (5-MeO, H) | 63 (4bb) | 85 : 15 |
| 4 | 1a (5-Cl, H) | 3c (5-Cl, H) | 77 (4ac) | >99 : 1 |
| 5 | 1a (5-Cl, H) | 3b (5-MeO, H) | 70 (4ab) | 88 : 12 |
| 6 | 1c (5-MeO, H) | 3c (5-Cl, H) | 83 (4cc) | 67 : 33 |
| 7 | 1c (5-MeO, H) | 3b (5-MeO, H) | 61 (4cb) | >99 : 1 |
| 8 | 1d (H, Bn) | 3a (H, H) | 80 (4da) | 75 : 25 |
| 9 | 1e (H, Me) | 3a (H, H) | 71 (4ea) | 76 : 24 |
| 10 | 1d (H, Bn) | 3d (H, Me) | 78 (4dd) | >99 : 1 |
| 11 | 1b (H, H) | 3d (H, Me) | 63 (4bd) | >99 : 1 |
| 12 | 1d (H, Bn) | 3e (H, Bn) | 81 (4de) | >99 : 1 |
| 13 | 1f (5-F, H) | 3e (H, Bn) | 61 (4fe) | >99 : 1 |
| 14 | 1a (5-Cl, H) | 3e (H, Bn) | 83 (4ae) | >99 : 1 |
| 15 | 1g (6-Cl, H) | 3e (H, Bn) | 63 (4ge) | >99 : 1 |
| 16 | 1h (5-Br, H) | 3e (H, Bn) | 78 (4he) | >99 : 1 |
| 17 | 1i (6-Br, H) | 3e (H, Bn) | 61 (4ie) | >99 : 1 |
| 18 | 1b (H, H) | 3e (H, Bn) | 84 (4be) | >99 : 1 |
| 19 | 1j (5-Me, H) | 3e (H, Bn) | 78 (4je) | >99 : 1 |
| 20 | 1c (5-MeO, H) | 3e (H, Bn) | 64 (4ce) | >99 : 1 |
| 21 | 1b (H, H) | 3f (5-Cl, Bn) | 84 (4bf) | >99 : 1 |
| 22 | 1b (H, H) | 3g (5-Br, Bn) | 81 (4bg) | >99 : 1 |
| 23 | 1b (H, H) | 3h (5-Me, Bn) | 77 (4bh) | >99 : 1 |
| 24 | 1b (H, H) | 3i (5-MeO, Bn) | 75 (4bi) | >99 : 1 |
| 25d | 1a (5-Cl, H) | 3a (H, H) | NRe | — |
To shed light on the formation and diastereoselectivity of 4de, we proposed the mechanism for the [3 + 2] cycloaddition as illustrated in Scheme 2. Initially, under catalysis of Et3N, isatin 1d condenses easily with 2-(aminomethyl)pyridine 2 to afford imine 5. Subsequently, the deprotonation of imine 5 with Et3N give rise to enolate 6. Finally, the cyclization of the resulted enolate 6 with imine 3e formed diastereoisomer 4de via the transition state TS1. In our case, the formation of diastereoisomer 7de was not observed through the transition state TS2. With the aid of molecular model, it was found that two 2-indolinone rings have a face-to-face overlap in the transition state TS2, and the stronger electronstatic repulsion exists between the two π systems; in comparison, this type of electronstatic repulsion decrease remarkably in the transition state TS1 owing to the parallel-displaced orientation between the two 2-indolinone rings.10 Therefore, the transition state TS1 is more stable than the transition state TS2. Noticeably, the [3 + 2] cycloaddition prefer to adopt the transition state TS1 to lead to formation of thermodynamically more stable diastereoisomer 4de instead of diastereoisomer 7de bearing the severe steric hindrance between the two 2-indolinone moieties. Overall, it was deduced that the preference for the transition state TS1 over the transition state TS2 account for the excellent diastereoselectivity in the [3 + 2] cycloaddition.
:
2) to afford the pure products 4 as white powder (61–84% yield; 67
:
33 ≥ 99
:
1 dr).
:
8; 1H NMR (400 MHz, DMSO): δ 10.90 (s, 1H), 10.51 (s, 1H), 8.58 (s, 1H), 8.46 (d, J = 7.2 Hz, 1H), 7.77 (s, 1H), 7.56 (s, 1H), 7.31–7.25 (m, 2H), 14 (s, 1H), 6.89–6.63 (m, 7H), 6.44 (d, J = 6.0 Hz, 1H), 6.06 (s, 2H), 4.50 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 178.5, 175.9, 160.6, 148.6, 142.7, 142.6, 142.5, 137.6, 130.6, 130.2, 128.6, 127.3, 126.5, 126.0, 125.6, 124.0, 123.6, 122.9, 122.1, 118.0, 115.9, 111.3, 110.6, 79.5, 74.7, 73.5; HRMS (ESI) calculated for C28H21ClN5O2 (M + H+): 494.13783, found 494.13620.
:
1; 1H NMR (400 MHz, DMSO): δ 10.47 (s, 2H), 8.58 (d, J = 4.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 5.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.97–6.88 (m, 2H), 6.82–6.61 (m, 6H), 6.43 (t, J = 7.2 Hz, 1H), 6.04 (d, J = 6.0 Hz, 2H), 4.14 (d, J = 5.2 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 178.7, 175.8, 160.6, 148.8, 144.7, 142.7, 142.6, 137.7, 130.7, 128.5, 127.3, 125.9, 124.0, 123.4, 123.3, 123.2, 122.1, 122.0, 117.9, 115.9, 110.5, 109.9, 79.5, 74.9, 73.3; HRMS (ESI) calculated for C28H22N5O2 (M + H+): 460.17680, found 460.17548.
:
15; 1H NMR (400 MHz, DMSO): δ 10.63 (s, 1H), 10.48 (s, 1H), 8.58 (d, J = 4.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 5.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.82 (t, J = 7.6 Hz, 2H), 6.72–6.62 (m, 4H), 6.54 (s, 1H), 6.45 (t, J = 7.2 Hz, 2H), 6.06 (d, J = 6.8 Hz, 2H), 4.11 (d, J = 9.2 Hz, 1H), 3.52 (s, 3H); 13C NMR (100 MHz, DMSO): δ 178.5, 175.7, 160.6, 154.8, 148.8, 143.5, 142.7, 137.7, 136.0, 130.7, 128.6, 125.9, 124.6, 124.0, 123.4, 123.3, 122.1, 117.9, 115.9, 114.8, 113.9, 110.7, 109.9, 79.6, 75.0, 73.4, 55.7; HRMS (ESI) calculated for C29H24N5O3 (M + H+): 490.18737, found 490.18607.
:
1; 1H NMR (400 MHz, DMSO): δ 11.04 (s, 1H), 10.69 (s, 1H), 8.56 (d, J = 4.4 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 7.33–7.20 (m, 3H), 6.87–6.94 (m, 3H), 6.76 (d, J = 8.4 Hz, 1H), 6.68–6.63 (m, 2H), 6.49 (t, J = 7.2 Hz, 1H), 6.06 (d, J = 6.8 Hz, 2H), 4.61 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 178.1, 175.9, 160.3, 148.6, 142.3, 141.7, 137.6, 130.8, 130.1, 128.8, 126.9, 126.5, 126.2, 126.1, 125.2, 125.1, 124.1, 126.6, 118.5, 115.9, 112.1, 111.4, 79.5, 75.0, 73.4; HRMS (ESI) calculated for C28H20Cl2N5O2 (M + H+): 528.09886, found 528.09767.
:
12; 1H NMR (400 MHz, DMSO): δ 10.75 (s, 1H), 10.58 (s, 1H), 8.56 (d, J = 4.4 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.33–7.25 (m, 2H), 6.82 (t, J = 7.6 Hz, 2H), 6.74–6.71 (m, 1H), 6.66–6.63 (m, 3H), 6.50 (d, J = 2.4 Hz, 1H), 6.45 (t, J = 7.2 Hz, 1H), 6.06 (d, J = 7.2 Hz, 2H), 4.48 (d, J = 8.8 Hz, 1H), 3.52 (s, 3H); 13C NMR (100 MHz, DMSO): δ 178.2, 175.9, 160.5, 154.8, 148.6, 142.6, 142.4, 137.6, 135.8, 130.6, 128.6, 126.5, 126.0, 125.5, 124.4, 124.0, 123.6, 118.0, 115.9, 114.8, 114.1, 111.3, 110.8, 79.5, 74.8, 73.5, 55.7; HRMS (ESI) calculated for C29H23ClN5O3 (M + H+): 524.14839, found 524.14740.
:
33; 1H NMR (400 MHz, DMSO): δ 10.96 (s, 1H), 10.41 (s, 1H), 8.58 (d, J = 4.4 Hz, 1H), 8.41 (d, J = 7.6 Hz, 1H), 7.79 (t, J = 7.2 Hz, 1H), 7.34–7.28 (m, 1H), 7.23–7.16 (m, 2H), 6.87–6.73 (m, 5H), 6.68–6.63 (m, 1H), 6.57 (d, J = 8.4 Hz, 1H), 6.48 (t, J = 7.6 Hz, 1H), 6.06 (s 2H), 4.30 (d, J = 9.2 Hz, 1H), 3.70 (s, 3H); 13C NMR (100 MHz, DMSO): δ 178.3, 175.8, 160.3, 155.1, 148.8, 142.5, 141.8, 137.7, 136.4, 129.9, 128.8, 127.0, 126.0, 125.4, 125.2, 124.2, 124.1, 123.4, 118.3, 115.9, 115.4, 113.3, 112.0, 110.3, 79.7, 75.4, 73.4, 55.9; HRMS (ESI) calculated for C29H23ClN5O3 (M + H+): 524.14839, found 524.14746.
:
1; 1H NMR (400 MHz, DMSO): δ 10.66 (s, 1H), 10.30 (s, 1H), 8.58 (d, J = 4.0 Hz, 1H), 8.44 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 2.0 Hz, 1H), 7.18 (s, 1H), 6.84–6.63 (m, 6H), 6.54 (s, 2H), 6.44 (t, J = 7.2 Hz, 1H), 6.05 (d, J = 7.2 Hz, 2H), 4.14 (d, J = 9.2 Hz, 1H), 3.69 (s, 3H), 3.51 (s, 3H); 13C NMR (100 MHz, DMSO): δ 178.5, 175.7, 160.5, 155.0, 154.8, 148.8, 142.7, 137.7, 136.5, 135.9, 128.6, 124.6, 124.5, 124.0, 123.3, 117.9, 115.9, 115.2, 114.9, 113.9, 113.3, 110.7, 110.2, 79.7, 75.3, 73.5, 55.9, 55.7; HRMS (ESI) calculated for C30H26N5O4 (M + H+): 520.19793, found 520.19666.
:
25; 1H NMR (400 MHz, DMSO): δ 10.77 (s, 1H), 8.58 (d, J = 4.8 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 4.8 Hz, 1H), 7.20–7.16 (m, 4H), 7.02 (t, J = 7.6 Hz, 1H), 6.85–6.71 (m, 9H), 6.53 (d, J = 8.0 Hz, 1H), 6.45 (t, J = 7.2 Hz, 1H), 6.07 (d, J = 7.2 Hz, 2H), 4.88 (d, J = 16.0 Hz, 1H), 4.52 (d, J = 16.0 Hz, 1H), 4.35 (d, J = 9.2 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 178.7, 174.2, 160.6, 148.7, 143.9, 142.9, 142.6, 137.3, 135.7, 130.8, 130.0, 128.9, 127.6, 127.5, 127.3, 125.9, 124.1, 123.4, 123.1, 123.0, 122.9, 122.2, 118.1, 116.0, 110.7, 109.7, 79.5, 74.7, 73.6, 42.7; HRMS (ESI) calculated for C35H28N5O2 (M + H+): 550.22375, found 550.22229.
:
24; 1H NMR (400 MHz, DMSO): δ 10.76 (s, 1H), 8.58 (d, J = 4.0 Hz, 1H), 8.47 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.33–7.28 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.82–6.67 (m, 7H), 6.43 (t, J = 7.2 Hz, 1H), 6.06 (d, J = 7.2 Hz, 2H), 4.27 (d, J = 9.2 Hz, 1H), 2.85 (s, 3H); 13C NMR (100 MHz, DMSO): δ 178.4, 174.2, 160.6, 148.8, 144.7, 142.7, 142.6, 137.7, 130.9, 130.1, 128.6, 126.8, 125.5, 124.1, 123.4, 122.9, 122.7, 122.6, 121.7, 118.0, 115.9, 110.5, 108.9, 79.7, 74.9, 73.5, 25.8; HRMS (ESI) calculated for C29H24N5O2 (M + H+): 474.19245, found 474.19119.
:
1; 1H NMR (400 MHz, DMSO): δ 8.59 (d, J = 4.0 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.35–7.26 (m, 2H), 7.19–7.16 (m, 4H), 7.02–6.95 (m, 2H), 6.88–6.76 (m, 7H), 6.53 (d, J = 7.6 Hz, 1H), 6.45 (t, J = 7.6 Hz, 1H), 6.04 (d, J = 6.8 Hz, 2H), 4.86 (d, J = 15.6 Hz, 1H), 4.52 (d, J = 15.6 Hz, 1H), 4.47 (d, J = 8.8 Hz, 1H), 3.08 (s, 3H); 13C NMR (100 MHz, DMSO): δ 176.9, 174.1, 160.5, 148.7, 144.1, 143.9, 142.5, 137.7, 135.7, 130.9, 130.1, 128.9, 128.6, 127.6, 127.3, 126.9, 125.5, 124.1, 123.5, 122.8, 122.7, 122.6, 122.4, 118.2, 116.2, 109.7, 109.6, 79.6, 74.9, 73.5, 42.7, 26.5; HRMS (ESI) calculated for C36H30N5O2 (M + H+): 564.23940, found 564.23779.
:
1; 1H NMR (400 MHz, DMSO): δ 10.44 (s, 1H), 8.59 (d, J = 4.4 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 5.6 Hz, 1H), 7.24–7.16 (m, 2H), 6.92 (d, J = 7.2 Hz, 3H), 6.87–6.77 (m, 3H), 6.72 (d, J = 9.2 Hz, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.43 (t, J = 8.0 Hz, 1H), 6.00 (d, J = 7.2 Hz, 2H), 4.24 (d, J = 9.2 Hz, 1H), 3.07 (s, 3H); 13C NMR (100 MHz, DMSO): δ 176.9, 175.7, 160.6, 148.8, 144.0, 143.4, 142.6, 137.7, 130.8, 130.1, 128.6, 126.8, 125.4, 124.1, 123.4, 123.1, 122.6, 122.5, 121.8, 118.0, 117.7, 116.0, 110.0, 109.4, 79.6, 75.1, 73.3, 26.4; HRMS (ESI) calculated for C29H24N5O2 (M + H+): 474.19245, found 474.19101.
:
1; 1H NMR (400 MHz, DMSO): δ 8.60 (d, J = 4.0 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.35–7.32 (m, 1H), 7.25–7.10 (m, 10H), 6.94–6.91 (m, 2H), 6.84–6.72 (m, 7H), 6.57 (d, J = 8.0 Hz, 1H), 6.44 (t, J = 8.8 Hz, 1H), 6.05 (d, J = 7.2 Hz, 2H), 4.90 (s, 2H), 4.86 (d, J = 16.0 Hz, 1H), 4.56 (d, J = 8.4 Hz, 1H), 4.54 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 177.1, 174.5, 160.6, 148.7, 144.0, 143.6, 142.4, 137.8, 136.2, 135.7, 130.8, 130.1, 129.0, 128.5, 127.9, 127.8, 127.6, 127.3, 126.0, 124.1, 123.5, 123.0, 122.9, 122.8, 122.7, 118.3, 116.2, 110.4, 109.8, 79.6, 74.9, 73.5, 43.6, 42.7; HRMS (ESI) calculated for C42H34N5O2 (M + H+): 640.27070, found 640.26917.
:
1; 1H NMR (400 MHz, DMSO): δ 10.43 (s, 1H), 8.58 (d, J = 4.4 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.34–7.25 (m, 5H), 7.14–7.04 (m, 4H), 6.98 (d, J = 7.6 Hz, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.77–6.72 (m, 4H), 6.66 (m, 1H), 6.43 (t, J = 7.2 Hz, 1H), 6.02 (d, J = 7.2 Hz, 2H), 5.05 (d, J = 15.6 Hz, 1H), 4.84 (d, J = 15.6 Hz, 1H), 4.62 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.9, 176.4, 160.6, 157.0, 148.6, 143.6, 142.4, 139.7, 137.7, 136.1, 130.2, 129.0, 128.5, 127.9, 127.4, 127.2, 124.1, 123.6, 122.9, 122.6, 118.3, 116.3, 110.3, 79.3, 75.2, 73.4, 43.6; HRMS (ESI) calculated for C35H27FN5O2 (M + H+): 568.21433, found 568.21271.
:
1; 1H NMR (400 MHz, DMSO): δ 10.54 (s, 1H), 8.58 (d, J = 4.0 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.54 (s, 1H), 7.34–7.26 (m, 5H), 7.14 (t, J = 7.6 Hz, 1H), 7.04 (s, 2H), 6.96 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.77–6.66 (m, 5H), 6.43 (t, J = 7.2 Hz, 1H), 6.02 (d, J = 6.0 Hz, 2H), 5.08 (d, J = 15.6 Hz, 1H), 4.79 (d, J = 15.6 Hz, 1H), 4.73 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.9, 176.3, 160.6, 148.6, 143.6, 142.6, 142.4, 137.6, 136.1, 130.7, 130.2, 129.1, 128.5, 127.9, 127.4, 127.2, 126.8, 126.4, 125.6, 124.0, 123.7, 122.9, 122.6, 118.3, 116.2, 111.4, 110.3, 79.7, 74.9, 73.5, 43.6; HRMS (ESI) calculated for C35H27ClN5O2 (M + H+): 584.18478, found 584.18353.
:
1; 1H NMR (400 MHz, DMSO): δ 10.55 (s, 1H), 8.58 (d, J = 4.4 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.34–7.27 (m, 4H), 7.15 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 2.0 Hz, 2H), 6.94 (d, J = 7.2 Hz, 1H), 6.86–6.71 (m, 6H), 6.67 (s, 1H), 6.43 (t, J = 7.2 Hz, 1H), 6.02 (d, J = 7.2 Hz, 2H), 4.98 (d, J = 15.6 Hz, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.9, 176.4, 160.7, 148.6, 145.0, 143.5, 142.4, 137.7, 136.2, 135.2, 130.2, 128.9, 128.5, 127.9, 127.8, 127.7, 127.1, 124.1, 123.6, 122.8, 122.6, 122.4, 122.0, 118.3, 116.1, 110.3, 110.0, 79.5, 74.6, 73.3, 43.6; HRMS (ESI) calculated for C35H27ClN5O2 (M + H+): 584.18478, found 584.18384.
:
1; 1H NMR (400 MHz, DMSO): δ 10.51 (s, 1H), 8.57 (d, J = 4.4 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.66 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.34–7.27 (m, 4H), 7.13 (t, J = 7.6 Hz, 1H), 7.05 (s, 2H), 6.95 (d, J = 7.6 Hz, 1H), 6.84–6.70 (m, 5H), 6.62 (d, J = 8.0 Hz, 1H), 6.43 (t, J = 7.2 Hz, 1H), 6.01 (d, J = 6.0 Hz, 2H), 5.07 (d, J = 15.6 Hz, 1H), 4.97 (d, J = 15.6 Hz, 1H), 4.73 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.9, 176.2, 160.6, 148.6, 143.5, 143.0, 142.4, 137.6, 136.1, 133.5, 130.2, 129.5, 129.1, 128.5, 127.9, 127.4, 127.2, 126.0, 124.0, 123.7, 122.9, 122.6, 118.3, 116.1, 114.1, 112.0, 110.3, 79.6, 74.9, 73.5, 43.6; HRMS (ESI) calculated for C35H27BrN5O2 (M + H+): 628.13426, found 628.13330.
:
1; 1H NMR (400 MHz, DMSO): δ 10.53 (s, 1H), 8.57 (d, J = 4.8 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.79–7.15 (m, 5H), 7.06 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 3.6 Hz, 2H), 7.00 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 1.6 Hz, 1H), 6.95–6.70 (m, 6H), 6.43 (t, J = 7.2 Hz, 1H), 6.01 (d, J = 6.8 Hz, 2H), 5.10 (d, J = 15.6 Hz, 1H), 4.84 (d, J = 15.6 Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.9, 176.3, 160.7, 148.6, 145.1, 143.5, 142.4, 137.7, 136.2, 130.2, 128.9, 128.5, 128.1, 127.9, 127.8, 127.7, 127.1, 124.9, 124.1, 123.7, 123.5, 122.9, 122.8, 122.6, 118.3, 116.1, 112.8, 110.3, 79.5, 74.7, 73.2, 43.6; HRMS (ESI) calculated for C35H27BrN5O2 (M + H+): 628.13426, found 628.13385.
:
1; 1H NMR (400 MHz, DMSO): δ 10.45 (s, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.2 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 5.6 Hz, 1H), 7.25–7.21 (m, 4H), 7.14–7.07 (m, 3H), 6.98 (d, J = 7.6 Hz, 1H), 6.88–6.71 (m, 6H), 6.65 (d, J = 7.6 Hz, 1H), 6.43 (t, J = 6.8 Hz, 1H), 6.10 (d, J = 6.8 Hz, 2H), 4.93 (d, J = 15.6 Hz, 1H), 4.86 (d, J = 15.6 Hz, 1H), 4.35 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 177.1, 176.1, 160.6, 148.8, 143.5, 142.5, 137.8, 136.2, 130.8, 130.0, 129.0, 128.5, 127.9, 127.7, 127.2, 126.0, 124.1, 123.4, 122.8, 122.2, 118.2, 116.1, 110.2, 110.0, 79.7, 75.1, 73.3, 43.6; HRMS (ESI) calculated for C35H28N5O2 (M + H+): 550.22375, found 550.22229.
:
1; 1H NMR (400 MHz, DMSO): δ 10.26 (s, 1H), 8.59 (d, J = 4.4 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.34–7.21 (m, 5H), 7.12 (t, J = 8.0 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.99 (d, J = 7.2 Hz, 3H), 6.82 (t, J = 7.2 Hz, 1H), 6.77–6.72 (m, 3H), 6.67 (d, J = 7.6 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.43 (t, J = 7.2 Hz, 1H), 6.02 (d, J = 7.2 Hz, 2H), 5.04 (d, J = 15.6 Hz, 1H), 4.81 (d, J = 15.6 Hz, 1H), 4.27 (d, J = 9.2 Hz, 1H), 2.08 (s, 3H); 13C NMR (100 MHz, DMSO): δ 177.2, 176.1, 160.7, 148.8, 143.7, 142.6, 141.0, 137.7, 136.2, 131.2, 131.0, 129.0, 128.5, 127.8, 127.3, 127.2, 126.8, 124.1, 123.5, 123.4, 122.8, 122.7, 118.1, 116.1, 110.2, 109.8, 79.7, 75.1, 73.4, 43.5, 21.1; HRMS (ESI) calculated for C36H30N5O2 (M + H+): 564.23940, found 564.23816.
:
1; 1H NMR (400 MHz, DMSO): δ 10.23 (s, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 5.6 Hz, 1H), 7.24 (s, 3H), 7.14–7.10 (m, 2H), 7.00 (d, J = 7.2 Hz, 3H), 6.83–6.68 (m, 6H), 6.58 (d, J = 8.8 Hz, 1H), 6.43 (t, J = 7.2 Hz, 1H), 6.01 (d, J = 6.4 Hz, 2H), 5.06 (d, J = 16.0 Hz, 1H), 4.83 (d, J = 16.0 Hz, 1H), 4.38 (d, J = 8.8 Hz, 1H), 3.55 (s, 3H); 13C NMR (100 MHz, DMSO): δ 177.1, 176.1, 160.6, 155.2, 148.7, 143.6, 142.6, 137.8, 136.5, 136.1, 130.1, 129.0, 128.5, 127.8, 127.4, 127.3, 124.4, 124.1, 123.4, 122.8, 118.2, 116.1, 116.0, 112.9, 110.5, 110.2, 79.8, 75.4, 73.4, 55.7, 43.5; HRMS (ESI) calculated for C36H30N5O3 (M + H+): 580.23432, found 580.23254.
:
1; 1H NMR (400 MHz, DMSO): δ 10.60 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.36–7.33 (m, 1H), 7.27–7.22 (m, 5H), 7.04–7.01 (m, 2H), 6.93 (s, 1H), 6.89 (t, J = 10.4 Hz, 1H), 6.86–6.74 (m, 3H), 6.69 (t, J = 9.6 Hz, 2H), 6.48 (t, J = 7.6 Hz, 1H), 6.02 (d, J = 7.2 Hz, 2H), 4.93 (d, J = 15.6 Hz, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.48 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.7, 176.2, 160.3, 148.7, 143.4, 142.5, 142.3, 137.8, 135.8, 131.0, 130.0, 129.1, 128.7, 128.0, 127.7, 126.9, 126.8, 126.2, 125.1, 124.1, 123.4, 123.1, 122.4, 118.6, 116.2, 111.7, 110.2, 79.7, 75.4, 73.2, 43.7; HRMS (ESI) calculated for C35H28ClN5O2 (M + H+): 584.18478, found 584.18414.
:
1; 1H NMR (400 MHz, DMSO): δ 10.58 (s, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.36–7.32 (m, 2H), 7.25 (s, 4H), 7.05–7.02 (m, 3H), 6.87 (t, J = 7.6 Hz, 1H), 6.80 (t, J = 7.6 Hz, 2H), 6.71–6.67 (m, 3H), 6.48 (t, J = 6.8 Hz, 1H), 6.01 (d, J = 5.6 Hz, 2H), 4.92 (d, J = 15.6 Hz, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.48 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, DMSO): δ 176.6, 176.2, 160.3, 148.7, 143.4, 142.9, 142.2, 137.8, 135.8, 132.8, 131.0, 130.2, 129.5, 129.2, 129.1, 128.7, 128.0, 127.8, 127.7, 126.2, 125.4, 124.1, 123.4, 123.1, 122.4, 118.6, 117.6, 116.1, 114.7, 112.2, 110.2, 79.7, 75.4, 73.1, 43.6; HRMS (ESI) calculated for C35H28BrN5O2 (M + H+): 628.13426, found 628.13348.
:
1; 1H NMR (400 MHz, DMSO): δ 10.51 (s, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 5.6 Hz, 1H), 7.25–7.20 (m, 4H), 7.07 (d, J = 2.8 Hz, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.88–6.84 (m, 2H), 6.77–6.71 (m, 3H), 6.66–6.61 (m, 2H), 6.43 (t, J = 7.2 Hz, 1H), 6.00 (d, J = 7.2 Hz, 2H), 4.87 (s, 2H), 4.30 (d, J = 9.2 Hz, 1H), 2.03 (s, 3H); 13C NMR (100 MHz, DMSO): δ 177.0, 176.2, 160.7, 148.7, 143.5, 142.5, 141.2, 137.8, 136.3, 131.4, 130.8, 130.4, 129.0, 128.5, 127.9, 127.8, 127.6, 126.0, 124.1, 123.4, 122.2, 118.0, 115.9, 110.0, 79.8, 75.1, 73.2, 43.6, 21.2; HRMS (ESI) calculated for C36H30N5O2 (M + H+): 564.23940, found 564.23840.
:
1; 1H NMR (400 MHz, DMSO): δ 10.50 (s, 1H), 8.59 (d, J = 4.4 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.34–7.21 (m, 5H), 7.07 (d, J = 2.8 Hz, 2H), 6.87 (d, J = 7.6 Hz, 1H), 6.78–6.60 (m, 7H), 6.45 (t, J = 7.2 Hz, 1H), 6.03 (d, J = 7.2 Hz, 2H), 4.89 (d, J = 15.6 Hz, 1H), 4.84 (d, J = 15.6 Hz, 1H), 4.31 (d, J = 9.2 Hz, 1H), 3.51 (s, 3H); 13C NMR (100 MHz, DMSO): δ 176.7, 176.1, 160.6, 155.3, 148.8, 143.5, 142.5, 137.8, 136.7, 136.3, 130.8, 129.0, 128.6, 127.9, 127.8, 126.1, 124.3, 124.1, 123.4, 123.3, 122.2, 118.2, 116.1, 115.0, 113.6, 110.5, 110.0, 79.7, 75.3, 73.3, 55.7, 43.6; HRMS (ESI) calculated for C36H30N5O3 (M + H+): 580.23432, found 580.23279.Footnote |
| † Electronic supplementary information (ESI) available: Copies of NMR for imidazolidine-dispirooxindoles 4; X-ray single crystal structure analysis data for 4de.11 CCDC 1054674. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra21995g |
| This journal is © The Royal Society of Chemistry 2015 |