DOI:
10.1039/C5RA16307B
(Paper)
RSC Adv., 2015,
5, 95410-95420
{CoIIIMnIII}n corrugated chains based on heteroleptic cyanido metalloligands†
Received
13th August 2015
, Accepted 15th October 2015
First published on 15th October 2015
Abstract
The use of the cyanide-bearing complexes PPh4[CoIII(4,4′-dmbipy)(CN)4] and PPh4[CoII(dmphen)(CN)3] as metalloligands towards [Mn(salen)(H2O)]ClO4 affords one-dimensional coordination polymers with the formulas {[MnIII(salen)(μ-NC)2CoIII(4,4-dmbipy)(CN)2]·H2O}n (1) and {[MnIII(salen)(μ-NC)2CoIII(dmphen)(CN)2]}n (2) [PPh4+ = tetraphenylphosphonium cation, 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine, dmphen = 2,9-dimethyl-1,10-phenanthroline and H2salen = N,N′-ethylenebis(salicylideneimine)]. Compounds 1 and 2 were structurally characterized. Their structures consist of neutral chains with regular alternating [Mn(salen)]+ and [CoIII(4,4′-dmbipy)(CN)4]− (1)/[CoIII(dmphen)(CN)4]− (2) moieties, the latter ones acting as bis-monodentate ligands towards the Mn(III) units through two of their four cyanide groups. During the synthesis, the cobalt(II) ion of the starting [CoII(dmphen)(CN)3]− metalloligand is oxidized to Co(III) and it takes an additional cyanide ligand to transform into {CoIII(dmphen)(CN)4} in 2. Magnetic studies have been carried out on 1 and 2 in the temperature range 1.9–300 K which yielded local negative zero-field splitting parameters of −3.26 (1) and −4.38 cm−1 (2). Frequency-dependent alternating current susceptibility signals under an external applied magnetic field (dc) were clearly observed for 1 and 2 indicating slow magnetic relaxation, that is, Single Ion Magnet (SIM) behaviour. The energy barriers (Ea) to reverse the magnetization direction under an applied dc magnetic field of 2000 Oe were 12.0(2) (1) and 9.4(3) cm−1 (2), whereas the values of the pre-exponential factor (τo) were 1.40(2) × 10−8 (1) and 2.5(2) × 10−8 s (2).
Introduction
Cyanide complexes have proven to be very efficient metalloligands for the construction of coordination polymers with different dimensionalities and topologies whose magnetic properties have been thoroughly investigated.1 Since the discovery of Prussian blue and its analogues, a rich chemistry has emerged from 3d-type cyanide metalloligands such as the homoleptic [MIII(CN)6]3− and heteroleptic [MIII(AA)(CN)4]− and [FeIIIL(CN)3]− paramagnetic complexes (M = Fe and Cr, AA = bidentate ligand and L = pyrazolylborate derivative).2,3 Moreover, the extension of these studies to heavier metal ions with the [M′V(CN)8]3− (M′ = Mo and W) and [WV(bipy)(CN)6]− (bipy = 2,2′-bipyridine) paramagnetic metalloligands has produced a plethora of heterometallic compounds which exhibit interesting magnetic phenomena mediated by the cyanido bridges.4–6 Without being exhaustive, ferrimagnetic FeIII(CrIII)-(μ-CN)-MnII/III chains,7 Single Molecule Magnets (SMMs),1e,3b,8 Single Chain Magnets (SCMs),2k,3e,9 nanocages,10 and photomagnetic molecular squares11 have been reported.
Although the diamagnetic cyanido building blocks have been largely used in crystal engineering, they are less explored in molecular magnetism in spite of the fact that several examples of heterometallic complexes constructed using diamagnetic cyanido metalloligands show interesting magnetic properties. Two selected examples are: (i) a 2D network of 3d–4f SMMs obtained by reacting the [WIV(bipy)(CN)6]− metalloligand with the [NiIIDyIII(valpn)]3+ heterobimetallic unit [H2valpn = 1.3-propanediyl-bis(2-iminomethylene-6-methoxyphenol)],12 and (ii) a heterotrimetallic decanuclear metal-capped square resulting from the assembly of the cyanido-bearing [MoIV(CN)8]4− species and the [CuIITbIII(valen)]3+ heterodinuclear complex [H2valen = N,N′-bis(3-methoxysalycilidene)ethylenediamine], where the SMM behaviour of the starting {CuIILnIII} unit is preserved.13
Restricting ourselves to the discipline of molecular magnetism, most of the heterometallic complexes based on the use of the diamagnetic homoleptic [CoIII(CN)6]3− mononuclear complex as a metalloligand were studied as models for their congeners (with a paramagnetic ion instead of CoIII).2a,k,14 Interestingly, there are examples of {CoIIIMnIII} complexes for which slow relaxation of the magnetization occurs due to the {MnIII(SB)} entity (SB = Schiff base ligand), thus being examples of Single Ion Magnets (SIMs).15 Heteroleptic cyanido-containing cobalt(III) complexes have only scarcely been used as metalloligands, leading essentially to three systems: the pentanuclear compound {K{[Mn(valen)(CH3OH)][Co(bpb)]}2}ClO4·H2O (bpd = 1,2-bis(pyridine-2-carboxamido)benzenate),16a and the trinuclear species {[Ni(cyclam)[Co(bpb)(CN)2]2}·CH3OH·2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane)16b and {Co(salen)(CN)2]2[Mn(bipy/phen)2]}17 [H2salen = N,N′-ethylenebis(salicylideneimine) and phen = 1,10-phenanthroline]. Regarding the heteroleptic cyanido precursors of the type {CoIII(AA)(CN)4}−, as far as we are aware, there is no report where they are involved in a rational molecular assembly. Only four structures containing this type of fragment, the crystals being grown by hydrothermal methods, are known to date: two ionic salts,18 and two trinuclear complexes with the formulas [{CoIII(phen)(CN)3(μ-CN)}2{CoII(phen)2}]19 and [{CoIII(phen)(CN)3(μ-CN)}2{FeII(phen)2}].20
In this paper we present the structures and variable-temperature magnetic study of two new 1D coordination polymers: {[MnIII(salen)(μ-NC)2CoIII(4,4′-dmbipy)(CN)2]·H2O}n (1) and {[MnIII(salen)(μ-NC)2CoIII(dmphen)(CN)2]}n (2) together with the synthesis and spectroscopic characterization of the PPh4[CoIII(4,4′-dmbipy)(CN)4] metalloligand which is used to prepare compound 1 (4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine, dmphen = 2,9-dimethyl-1,10-phenanthroline and PPh4+ = tetraphenylphosphonium cation). The two chains were obtained from the reaction of [MnIII(salen)(H2O)]ClO4
21 with the PPh4[CoIII(4,4′-dmbipy)(CN)4] and PPh4[CoII(dmphen)(CN)3]22 metalloligands for 1 and 2, respectively. The cobalt(II) metal ion from the starting [CoII(dmphen)(CN)3]− complex underwent oxidation in the synthesis of 2 and it turned into the {CoIII(dmphen)(CN)4}− moiety which is identified as a component in 2.
Results and discussion
Synthesis and IR spectroscopy
The synthesis and X-ray structures of the new diamagnetic cobalt(III) complexes with the formulas PPh4[CoIII(en)(CN)4], PPh4[CoIII(ampy)(CN)4]·1.5H2O and PPh4[CoIII(phen)(CN)4]·CH3OH·0.25H2O [en = 1,2-ethylenediamine and ampy = 2-aminomethylpyridine] together with that of the paramagnetic cobalt(II) compound PPh4[CoII(dmphen)(CN)3] were the subject of a recent report.22 The latter species is used here for the synthesis of 2, whereas a new member of this cobalt(III) series with the formula PPh4[CoIII(4,4′-dmbipy)(CN)4] whose preparation is described herein, is employed as a metalloligand to obtain compound 1.
The synthesis of 1 and 2 followed the node and spacer approach. By employing CoIII/II cyanido metallates in combination with a MnIII complex with a Schiff base type ligand, two similar 1D coordination polymers were obtained. In the first case, the self-assembly of [CoIII(4,4′-dmbipy)(CN)4]− anions with [MnIII(salen)(H2O)]+ cations acting as spacers and nodes respectively, afforded a corrugated chain with the formula {[MnIII(salen)(μ-NC)2CoIII(4,4′-dmbipy)(CN)2]·H2O}n (1). In the second case, by reacting the PPh4[CoII(dmphen)(CN)3] metalloligand with the same [MnIII(salen)(H2O)]ClO4 complex, a neutral chain of similar topology and the formula {[MnIII(salen)(μ-NC)2CoIII(dmphen)(CN)2]}n (2) was obtained. This second structure was less expected because of the oxidation of the Co(II) to Co(III) during the synthesis, which is most likely due to the oxidizing power of the [MnIII(salen)(H2O)]+ complex, being followed by the uptake of an additional cyanide ligand to form the diamagnetic [CoIII(dmphen)(CN)4]− unit. The strong field ligand character of the dmphen and cyanido ligands is at the origin of the stabilization of the trivalent oxidation state of the cobalt centre in this entity. The aerial oxidation of the [MnII(salen)(H2O)] product would regenerate the [MnIII(salen)(H2O)]+ species23 that would lead to 2 through its reaction with [CoIII(dmphen)(CN)4]−.
The FTIR spectrum of the mononuclear PPh4[CoIII(4,4′-dmbipy)(CN)4] complex shows a medium intensity band at 2130 cm−1 which is characteristic of the terminal cyanido groups. As expected, this band is split and shifted to higher wavenumbers in the FTIR spectrum of 1 (Fig. S1a†), the peaks at 2136 and 2154 cm−1 being assigned to the terminal and bridging cyanido groups. Also, the out-of-phase bending vibrations of the phenyl rings from the tetraphenylphosphonium cation at 760, 725, 690 and 528 cm−1 in the IR spectrum of the mononuclear precursor are absent in the spectrum of 1, supporting the lack of this organic cation in this last compound. The most relevant feature in the infrared spectrum of 2 (Fig. S1b†) is due to the stretching vibrations of the cyanido ligands: a peak at 2137 cm−1 (terminal cyanido groups) and a shoulder at 2150 cm−1 (assigned to the bridging cyanido ligands). The peaks at 1622 and 1628 cm−1 would correspond to the imine C
N bond vibration belonging to the salen ligand in both complexes 1 and 2. The bands assigned to the ring-stretching modes of the 4,4′-dmbipy and dmphen ligands overlap in the 1630–1560 cm−1 region. Finally, the medium intensity absorption at ca. 765 cm−1 in the infrared spectra of 1 and 2 is attributed to the chelating 4,4′-dmbipy and dmphen molecules. All of these spectroscopic features have been confirmed using the crystal structures of 1 and 2 (see below).
Crystal structures
Compounds 1 and 2 crystallize in the monoclinic system, space groups P21/c (1) or P21/n (2), respectively. Their structures consist of neutral, similarly corrugated chains with the general formula {[MnIII(salen)(μ-NC)2CoIII(AA)(CN)2]}n [AA = 4,4′-dmbipy (1) or dmphen (2)] running along the crystallographic b axis, in both cases. One disordered water molecule of crystallization per asymmetric unit is also present in 1. The asymmetric units of the two structures comprise one [MnIII(salen)(H2O)]+ cationic moiety connected to one [CoIII(AA)(CN)4]− anionic fragment through a cyanido bridge [C(1)–N(1)] (see Fig. 1).
 |
| Fig. 1 Perspective view of the asymmetric units of 1 (a) and 2 (b) showing the atom numbering. Thermal ellipsoids are drawn at the 30% probability level. The water molecule of crystallization in the asymmetric unit of 1 is omitted. Symmetry codes: (a) = −x + 1, y + 1/2, −z + 1/2 and (b) −x + 1, y − 1/2, −z + 1/2 for 1; (a) = −x + 3/2, y − 1/2, −z + 3/2 and (b) = −x + 3/2, y + 1/2, −z + 3/2 for 2. | |
A second cyanido group [C(2)–N(2)] belonging to the CoIII metalloligand contributes to the chain propagation by coordinating to an adjacent MnIII metal ion. A fragment of each of the two heterobimetallic alternating CoIII–MnIII chains 1 and 2 is shown in Fig. 2, while selected bond distances and angles for both compounds are listed in Table 1.
 |
| Fig. 2 Perspective view along the crystallographic [001] (a) or [101] (b) directions of a fragment of the corrugated chain structure of 1 (a) and 2 (b). | |
Table 1 Selected bond distances [Å] and angles [°] for 1 and 2ab
Cobalt(III) environment |
Manganese(III) environment |
|
1 |
2 |
|
1 |
2 |
N(1*) denotes either atom N(1B) in 1 or N(1P) in 2; N(2*) denotes either atom N(2B) in 1 or N(2P) in 2. Symmetry operation used to generate equivalent atoms: (a) = −x + 1, y + 1/2, −z + 1/2 (1) and (a) = −x + 3/2, y − 1/2, −z + 3/2 (2). |
Co(1)–C(1) |
1.867(3) |
1.900(3) |
Mn(1)–O(1L) |
1.895(2) |
1.898(2) |
Co(1)–C(2) |
1.928(3) |
1.936(3) |
Mn(1)–O(2L) |
1.876(2) |
1.905(2) |
Co(1)–C(3) |
1.913(4) |
1.931(3) |
Mn(1)–N(1L) |
2.003(2) |
2.011(2) |
Co(1)–C(4) |
1.879(4) |
1.900(3) |
Mn(1)–N(2L) |
1.992(2) |
2.004(2) |
Co(1)–N(1*) |
1.980(2) |
2.032(2) |
Mn(1)–N(1) |
2.282(3) |
2.353(3) |
Co(1)–N(2*) |
1.981(3) |
2.050(2) |
Mn(1)–N(2a) |
2.412(3) |
2.326(3) |
C(1)–Co(1)–C(2) |
88.2(2) |
85.9(1) |
O(1L)–Mn(1)–O(2L) |
95.01(9) |
93.3(1) |
C(1)–Co(1)–C(3) |
88.2(2) |
90.2(1) |
O(1L)–Mn(1)–N(1L) |
92.2(1) |
92.5(1) |
C(1)–Co(1)–C(4) |
86.9(2) |
80.2(1) |
O(1L)–Mn(1)–N(2L) |
173.0(1) |
174.0(1) |
C(1)–Co(1)–N(1*) |
96.7(1) |
99.0(1) |
O(1L)–Mn(1)–N(1) |
95.9(1) |
96.5(1) |
C(1)–Co(1)–N(2*) |
178.2(1) |
174.5(1) |
O(1L)–Mn(1)–N(2a) |
91.0(1) |
92.3(1) |
C(2)–Co(1)–C(3) |
175.5(1) |
175.6(1) |
O(2L)–Mn(1)–N(1L) |
172.6(1) |
173.6(1) |
C(2)–Co(1)–C(4) |
88.6(2) |
91.2(1) |
O(2L)–Mn(1)–N(2L) |
90.9(1) |
92.5(1) |
C(2)–Co(1)–N(1*) |
92.2(1) |
86.9(1) |
O(2L)–Mn(1)–N(1) |
89.7(1) |
89.3(1) |
C(2)–Co(1)–N(2*) |
92.6(1) |
88.9(1) |
O(2L)–Mn(1)–N(2a) |
95.9(1) |
93.2(1) |
C(3)–Co(1)–C(4) |
88.6(2) |
90.2(1) |
N(1L)–Mn(1)–N(2L) |
82.0(1) |
81.8(1) |
C(3)–Co(1)–N(1*) |
90.8(1) |
91.7(1) |
N(1L)–Mn(1)–N(1) |
88.0(1) |
87.3(1) |
C(3)–Co(1)–N(2*) |
91.2(1) |
95.0(1) |
N(1L)–Mn(1)–N(2a) |
85.6(1) |
89.3(1) |
C(4)–Co(1)–N(1*) |
176.4(2) |
178.0(1) |
N(2L)–Mn(1)–N(1) |
87.9(1) |
84.9(1) |
C(4)–Co(1)–N(2*) |
94.8(2) |
98.2(1) |
N(2L)–Mn(1)–N(2a) |
84.7 (1) |
86.1(1) |
N(1*)–Co(1)–N(2*) |
81.6(1) |
82.5(1) |
N(1)–Mn(1)–N(2a) |
170.8(1) |
170.7(1) |
In both cases the MnIII ion, confined within the tetradentate Schiff base ligand, is six-coordinate by the two imine-nitrogen and the two phenoxo-oxygen atoms from the tetradentate salen ligand, together with two cyanido nitrogen atoms belonging to the CoIII metalloligand (see Fig. 1 and 2). The donor atoms are arranged in a distorted octahedral environment, with the equatorial positions filled by the almost coplanar Schiff base heteroatoms [the values of the O1L–N1L–N2L–O2L torsion angle are about 4.1 (1) and 3.1° (2)] and the axial positions occupied by the two cyanido nitrogen atoms. The two cyanido bridges are bent with respect to the central MnIII ion, with the values of the Mn–N–C angles varying in the ranges 149.5(2)–151.6(2) (1) and 147.6(2)–148.7(2)° (2). As expected for octahedral MnIII complexes, the Jahn–Teller distortion leads to elongated axial bond lengths (see Table 1). Therefore, the Mn–Ncyanido bond lengths [Mn1–N1 = 2.282(3) (1)/2.353(2) Å (2) and Mn1–N2a = 2.412(3) (1)/2.326(3) Å (2)] are longer than Mn–Nimine [Mn1–N1L = 2.003(2) (1)/2.011(2) Å (2) and Mn1–N2L = 1.992(2) (2)/2.004(2) Å (2)] and Mn–Ophenoxo [Mn1–O1L = 1.895(2) (1)/1.8988(19) Å (2) and Mn1–O2L = 1.8762(19) (1)/1.905(2) Å (2)]. These structural data for the Mn(III) environment agree with those observed in the related zigzag chains of the general formula {[MnIII(salhd)(μ-NC)2MIII(bpym)(CN)2]·H2O}n (M = Fe and Cr)24 which result from the reaction of PPh4[MIII(bpym)(CN)4]9c with [MnIII(salhd)]ClO4 [bpym = 2,2′-bipyrimidine and H2salhd = 1,2-bis(salicylideneimine)cyclohexane].25
Concerning the anionic fragment, the CoIII ion is also six-coordinate with four cyanido ligands and two nitrogen atoms belonging to the chelating 4,4′-dmbipy (1) or dmphen (2) molecules. The coordination environment of the metal ion in this case is again distorted octahedral, the distortion being mainly due to the reduced bite angle of the chelating ligand [81.6(1) (1) or 82.5(1)° (2)]. The values are very close to the corresponding one in the structure of the complex [Co(phen)(CN)4]− [82.9(1)°],22 which considerably resembles the {Co(dmphen)(CN)4} and {Co(dmbipy)(CN)4} moieties in 2 and 1, respectively. The Co–Ccyanido bond lengths have values in the range 1.867(3)–1.928(3) Å for 1 and 1.900(3)–1.935(3) Å for 2, with the longest bond, in each case, involving the bridging cyanide carbon (C2). The Co–N distances are slightly longer than the Co–C bonds: 1.980(2)/1.981(3) Å for Co1–N1B/Co1–N2B (1) and 2.032(2)/2.049(2) Å for Co1–N1P/Co1–N2P (2). The four Co–C–N sets of atoms including the cyanido groups are close to linearity with the values of the Co–C–N angle varying in the range 176.1(3)–179.6(6)° for 1 and 173.3(3)–176.6(3)° for 2. The bond distances and angles within the two tetracyanido-bearing Co(III) fragments in 1 and 2 (see Table 1) are in agreement with similar reported examples.22,26
The CoIII⋯MnIII separation through one of the two cyanido bridges is somewhat greater than the other one with values of 5.0904(6)/5.3103(7) Å in 1 and 5.180(1)/5.151(1) Å in 2 for the heterometallic separation across C(1)N(1) and C(2)N(2), respectively [Co(1)⋯Mn(1) and Co(1)⋯Mn(1b) with (b) = −x + 1, y − 1/2, −z + 1/2 (1) and (b) = −x + 3/2, y + 1/2, −z + 3/2 (2)]. The closest homometallic, Mn⋯Mn and Co⋯Co intrachain distances, i.e. Mn(1)⋯Mn(1b) and Co(1)⋯Co(1a) (see Fig. 2) are 6.5317(6) and 9.7752(9) Å in 1, and 6.766(1) and 9.581(2) Å in 2, respectively [symmetry code: (a) = −x + 1, y + 1/2, −z + 1/2 (1) and (a) = −x + 3/2, y − 1/2, −z + 3/2 (2)].
An inspection of the packing diagram of 1 reveals weak hydrogen bonds established between the crystallization water molecules and the terminal cyanido groups [O(1w)⋯N(3) = 3.171(1) Å, O(1w)⋯N(4c) = 3.184(9) Å; (c) = −x, y + 1/2, −z + 1/2]. These interactions serve to assemble adjacent chains in the direction of the crystallographic a axis, according to an AAAA trend, thus forming supramolecular layers parallel to the crystallographic ab plane (Fig. 3a). The AAAA packing arrangement of the corrugated chains within each layer in 1 is such that it generates shorter closest interchain distances for Co⋯Co than Mn⋯Mn [Co(1)⋯Co(1c) = Co(1)⋯Co(1d) = 9.8546(8) Å and Mn(1)··· Mn(1c) = Mn(1)··· Mn(1d) = 12.909(1) Å; (d) = −x, y − 1/2, −z + 1/2]. Adjacent chains in 2 are assembled in the direction of the greater ac diagonal by weak off-set π–π stacking interactions between pairs of dmphen molecules, the interplanar distance being ca. 4.0 Å. The resulting supramolecular 2D structure, although resembling that found in 1, exhibits the ABAB pattern for symmetry reasons (see Fig. 3b). The closest homometallic Co⋯Co and Mn⋯Mn interchain distances correspond in this case to Co(1)⋯Co(1c) = 7.996(1) Å and Mn(1)⋯Mn(1d) = 11.020(2) Å [symmetry code: (c) = −x + 1, −y + 1, −z + 2; (d) = –x + 2, −y + 1, −z + 1]. Additional weak aromatic π–π interactions help to stabilize a supramolecular 3D structure. In particular, the most significant interlayer interactions in 1 are established between pairs of 4,4′-dmbipy as well as pairs of salen ligands with interplanar distances of 3.60 and 3.45 Å, respectively. Weaker stacking interactions are also established between 4,4′-dmbipy and the salen ligands, with an interplanar distance of 3.34 Å but an interplanar angle of ca. 16.4° (Fig. S2†). Off-set π–π interactions between pairs of salen ligands in 2 [interplanar distance of 3.33 Å] are the main factor accounting for the 3D cohesion (Fig. S3†), and such interactions generate short interlayer Mn⋯Mn distances of 9.273(1) Å in 1 and 8.840(2) Å in 2.
 |
| Fig. 3 Perspective views of the weak hydrogen bonding and π–π stacking patterns leading to a supramolecular 2D structure in 1 (a) and 2 (b). | |
Magnetic properties
The magnetic properties of 1 and 2 under the form of the χMT versus T plot [χM is the magnetic susceptibility per mole of compound] are shown in Fig. 4 (1) and 5 (2). Both plots exhibit the same shape indicating a practically identical magnetic behaviour. At room temperature, χMT for 1 and 2 are equal to ca. 3.0 cm3 mol−1 K, a value which is as expected for a magnetically isolated high-spin Mn(III) with gMn = 2.0, the Co(III) being diamagnetic. Upon cooling, this value remains constant until 50 K and it further decreases to attain 2.02 (1) and 1.82 cm3 mol−1 K (2) at 1.9 K. No maximum of the magnetic susceptibility occurs in the temperature range explored. This behaviour is as expected for a magnetically diluted spin quintet containing complex, the decrease of χMT in the low temperature region being due to the zero-field splitting (zfs, DMn) of the Mn(III) ion and/or intra/interchain magnetic interactions.
 |
| Fig. 4 Thermal dependence of χMT for 1. The inset shows the field dependence of the magnetization for 1 at 2.0 K. The open circles are experimental data and the solid lines are the best-fit curves obtained using eqn (1) (see main text).27 | |
 |
| Fig. 5 Thermal dependence of χMT for 2. The inset shows the field dependence of the magnetization for 2 at 2.0 K. The open circles are experimental data and the solid lines are the best-fit curves obtained using eqn (1) (see main text).27 | |
The magnetization versus H plots at 2.0 K for 1 and 2 (see the insets of Fig. 4 and 5) also support the occurrence of significant zfs of the Mn(III) ion in these complexes, the values of the magnetization at 50 kOe being 2.90 (1) and 2.75 Nβ (2) (compared with the calculated saturation value of MS = gMnSMn = 4.0 Nβ).
Keeping in mind the above considerations, we have treated the magnetic susceptibility data of 1 and 2 using the spin Hamiltonian [eqn (1)]
|
Ĥ = DMn(ŜMn2 + 2) + βHgMnŜMn
| (1) |
where the first term deals with the local anisotropy of the high-spin Mn(
III) ion and the second one is the Zeeman interaction. A Curie–Weiss term (
θ) was introduced as a variable parameter in the fitting procedure in order to account for the possible intra/interchain magnetic interactions between Mn(
III) ions and the simulations were performed using matrix diagonalization techniques by the use of the Irreducible Tensor Operators (ITO) implemented in the XVPMAG program.
27
The best-fit parameters are: DMn = −3.26 cm−1, gMn = 1.99 and θ = −0.24 K for 1 and DMn = −4.38 cm−1, gMn = 2.00 and θ = −0.39 K for 2. The calculated curves (see the solid lines in Fig. 4 and 5) reproduce very well the experimental data in the whole temperature range explored. From these values, we can reproduce perfectly the magnetization curve at 2.0 K (see the inset in Fig. 4 and 5). In fact, we obtained the same values when fitting both experimental curves (susceptibility and magnetization simultaneously).27 It deserves to be noted that the obtained values of DMn are in the usual range for the Schiff base complexes with Mn(III) that can be found in the literature (values between −1 and −4 cm−1),15,28 their negative sign being consistent with the Jahn–Teller axis elongation of the octahedral geometry. As far as the very weak values of θ are concerned, they are not unexpected because of the large intra- [ca. 6.5 (1) and 6.8 Å (2) through the multiatom –N–C–Co(III)–C–N– pathway] and interchain [ca. 12.9 (1) and 11.0 Å (2)] manganese–manganese distances.
To explore the SIM characteristics of 1 and 2, the frequency-dependent alternating current (ac) magnetic susceptibility was measured at very low temperatures. These measurements show a frequency-dependence of both the in-phase (χ′M) and out-of-phase (χ′′M) signals between 5 and 2.0 K at a 2000 Oe applied dc field for 1 (Fig. 6) whereas under the same conditions, only incipient χ′M signals and maxima of χ′′M for frequencies above 3600 Hz are observed for 2 (Fig. S4†). In this latter case, the maxima of χ′′M could be observed in the whole frequency range under an applied dc field of 5000 Oe (Fig. S5†).
 |
| Fig. 6 Temperature dependence of the in-phase (top) and out-of-phase (bottom) ac susceptibilities for 1 under an applied static field Hdc = 2000 Oe with a ± 5.0 Oe oscillating field at frequencies in the range 1000–10 000 Hz. The solid lines are given for guidance. | |
The values of the relaxation time of 1, which are calculated from the maximum of χ′′M at a given frequency (τ = 1/2πν), follow the Arrhenius law characteristics of a thermally activated mechanism [τ = τo
exp(Ea/kBT)]; the solid line in Fig. 7). The calculated values of the pre-exponential factor and the activation energy (τo = 1.40(2) × 10−8 s and Ea = 12.0(2) cm−1) are consistent with those previously reported for related Mn(III) SIMs.15,29 Moreover, the calculated value of Ea compares reasonably well with that obtained from the fit of the magnetic data (Ea = −4DMn = 13.0 cm−1). The Cole–Cole plots of 1 in the temperature range 2.0–2.6 K and at an applied field of 2000 Oe give almost perfect semicircles which can be fitted using the generalized Debye model (Fig. 8).30a The calculated low values of the α parameter (0.11–0.12; Table 2) support a single relaxation process (α = 0 for a Debye model) and discard a spin glass behaviour.30b
 |
| Fig. 7 Arrhenius plot, ln(τ) vs. 1/T, obtained from ac measurements on a polycrystalline powder sample of 1 under an applied dc magnetic field of 2000 Oe. The data (○) were derived from the maxima of χ′′M vs. T at different frequencies. | |
 |
| Fig. 8 Cole–Cole plots for 1 at the indicated temperatures. The solid lines are the best-fit curves (see the main text). | |
Table 2 Selected ac magnetic data for 1
Hdc/Oe |
T/K |
α |
χSa/cm3 mol−1 |
χTb/cm3 mol−1 |
Adiabatic susceptibility. Isothermal susceptibility. |
2000 |
2.0 |
0.12 |
0.20 |
0.90 |
2000 |
2.2 |
0.11 |
0.20 |
0.87 |
2000 |
2.4 |
0.11 |
0.18 |
0.84 |
2000 |
2.6 |
0.11 |
0.16 |
0.80 |
In the case of 2, under the assumption that the SIM has only one relaxation time (τo) with a characteristic activation energy (Ea) and considering that the adiabatic susceptibility is zero, it is possible to use eqn (2),31 in which ω is the experimental ac field exciting frequency (ω = 2πν), to roughly estimate the values of τo and Ea
|
ln(χ′′M/(χ′M) = ln(ωτo) + Ea/kBT
| (2) |
This method has already been applied to evaluate these factors in other Mn(III) SIMs in the literature.15,29b,32 In the present case, the values obtained for Ea and τo are 9.4(3) cm−1 and 2.5(2) × 10−8 s (Hdc = 2000 Oe; Fig. S6) and 9.0(2) cm−1 and 4.1(2) × 10−8 (Hdc = 5000 Oe; Fig. S7†). These values are comparable to those obtained for 1. Cole–Cole plots for 2 were established and fitted by using the generalized Debye functions (Fig. S8 and S9†). The fitting parameters are summarized in Table S1 (ESI†). The values of the α parameter for 2 [0.071 (Hdc = 2000 Oe) and 0.073–0.074 (Hdc = 5000 Oe)] in the temperature range 2.0–2.4 K also imply a single relaxation process, as in 1.
Experimental
All reagents and solvents were purchased from commercial sources and used without further purification. [MnIII(salen)(H2O)]ClO4 was synthesized according to the previously described method.21 The syntheses of the complexes were carried out under aerobic conditions, in a fume hood. Elemental analyses (C, H, N) were performed by the Servicio de Microanálisis from the Servicio Central de Soporte a la Investigación Experimental (SCSIE) de la Universidad de Valencia. The values of the Co
:
P (1
:
1) for PPh4[CoIII(4,4′-dmbipy)(CN)4] and Co
:
Mn (1
:
1 for 1 and 2) molar ratios were determined using electron probe X-ray microanalysis by using a Philips XL-30 scanning electron microscope (SEM) from the SCSIE. Infrared spectra (4000–300 cm−1) were recorded on a Bruker F S55 spectrophotometer on samples of PPh4[CoIII(4,4′-dmbipy)(CN)4], 1 and 2 prepared as KBr pellets. Variable-temperature (1.9–300 K) magnetic susceptibility measurements on polycrystalline samples of 1 and 2 were carried out with a SQUID susceptometer using applied magnetic fields of 1 T (T ≤ 50 K) and 500 G (T < 50 K). Magnetization versus magnetic field measurements of 1 and 2 were performed at 2.0 K in the field range 0–5 T. Diamagnetic corrections for the constituent atoms were made by using Pascal’s constants. The magnetic data were also corrected for the temperature-independent paramagnetism and magnetization of the sample holder (a plastic bag). The value of the TIP for each mole of the Co(III)Mn(III) pair was 300 × 10−6 cm3 mol−1.
Caution: cyanides are highly toxic and should be handled with great caution. We worked at the mmol scale and the preparations were performed in a well ventilated fume hood. Concentrated aqueous solutions of sodium hypochlorite and sodium hydroxide were used to transform the cyanide from the waste into cyanate.
Preparation of the complexes
Synthesis of PPh4[Co(4,4′-dmbipy)(CN)4]. This compound was synthesized according to the method described previously.22 Yield: ca. 70%. IR (KBr/cm−1): 3318(m), 3253(s), 2130(s), 1620(s), 1453(m), 1100(s), 760, 725(s), 690(s), 528(s). Anal calcd. for C30H28CoN6P: C 64.00; H 4.98; N 14.93. Found: C 64.08; H 4.96; N 14.94%.
Synthesis of {[MnIII(salen)(μ-NC)2CoIII(4,4′-dmbipy)(CN)2]·H2O}n (1). In a test tube, a solution of 28 mg [MnIII(salen)(H2O)]ClO4 dissolved in 20 mL of a methanol/acetonitrile mixture (1
:
1 v/v) was layered over a solution of 56 mg PPh4[Co(4,4′-dmbipy)(CN)4] dissolved in 20 mL of the same methanol/acetonitrile mixture. X-ray quality crystals of 1 were obtained after four weeks. Yield: ca. 70%. IR (KBr/cm−1): 3518(m), 3103(s), 2154, 2136(s), 1630(s), 1453(m), 1100(s). Anal calcd. for C32H28CoN8O3Mn (1): C 55.93; H 4.08; N 16.31. Found: C 56.12; H 4.16; N 16.74%.
Synthesis of [MnIII(salen)(μ-NC)2CoIII(dmphen)(CN)2]n (2). Compound 2 was synthesized by following the procedure detailed for 1, but using PPh4[CoII(dmphen)(CN)3] instead PPh4[Co(4,4′-dmbipy)(CN)4]. X-ray quality crystals of 2 were obtained after five weeks. Yield: ca. 60%. IR (KBr/cm−1): 3120(m), 2150sh, 2137(s) 1620(s), 1453(m), 1100(s). Anal calcd. for C34H26CoN8O2Mn (2): C 58.91; H 3.75; N 16.17. Found: C 59.08; H 3.83; N 16.25%.
X-ray crystallography
X-ray diffraction data on single crystals of 1 and 2 were collected with a Bruker-Nonius X8-APEXII CCD area detector system by using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The data were processed through the SAINT33 reduction and SADABS34 absorption software. A summary of the crystallographic data and structure refinement for the two compounds is given in Table 3. The two structures were solved using direct methods and subsequently completed through Fourier recycling using the SHELXTL-2013 software package,35 then refined using the full-matrix least-squares refinements based on F2 with all observed reflections, using established methods.36 All non-hydrogen atoms were refined anisotropically.
Table 3 Crystal data and structure refinement details for 1 and 2
|
1 |
2 |
R1 = ∑(|Fo| − |Fc|)/∑|Fo|. wR2 = {∑[w(Fo2 − Fc2)2]/∑w(Fo2)2]}1/2 and w = 1/[σ2(Fo2) + (mP)2 + nP] with P = [Fo2 + 2Fc2]/3, m = 0.0816 (1), 0.0670 (2) and n = 0.5826 (1), 1.5424(3) (2). |
Formula |
C32H28CoMnN8O3 |
C34H26CoMnN8O2 |
Mr |
686.49 |
692.5 |
Crystal system |
Monoclinic |
Monoclinic |
Space group |
P21/c |
P21/n |
a/Å |
14.0141(12) |
13.206(3) |
b/Å |
11.9783(10) |
12.307(3) |
c/Å |
20.0014(18) |
20.386(5) |
β/° |
106.989(4) |
104.201(13) |
V/Å3 |
3211.0(5) |
3212.0(14) |
Z |
4 |
4 |
Dc/g cm−3 |
1.420 |
1.432 |
T/K |
296(2) |
296(2) |
μ(Mo-Kα)/mm−1 |
0.955 |
0.954 |
F(000) |
1408 |
1416 |
Refl. collected |
71 843 |
27 556 |
Refl. indep. (Rint) |
6516 (0.0430) |
5790 (0.0401) |
Refl. obs. [I > 2σ(I)] |
5055 |
4827 |
Goodness-of-fit on F2 |
1.112 |
1.134 |
R1a [I > 2σ(I)] (all) |
0.0401 (0.0605) |
0.0392 (0.0522) |
wR2b [I > 2σ(I)] (all) |
0.1233 (0.1435) |
0.1098 (0.1242) |
Δρmax,min/e Å−3 |
1.041, −0.471 |
0.515, −0.500 |
The hydrogen atoms of the salen (1 and 2), 4,4′-dmbipy (1) and dmphen (2) ligands were included at geometrically calculated positions and refined using a riding model. The hydrogen atoms of the crystallization water molecule in 1 were not located, but included in the formula sum. The final geometrical calculations and graphical manipulations were performed using the XP utility within SHELXTL;35 graphical manipulations were also performed with the CrystalMaker software.37
Room temperature powder X-ray diffraction methods were employed to check the purity of the bulk samples of 1 and 2, the good match between the experimental and simulated patterns supporting their purity [Fig. S10† (1) and S11 (2)].
Conclusions
The use of the heteroleptic tetracyanido-bearing cobalt(III) complexes [CoIII(4,4′-dmbipy)(CN)4]− and [CoII(dmphen)(CN)3]− as metalloligands towards [MnIII(salen)(H2O)]+ afforded the heterobimetallic chains 1 and 2 with regular alternating diamagnetic Co(III) and high-spin Mn(III) ions which behave as SIMs. In fact, when the [CoII(dmphen)(CN)3]− complex anion was employed as reactant, the CoII metal ion underwent oxidation and the unit was reorganized as the {CoIII(dmphen)(CN)4} fragment in 2. Our synthetic route can be viewed as a general successful strategy to obtain tailor-made extended systems of SIMs by using these types of metalloligands in combination with anisotropic metal ions whose coordination sphere is either fully solvated or partially blocked with peripheral ligands.
Acknowledgements
Financial support by the Spanish Ministerio de Economía y Competitividad (Projects CTQ2013-44844 and Unidad de Excelencia MDM-2015-0538), the Generalitat Valenciana (Projects PROMETEOII/2014/070 and ISIC/2012/002) and by the Romanian National Authority for Scientific Research, CNCS−UEFISCDI, Project PN-II-RU-TE-2014-4-1556 is gratefully acknowledged. N. M. also thanks the European Commission, FSE (Fondo Sociale Europeo) and Calabria Region for a postdoctoral fellowship.
References
-
(a) M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier and F. Villain, Coord. Chem. Rev., 1999, 190, 1023 CrossRef;
(b) M. Ohba and H. Okawa, Coord. Chem. Rev., 2000, 198, 313 CrossRef CAS;
(c) M. Shatruk, C. Avendaño and K. R. Dunbar, Prog. Inorg. Chem., 2009, 47, 832 Search PubMed;
(d) H. Tokoro and S.-I. Ohkoshi, Dalton Trans., 2011, 40, 6825 RSC;
(e) X.-Y. Wang, C. Avendaño and K. R. Dunbar, Chem. Soc. Rev., 2011, 40, 3213 RSC.
-
(a) F. Hulliger, M. Landolt and H. Vetsch, J. Solid State Chem., 1976, 18, 283 CrossRef CAS;
(b) T. Mallah, C. Auberger, M. Verdaguer and P. Veillet, J. Chem. Soc., Chem. Commun., 1995, 61 RSC;
(c) V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet and M. Verdaguer, Chem.–Eur. J., 2003, 9, 1678 Search PubMed;
(d) V. Marvaud, C. Decroix, A. Scuiller, F. Tuyèras, C. Guyard-Duhayon, J. Vaissermann, J. Marrot, F. Gonnet and M. Verdaguer, Chem.–Eur. J., 2003, 9, 1692 CrossRef CAS PubMed;
(e) A. Figuerola, J. Ribas, M. Llunell, D. Casanova, M. Maestro, S. Alvarez and C. Diaz, Inorg. Chem., 2005, 44, 6939 CrossRef CAS PubMed;
(f) A. Figuerola, J. Ribas, D. Casanova, M. Maestro, S. Alvarez and C. Diaz, Inorg. Chem., 2005, 44, 6949 CrossRef CAS PubMed;
(g) M. Estrader, J. Ribas, V. Tangoulis, X. Solans, M. Font-Bardía, M. Maestro and C. Diaz, Inorg. Chem., 2006, 45, 8239 CrossRef CAS PubMed;
(h) S. Tanase and J. Reedijk, Coord. Chem. Rev., 2006, 250, 2501 CrossRef CAS;
(i) H. Zhao, N. Lopez, A. Prosvirin, H. T. Chifotides and K. R. Dunbar, Dalton Trans., 2007, 878 RSC;
(j) F. Tuyèras, A. Scuiller, C. Duhayon, M. Hernández-Molina, F. Fabrizi de Biani, M. Verdaguer, T. Mallah, W. Wernsdorfer and V. Marvaud, Inorg. Chim. Acta, 2008, 361, 3505 CrossRef;
(k) H. Miyasaka, T. Mandanbashi, A. Saitoh, N. Motokawa, R. Ishikawa, M. Yamashita, S. Bahr, W. Wernsdorfer and R. Clérac, Chem.–Eur. J., 2012, 18, 3942 CrossRef CAS PubMed;
(l) M. Rams, E. V. Peresypkina, V. S. Mironov, W. Wernsdorfer and K. E. Vostrikova, Inorg. Chem., 2014, 53, 10291 CrossRef CAS PubMed.
-
(a) R. Lescouëzec, L. M. Toma, J. Vaissermann, M. Verdaguer, F. S. Delgado, C. Ruiz-Pérez, F. Lloret and M. Julve, Coord. Chem. Rev., 2005, 249, 2691 CrossRef;
(b) S. Wang, X.-H. Ding, J.-L. Zuo, X.-Z. You and W. Huang, Coord. Chem. Rev., 2011, 255, 1713 CrossRef CAS;
(c) E. Pardo, M. Verdaguer, P. Herson, H. Rousselière, J. Cano, M. Julve, F. Lloret and R. Lescouëzec, Inorg. Chem., 2011, 50, 6250 CrossRef CAS PubMed;
(d) Y.-H. Li, W.-R. He, X.-H. Ding, S. Wang, L.-F. Cui and W. Huang, Coord. Chem. Rev., 2012, 256, 2795 CrossRef CAS;
(e) L. M. Toma, J. Pasán, C. Ruiz-Pérez, F. Lloret and M. Julve, Dalton Trans., 2012, 41, 13716 RSC;
(f) D. Visinescu, L. M. Toma, O. Fabelo, C. Ruiz-Pérez, F. Lloret and M. Julve, Inorg. Chem., 2013, 52, 1525 CrossRef CAS PubMed;
(g) Y.-Z. Zhang, P. Ferko, D. Siretanu, R. Ababei, N. P. Rath, M. J. Shaw, R. Clérac, C. Mathonière and S. M. Holmes, J. Am. Chem. Soc., 2014, 136, 16854 CrossRef CAS PubMed;
(h) M.-G. Alexandru, D. Visinescu, M. Andruh, N. Marino, D. Armentano, J. Cano, F. Lloret and M. Julve, Chem.–Eur. J., 2015, 21, 5429 CrossRef CAS PubMed.
-
(a) B. Sieklucka, R. Podgajny, P. Przychodzen and T. Korzeniak, Coord. Chem. Rev., 2005, 249, 2203 CrossRef CAS;
(b) P. Przychodzen, T. Korzeniak, R. Podgajny and B. Sieklucka, Coord. Chem. Rev., 2006, 250, 2234 CrossRef CAS;
(c) B. Sieklucka, R. Podgajny, T. Korzeniak, B. Nowicka, D. Pinkowicz and M. Kozieł, Eur. J. Inorg. Chem., 2011, 305 CrossRef CAS;
(d) B. Nowicka, T. Korzeniak, O. Stefanczyk, D. Pinkowicz, S. Chorazy, R. Podgajny and B. Sieklucka, Coord. Chem. Rev., 2012, 256, 1946 CrossRef CAS;
(e) S. Chorazy, K. Nakabayashi, N. Ozaki, R. Pelka, T. Fic, J. Mlynarski, B. Sieklucka and S.-I. Ohkoshi, RSC Adv., 2013, 3, 1065 RSC;
(f) S. Chorazy, R. Podgajny, W. Nogas, W. Nitek, M. Koziel, M. Rams, E. Juszynska-Galazka, J. Zukrowski, C. Kapusta, K. Nakabayashi, T. Fujimoto, S.-I. Ohkoshi and B. Sieklucka, Chem. Commun., 2014, 50, 3484 RSC;
(g) D. Pinkowicz, R. Podgajny, B. Nowicka, S. Chorazy, M. Reczynski and B. Sieklucka, Inorg. Chem. Front., 2015, 2, 10 RSC;
(h) S. Chorazy, M. Arczynski, K. Nakabyashi and B. Sieklucka, Inorg. Chem., 2015, 54, 4724 CrossRef CAS PubMed;
(i) B. Nowicka, M. Reczynsky, M. Rams, W. Nitek, M. Koziel and B. Sieklucka, CrystEngComm, 2015, 17, 3526 RSC.
-
(a) Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S.-I. Ohkoshi and K. Hashimoto, J. Am. Chem. Soc., 2000, 122, 2952 CrossRef CAS;
(b) J. M. Herrera, A. Bleuzen, Y. Dromzée, M. Julve, F. Lloret and M. Verdaguer, Inorg. Chem., 2003, 42, 7052 CrossRef CAS PubMed;
(c) J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz and C. Mathonière, Angew. Chem., Int. Ed., 2004, 43, 5468 CrossRef CAS PubMed;
(d) D. Visinescu, C. Desplanches, I. Imaz, V. Bahers, R. Pradhan, F. A. Villamena, P. Guionneau and J.-P. Sutter, J. Am. Chem. Soc., 2006, 128, 10202 CrossRef CAS PubMed;
(e) T. S. Venkatakrishnan, C. Desplanches, R. Rajamani, P. Guionneau, L. Ducasse, S. Ramasesha and J.-P. Sutter, Inorg. Chem., 2008, 47, 4854 CrossRef CAS PubMed;
(f) D. Visinescu, A. M. Madalan, M. Andruh, C. Duhayon, J.-P. Sutter, L. Ungur, W. van der Heuvel and L. F. Chibotaru, Chem.–Eur. J., 2009, 15, 11808 CrossRef CAS PubMed;
(g) N. Gogoi, M. Thlijeni, C. Duhayon and J.-P. Sutter, Inorg. Chem., 2013, 52, 2283 CrossRef CAS PubMed;
(h) D. Visinescu, I.-R. Jeon, A. M. Madalan, M.-G. Alexandru, B. Jurca, C. Mathonière, R. Clérac and M. Andruh, Dalton Trans., 2012, 41, 13578 RSC;
(i) S. Dhers, H. L. C. Feltham, R. Clérac and S. Brooker, Inorg. Chem., 2013, 52, 13685 CrossRef CAS PubMed;
(j) A. Mondal, L.-M. Chamoreau, Y. Li., Y. Journaux, M. Seuleiman and R. Lescouëzec, Chem.–Eur. J., 2013, 19, 7682 CrossRef CAS PubMed;
(k) S. Dhers, J.-P. Costes, P. Guionneau, C. Paulsen and L. Vendier, Chem. Commun., 2015, 51, 7875 RSC;
(l) D. Visinescu, M.-G. Alexandru, A. M. Madalan, C. Pichon, C. Duhayon, J.-P. Sutter and M. Andruh, Dalton Trans., 2015, 44, 16713 RSC.
-
(a) S. W. Choi, H. Y. Kwak, J. H. Yoon, H. Kim, E. K. Koh and C. S. Hong, Inorg. Chem., 2008, 47, 10214 CrossRef CAS PubMed;
(b) J. I. Kim, J. H. Yoon, H. Y. Kwak, E. K. Koh and C. S. Hong, Eur. J. Inorg. Chem., 2008, 2756 CrossRef;
(c) S. W. Choi, D. W. Ryu, J. W. Lee, J. H. Yoon, H. C. Kim, H. Lee, B. K. Cho and C. S. Hong, Inorg. Chem., 2009, 48, 9066 CrossRef CAS PubMed;
(d) T. Korzeniak, B. Nowicka, K. Stadnicka, W. Nitek and A. N. Majcher, Polyhedron, 2013, 52, 442 CrossRef CAS;
(e) M.-G. Alexandru, D. Visinescu, A. M. Madalan, F. Lloret, M. Julve and M. Andruh, Inorg. Chem., 2012, 51, 4906 CrossRef CAS PubMed;
(f) K. S. Lim and C. S. Hong, Dalton Trans., 2013, 42, 14941 RSC.
-
(a) R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, R. Llusar and S. Uriel, Inorg. Chem., 2001, 40, 2065 CrossRef;
(b) L. Toma, R. Lescouëzec, J. Vaissermann, F. S. Delgado, C. Ruiz-Pérez, R. Carrasco, J. Cano, F. Lloret and M. Julve, Chem.–Eur. J., 2004, 10, 6130 CrossRef CAS PubMed;
(c) L. Toma, R. Lescouëzec, J. Vaissermann, P. Herson, V. Marvaud, F. Lloret and M. Julve, New J. Chem., 2005, 29, 210 RSC;
(d) Y.-Z. Zhang, S. Gao, Z.-M. Wang, G. Su, H.-L. Sun and F. Pan, Inorg. Chem., 2005, 44, 4534 CrossRef CAS PubMed;
(e) F. Pan, Z.-M. Wang and S. Gao, Inorg. Chem., 2007, 46, 10221 CrossRef CAS PubMed;
(f) D. Visinescu, L. M. Toma, F. Lloret, O. Fabelo, C. Ruiz-Pérez and M. Julve, Dalton Trans., 2008, 4103 RSC;
(g) H.-R. Wen, C.-F. Wang, Y. Song, Y.-Z. Li, J.-L. Zuo and X.-Z. You, Inorg. Chim. Acta, 2009, 362, 1485 CrossRef CAS;
(h) R. Gheorghe, M. Kalisz, R. Clérac, C. Mathonière, P. Herson, Y. Li, M. Suleiman, R. Lescouëzec, F. Lloret and M. Julve, Inorg. Chem., 2010, 49, 11045 CrossRef CAS PubMed.
-
(a) K. Mitsumoto, E. Oshiro, H. Nishikawa, T. Shiga, Y. Yamamura, K. Saito and H. Oshio, Chem.–Eur. J., 2011, 17, 9612 CrossRef CAS PubMed;
(b) J. H. Yoon, J. W. Lee, D. W. Ryu, S. Y. Choi, S. W. Yoon, B. J. Suh, E. K. Koh, H. C. Kim and C. S. Hong, Inorg. Chem., 2011, 50, 11306 CrossRef CAS PubMed;
(c) K. Mitsumoto, H. Nishikawa, G. N. Newton and H. Oshio, Dalton Trans., 2012, 41, 13601 RSC;
(d) K. Qian, X.-C. Huang, C. Zhou, X.-Z. You, X.-Y. Wang and K. R. Dunbar, J. Am. Chem. Soc., 2013, 135, 13302 CrossRef CAS PubMed;
(e) J. Dreiser, K. S. Pedersen, A. Schnegg, K. Holldack, J. Nehrkorn, M. Sigist, P. Tregenna-Piggott, H. Mutka, H. Weihe, V. S. Mironov, J. Bendix and O. Waldman, Chem.–Eur. J., 2013, 19, 3693 CrossRef CAS PubMed;
(f) S. Dhers, H. L. C. Feltham, R. Clérac and S. Brooker, Inorg. Chem., 2013, 52, 13685 CrossRef CAS PubMed;
(g) L. Cui, F. Zhu, C. F. Leong, J. Ru, F. Gao, D. M. D’Alessandro and J. Zuo, Sci. China: Chem., 2015, 58, 650 CrossRef CAS.
-
(a) R. Lescouëzec, J. Vaissermann, C. Ruiz-Pérez, F. Lloret, R. Carrasco, M. Julve, M. Verdaguer, Y. Dromzée, D. Gatteschi and W. Wernsdorfer, Angew. Chem., Int. Ed., 2003, 42, 1483 CrossRef PubMed;
(b) L. M. Toma, R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann and M. Verdaguer, Chem. Commun., 2003, 1850 RSC;
(c) L. M. Toma, R. Lescouëzec, J. Pasán, C. Ruiz-Pérez, J. Vaissermann, J. Cano, R. Carrasco, W. Wernsdorfer, F. Lloret and M. Julve, J. Am. Chem. Soc., 2006, 128, 4842 CrossRef CAS PubMed;
(d) L. M. Toma, R. Lescouëzec, S. Uriel, R. Llusar, C. Ruiz-Pérez, J. Vaissermann, F. Lloret and M. Julve, Dalton Trans., 2007, 3690 RSC;
(e) H. Miyasaka, M. Julve, M. Yamashita and R. Clérac, Inorg. Chem., 2009, 48, 3420 CrossRef CAS PubMed;
(f) H.-L. Sun, Z.-M. Wang and S. Gao, Coord. Chem. Rev., 2010, 254, 1081 CrossRef CAS;
(g) L. M. Toma, C. Ruiz-Pérez, F. Lloret and M. Julve, Inorg. Chem., 2012, 51, 1216 CrossRef CAS PubMed;
(h) J. Lee, K. Lim, J. Yoon, D. Ryu, B. Koo, E. Koh and C. Hong, Sci. China: Chem., 2012, 55, 1012 CrossRef CAS;
(i) L. M. Toma, C. Ruiz-Pérez, J. Pasán, W. Wernsdorfer, F. Lloret and M. Julve, J. Am. Chem. Soc., 2012, 134, 15265 CrossRef CAS PubMed;
(j) D.-P. Dong, T. Liu, S. Kanegawa, S. Kang, O. Sato, C. He and C.-Y. Duan, Angew. Chem., Int. Ed., 2012, 51, 5119 CrossRef CAS PubMed;
(k) T. Liu, S. Kang, Y. Shiota, S. Hayami, M. Mito, O. Sato, K. Yoshizawa, S. Kanegawa and C. Duan, Nat. Commun., 2013, 4, 2826 Search PubMed;
(l) R. Ababei, C. Pichon, O. Roubeau, Y.-G. Li, N. Bréfuel, L. Buisson, P. Guionneau, C. Mathonière and R. Clérac, J. Am. Chem. Soc., 2013, 135, 14840 CrossRef CAS PubMed.
-
(a) A. Mondal, S. Durdevic, L.-M. Chamoreau, Y. Journaux, M. Julve, L. Lisnard and R. Lescouëzec, Chem. Commun., 2013, 49, 1181 RSC;
(b) S. Kang, H. Zheng, T. Liu, K. Hamachi, S. Kanegawa, K. Sugimoto, Y. Shiota, S. Hayami, M. Mito, T. Nakamura, M. Nakano, M. L. Baker, H. Nojiri, K. Yoshizawa, C. Duan and O. Sato, Nat. Commun., 2015, 6, 5955 CrossRef PubMed.
-
(a) A. Bleuzen, V. Marvaud, C. Mathonière, B. Siekucka and M. Verdaguer, Inorg. Chem., 2009, 48, 3453 CrossRef CAS PubMed;
(b) Y. Zhang, D. Li, R. Clérac, M. Kalisz, C. Mathonière and S. M. Holmes, Angew. Chem., Int. Ed., 2010, 49, 3752 CrossRef CAS PubMed;
(c) J. Mercurol, Y. Li, E. Pardo, O. Risset, H. Rousselière, R. Lescouëzec and M. Julve, Chem. Commun., 2010, 46, 8995 RSC;
(d) G. N. Newton, M. Nihei and H. Oshio, Eur. J. Inorg. Chem., 2011, 3031 CrossRef CAS;
(e) M. Nihei, Y. Sekine, N. Suganami, K. Nakazawa, A. Nakao, H. Nakao, Y. Murakami and H. Oshio, J. Am. Chem. Soc., 2011, 133, 3592 CrossRef CAS PubMed;
(f) A. Mondal, Y. Li, P. Herson, M. Seuleiman, M.-L. Boillot, E. Rivière, M. Julve, L. Rechignat and A. Boussekssou, Chem. Commun., 2012, 48, 5653 RSC;
(g) A. Mondal, Y. Li, M. Seuleiman, M. Julve, L. Toupet, M. Buron-Lecointe and R. Lescouëzec, J. Am. Chem. Soc., 2013, 135, 1653 CrossRef CAS PubMed.
- M.-G. Alexandru, D. Visinescu, S. Shova, S. Lloret, M. Julve and M. Andruh, Inorg. Chem., 2013, 52, 11627 CrossRef CAS PubMed.
- J. Long, L.-M. Chamoreau and V. Marvaud, Dalton Trans., 2010, 39, 2188 RSC.
-
(a) M. Shatruk, K. E. Chambers, A. V. Prosvirin and K. R. Dunbar, Inorg. Chem., 2007, 46, 5155 CrossRef CAS PubMed;
(b) C. Paraschiv, M. Andruh, Y. Journaux, Z. Zak, N. Kyritsakasd and L. Ricard, J. Mater. Chem., 2006, 16, 2660 RSC;
(c) C. R. Choudhury, S. K. Dey, S. Mitra, N. Mondal, J. Ribas and K. M. Abdul Malik, Bull. Chem. Soc. Jpn., 2004, 77, 959 CrossRef CAS;
(d) M. Ferbinteanu, S. Tanase, M. Andruh, Y. Journaux, F. Cimpoesu, I. Strenger and E. Riviére, Polyhedron, 1999, 18, 3019 CrossRef CAS;
(e) V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet and M. Verdaguer, Chem.–Eur. J., 2003, 9, 1677 CrossRef CAS PubMed;
(f) H.-B. Zhou, J. Wang, H.-S. Wang, Y.-L. Xu, X.-J. Song, Y. Song and X.-Z. You, Inorg. Chem., 2011, 50, 6868 CrossRef CAS PubMed;
(g) H. Miyasaka, T. Madanbashi, A. Saitoh, N. Motokawa, R. Ishikawa, M. Yamashita, S. Bahr, W. Wernsdorfer and R. Clérac, Chem.–Eur. J., 2012, 18, 3942 CrossRef CAS PubMed;
(h) S. A. Korkmaz, A. Karadag, Y. Yerlic and M. S. Soylu, New J. Chem., 2014, 38, 5402 RSC;
(i) A. Dogaru, C. Pichon, R. Ababei, D. Mitcov, C. Maxim, L. Toupet, C. Mathonière, R. Clérac and M. Andruh, Polyhedron, 2014, 75, 176 CrossRef.
-
(a) R. Ishikawa, R. Miyamoto, H. Nojiri, B. K. Breedlove and M. Yamashita, Inorg. Chem., 2013, 52, 8300 CrossRef CAS PubMed;
(b) C. Kachi-Terajima, E. Mori, T. Eiba, T. Saito, C. Kanadani, T. Kitazawa and H. Miyasaka, Chem. Lett., 2010, 39, 94 CrossRef CAS.
-
(a) D. Zhang, L. Zhang, Z. Zhao, X. Chen and Z. Ni, Inorg. Chim. Acta, 2011, 377, 165 CrossRef CAS;
(b) D. Zhang, P. Wang, Z. Zhao and X. Chen, J. Coord. Chem., 2014, 67, 1664 CrossRef CAS.
- D. Zhang, Z. Zhao, K. Chen and X. Chen, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2013, 43, 273 CrossRef CAS.
- J. Y. Liu, B. Yuan, L. J. Zhang, Y. Wang, B. Ding and X. J. Zhao, Inorg. Chim. Acta, 2013, 407, 126 CrossRef CAS.
- B. Li, J. Zhang, X. Yong, W. Li and Y. Zheng, Dalton Trans., 2011, 40, 4459 RSC.
- Y. Zhang, A.-H. Yuan, H. Zhou, J.-X. Guob and L. Liu, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65, m1033 CAS.
- H. J. Choi, J. J. Sokol and J. R. Long, J. Phys. Chem. Solids, 2004, 65, 839 CrossRef CAS.
- M.-G. Alexandru, D. Visinescu, N. Marino, G. de Munno, J. Vallejo, F. Lloret and M. Julve, Eur. J. Inorg. Chem., 2014, 4564 CrossRef CAS.
- M. R. Bermejo, A. Castiñeiras, J. C. García-Monteagudo, M. Rey, A. Sousa, M. Watkinson, C. A. McAuliffe, R. G. Pritchard and R. L. Beddoes, J. Chem. Soc., Dalton Trans., 1996, 2935 RSC.
- D. Visinescu, L. M. Toma, F. Lloret, O. Fabelo, C. Ruiz-Pérez and M. Julve, Dalton Trans., 2008, 4103 RSC.
- H. Temel and H. Hosgören, Transition Met. Chem., 2002, 27, 609 CrossRef CAS.
- G. Lyubartseva and S. Parkin, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, 66, m475 CAS.
- J. Cano, XVPMAG package, University of Valencia, Spain, 2013 Search PubMed.
-
(a) B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552 CrossRef CAS;
(b) Y. Feng, C. Wang, Y. Zhao, J. Li, D. Liao, S. Yan and Q. Wang, Inorg. Chim. Acta, 2009, 362, 3563 CrossRef CAS.
-
(a) J. Vallejo, A. Pascual-Alvarez, J. Cano, I. Castro, M. Julve, F. Lloret, J. Krzystek, G. de Munno, D. Armentano, W. Wernsdorfer, R. Ruiz-García and E. Pardo, Angew. Chem., Int. Ed., 2013, 52, 14075 CrossRef CAS PubMed;
(b) A. Grigoropoulos, M. Pissas, P. Papatolis, V. Psycharis, P. Kyritsis and Y. Sanakis, Inorg. Chem., 2013, 52, 12869 CrossRef CAS PubMed;
(c) L. Chen, J. Wang, Y. Z. Liu, Y. Song, X. T. Chen, Y. Q. Zhang and Z. L. Xue, Eur. J. Inorg. Chem., 2015, 271 CrossRef CAS;
(d) G. A. Craig, J. J. Marbey, S. Hill, O. Roubeau, S. Parsons and M. Murrie, Inorg. Chem., 2015, 54, 13 CrossRef CAS PubMed;
(e) A. Pascual-Alvarez, J. Vallejo, E. Pardo, M. Julve, F. Lloret, J. Krzystek, D. Armentano, W. Wernsdorfer and J. Cano, Chem.–Eur. J., 2015 DOI:10.1002/chem.201502637.
-
(a) K. S. Cole and R. H. Cole, J. Chem. Soc., 1941, 9, 341 CAS;
(b) J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993 Search PubMed.
- J. Bartolomé, G. Filoti, V. Kuncser, G. Schinteie, V. Mereacre, C. E. Anson, A. K. Powell, D. Prodius and C. Turta, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 80, 014430 CrossRef.
- A. S. Dinca, J. Vallejo, S. Shova, F. Lloret, M. Julve and M. Andruh, Polyhedron, 2013, 65, 238 CrossRef CAS.
- SAINT, Version 6.45, Bruker Analytical X-ray Systems Inc., Madison, WI, USA, 2003 Search PubMed.
- SADABS, Version 2.03, Bruker AXS Inc., Madison, WI, USA, 2000 Search PubMed.
- G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112 CrossRef CAS PubMed.
- P. Müller, Crystallogr. Rev., 2009, 15, 57 CrossRef.
- D. Palmer, CRYSTAL MAKER, Cambridge University Technical Services, C. No Title, 1996 Search PubMed.
Footnote |
† Electronic supplementary information (ESI) available: FTIR spectra [Fig. S1a (1) and S1b (2)], packing drawings [Fig. S2 (1) and S3 (2)], frequency and temperature dependence of the ac signals [Fig. S4 (2) and S5 (2)], ln(χM′/χM′′) against 1/T [Fig. S6 (2) and S7 (2)], Cole–Cole plots [Fig. S8 and S9 (2)], PXRD patterns [Fig. S10 (1) and S11 (2)] and selected ac magnetic data for 2 (Table S1). CCDC 1403662 and 1403663. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra16307b |
|
This journal is © The Royal Society of Chemistry 2015 |
Click here to see how this site uses Cookies. View our privacy policy here.