JinZhi Liab,
Fei Wub,
Xiao Lin*a,
Lan Shena,
YouJie Wangb and
Yi Feng*b
aCollege of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail: duotang@163.com
bEngineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail: shutcmfyi@163.com
First published on 7th August 2015
This work aimed to investigate the novel application of hydroxypropyl methylcellulose (HPMC) to improving the direct compaction properties of tablet fillers by co-spray drying. Three commonly used types of fillers were investigated. Two representatives were chosen for each type, i.e., (i) water-soluble small molecules: lactose and mannitol; (ii) water-insoluble small molecules: calcium carbonate and anhydrous dibasic calcium phosphate; and (iii) macromolecules: corn starch (practically insoluble in cold water) and chitosan (sparingly soluble in water). Except for chitosan, improvements on both powder properties (e.g., flowability and hygroscopicity) and tableting properties (e.g., tableting ratio, yield pressure, tensile strength, and Esp) were achieved for the rest five fillers by co-spray drying with a small amount of HPMC. This is mainly attributed to the homogeneous distribution of plastic and nonhygroscopic HPMC macromolecules on the surface of the primary and composite particles. In addition, changes induced by spray drying, such as agglomeration, spheroidization, porosity increase, amorphous formation, and gelatinization, also contribute to some degree to the improvements. The above results, together with the data of lubrication sensitivity and tablet disintegration, show that such a novel application of HPMC is effective and promising.
Among commonly used tablet binders, hydroxypropyl methylcellulose (HPMC) has clear advantages for co-processing. For example, HPMC is much less hygroscopic compared to polyvinylpyrrolidone (PVP) and microcrystalline cellulose (MCC). This not only helped reduce particle adhesion, and thus, improve recovery during spray drying,7 but also allowed a high level of HPMC to be used without causing hygroscopic and flowing problems.8 In addition, MCC is water insoluble, which necessitated a high MCC level to achieve acceptable uniformity and functional improvements.5 In this regard, dissolved HPMC molecules are prone to homogeneous distribution on the surface of the primary and composite particles during co-processing, maximizing their effects and thus allowing a lower level to be used.8 As to hydroxypropylcellulose (HPC), the commercially available grade of HPC with the lowest viscosity has much higher viscosity than that of HPMC. The higher the viscosity of a binder is, the severer the adverse effect on tablet disintegration is.
In light of the above, this study aimed to investigate the potential novel application of HPMC E3 (the lowest viscosity grade in the HPMC family) to improving direct compaction properties of tablet fillers by co-spray drying. Commonly used three types of tablet fillers were investigated. Two representatives were chosen for each type, i.e., (i) water-soluble small molecules: lactose and mannitol; (ii) water-insoluble small molecules: calcium carbonate and anhydrous dibasic calcium phosphate; and (iii) macromolecules: corn starch (practically insoluble in cold water) and chitosan (sparingly soluble in water). Powder and tableting properties of each material prepared were characterized. In particular, their tableting behaviours were characterized by a fully instrumented press (Korsch XP1, Germany).
![]() | (1) |
![]() | (2) |
More samples were poured into the cylinder, which had been combined with a glass sleeve, until an appropriate height. Tapping was carried out for 5 minutes. After the excessive powder was scraped off, the weight of the cylinder was recorded as m2. The bulk density and Hausner ratio were calculated by eqn (3) and (4), respectively.
![]() | (3) |
![]() | (4) |
![]() | (5) |
The works during compaction were also recorded by the press. The Esp value was calculated using eqn (6):
![]() | (6) |
![]() | (7) |
![]() | (8) |
However, it is intriguing that HPMC, a commonly used binder in tablets and a common material in film coating, was rarely used for such an application although having suitable properties, such as low hygroscopicity (∼10% equilibrium moisture at 75% relative humidity), high glass transition temperature (170–180 °C), and commercially available grades with low viscosity.20 In a previous report, micronized lactose (∼2 μm) was co-spray dried with HPMC to develop novel lactose-based cushioning agents.8 It was found that besides excellent cushioning effects, the products also showed significantly improved compactibility and flowability. However, yet unknown are the effects of HPMC on common grade lactose and other tablet fillers. Therefore, in this study six fillers (three types) were separately co-spray dried with HPMC E3 and the properties of the resulting products were adequately investigated.
In general, the particle sizes of spray-dried products were comparable to, or larger than, those of raw fillers. Co-spray drying with HPMC caused an increase in particle size for water-insoluble anhydrous dibasic calcium phosphate (DCPA), calcium carbonate (CC), and corn starch, but not for water-soluble mannitol and lactose. This might be due to the dissolution–precipitation cycle that water-soluble fillers underwent during processing. No matter how the particle size changed, co-spray drying with HPMC led to a remarkable improvement in flowability for all the six fillers studied. This indicates that changes in shape (from irregular to subglobular) and surface properties (from rough and hygroscopic to smooth and nonhygroscopic) by co-spray drying with HPMC (Fig. 1) are more significantly contributing factors than particle size for flowability improvement. As a whole, the co-spray dried products prepared here can be considered as freely flowing excipients that are capable of being used in the direct compaction process. Moreover, with the use of larger-scale spray driers, products with larger particle sizes, and hence, better flowability would be definitely produced. Therefore, the products developed here are promising at least from the point of view of flowability. In addition, coincided well with a previous report,7 co-spray drying with HPMC, via reducing particle adhesion, achieved a higher production yield (81–90%) than spray drying pure fillers alone.
The surface morphology of materials was studied by SEM. Compared to the primary particles, the co-processed composite particles exhibited a significant change in shape and surface topography (Fig. 1). Firstly, the primary particles of the filler and HPMC are no longer distinguishable after co-spray drying (Fig. 1(1) and (2)), indicating that the two raw materials were intimately and homogeneously combined in the composite particles and the surface of the composite particles was covered by HPMC macromolecules. Secondly, unlike irregular and dense particles of fillers, the composite particles, expect for the chitosan-based ones, generally appeared subglobular in shape with plicated surface and increased porosity (Fig. 1(2)). Such structures often indicate good flowability and compactibility. When being spray dried without HPMC, different types of fillers showed different changes (Fig. 1(3)). For water-soluble lactose and mannitol, spheroidization is obvious and the formed composite particles have more smooth and intact surfaces than those obtained by co-spray drying with HPMC (Fig. 1a and b). This should be attributed to the increased viscosity of sprayed droplets by HPMC macromolecules, which reduced the drying velocity and induced the formation and collapse of bubbles at the surface layer of, and within, the drying composite particles. For water-insoluble DCPA and CC, no observable changes happened when they were spray dried alone (Fig. 1c and d). That is to say, the effect of HPMC on particle morphology is more significant for this type of filler than for water-soluble fillers. When corn starch was spray dried alone, agglomeration of the primary particles also happened just as it was spray dried with HPMC, although less in extent (Fig. 1e). This indicates that gelatinization of corn starch happened to some extent during spray drying. The gelatinized corn starch acted as a binder, causing the agglomeration. As to chitosan, there are no observable differences between the products prepared by spray drying alone and with HPMC, respectively (Fig. 1f).
Composition | Processing way | AR (°) | ρb (g cm−3) | ρta (g cm−3) | HR | D0.5 (μm) | Span | MC (%) | PY (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a AR, angle of repose; ρb, bulk density; ρta, tapped density; HR, Hausner ratio; D0.5, the median particle size; MC, moisture content; PY, percent yield; PM, the physical mixture of the raw filler with HPMC; SD, the spray-dried raw filler; co-SD, the co-spray dried product of the raw filler and HPMC; co-SD + PVPP, the physical mixture of co-SD and 3.5% PVPP; DCPA, anhydrous dibasic calcium phosphate; CC, calcium carbonate.b Standard deviation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mannitol–7% HPMC | Co-SD | 34.6 (0.7)b | 0.362 (0.002) | 0.540 (0.001) | 1.49 (0.01) | 22.14 (0.20) | 2.12 (0.14) | 0.70 (0.16) | 89.91 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 34.1 (0.6) | 0.361 (0.002) | 0.541 (0.001) | 1.49 (0.01) | 22.18 (0.21) | 2.13 (0.12) | 0.64 (0.13) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 39.1 (1.1) | 0.517 (0.001) | 0.752 (0.001) | 1.45 (0.02) | 13.21 (0.31) | 2.87 (0.16) | 0.69 (0.15) | 81.22 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 54.1 (0.8) | 0.443 (0.001) | 0.741 (0.002) | 1.67 (0.01) | 23.31 (0.31) | 2.28 (0.18) | 0.72 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw mannitol | 54.3 (0.8) | 0.446 (0.001) | 0.745 (0.002) | 1.67 (0.03) | 23.40 (0.33) | 2.29 (0.17) | 0.58 (0.11) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lactose–7% HPMC | Co-SD | 39.5 (0.4) | 0.331 (0.002) | 0.502 (0.002) | 1.52 (0.01) | 22.33 (0.29) | 1.94 (0.11) | 4.24 (0.11) | 84.43 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 39.1 (0.6) | 0.332 (0.002) | 0.501 (0.001) | 1.51 (0.01) | 22.35 (0.31) | 1.92 (0.13) | 4.24 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 51.6 (0.5) | 0.395 (0.001) | 0.771 (0.001) | 1.95 (0.02) | 21.01 (0.31) | 2.14 (0.22) | 3.96 (0.13) | 75.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 55.1 (0.8) | 0.443 (0.001) | 0.784 (0.001) | 1.77 (0.01) | 21.31 (0.33) | 2.25 (0.14) | 2.85 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw lactose | 55.3 (0.8) | 0.456 (0.001) | 0.795 (0.002) | 1.74 (0.03) | 21.03 (0.32) | 2.23 (0.21) | 2.69 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DCPA–7% HPMC | Co-SD | 37.5 (0.5) | 0.624 (0.002) | 0.935 (0.004) | 1.50 (0.02) | 30.56 (0.34) | 1.82 (0.22) | 0.34 (0.13) | 83.11 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 37.6 (0.7) | 0.621 (0.003) | 0.931 (0.003) | 1.49 (0.03) | 30.54 (0.33) | 1.81 (0.11) | 0.32 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 52.6 (0.5) | 0.908 (0.002) | 1.628 (0001) | 1.79 (0.01) | 19.86 (0.33) | 2.24 (0.25) | 0.29 (0.12) | 79.14 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 52.5 (0.3) | 0.843 (0.002) | 1.687 (0.001) | 2.01 (0.02) | 22.95 (0.31) | 2.37 (0.11) | 0.33 (0.21) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw DCPA | 52.7 (0.2) | 0.848 (0.001) | 1.691 (0.002) | 1.99 (0.01) | 22.99 (0.32) | 2.36 (0.20) | 0.34 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CC–7% HPMC | Co-SD | 37.8 (0.6) | 0.429 (0.002) | 0.667 (0.001) | 1.56 (0.001) | 29.88 (0.31) | 1.88 (0.12) | 0.44 (0.13) | 81.25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 37.6 (0.6) | 0.428 (0.002) | 0.667 (0.001) | 1.56 (0.01) | 29.86 (0.22) | 1.87 (0.13) | 0.43 (0.11) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 51.5 (0.5) | 0.982 (0.003) | 1.651 (0.002) | 1.68 (0.02) | 18.69 (0.24) | 1.52 (0.12) | 0.39 (0.11) | 78.27 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 53.9 (0.5) | 0.923 (0.001) | 1.525 (0.002) | 1.64 (0.01) | 17.44 (0.25) | 1.59 (0.11) | 0.47 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw CC | 54.2 (0.7) | 0.929 (0.001) | 1.529 (0.002) | 1.65 (0.02) | 17.45 (0.26) | 1.59 (0.12) | 0.48 (0.11) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Starch–7% HPMC | Co-SD | 46.8 (0.7) | 0.378 (0.002) | 0.576 (0.001) | 1.52 (0.001) | 31.59 (0.34) | 1.72 (0.21) | 8.16 (0.14) | 81.25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 46.5 (0.5) | 0.375 (0.001) | 0.574 (0.002) | 1.54 (0.001) | 31.58 (0.31) | 1.71 (0.23) | 8.53 (0.21) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 45.6 (0.5) | 0.516 (0.002) | 0.771 (0.001) | 1.49 (0.002) | 13.55 (0.22) | 0.93 (0.22) | 8.26 (0.22) | 60.21 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 48.2 (0.6) | 0.478 (0.001) | 0.835 (0.002) | 1.75 (0.002) | 13.12 (0.22) | 0.83 (0.11) | 8.43 (0.24) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw starch | 48.3 (0.6) | 0.486 (0.001) | 0.840 (0.002) | 1.73 (0.002) | 13.15 (0.34) | 0.84 (0.12) | 8.23 (0.12) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chitosan–7% HPMC | Co-SD | 35.5 (0.5) | 0.302 (0.001) | 0.485 (0.001) | 1.60 (0.01) | 50.98 (0.31) | 2.28 (0.23) | 3.56 (0.14) | 88.70 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 35.6 (0.8) | 0.301 (0.002) | 0.479 (0.001) | 1.59 (0.01) | 50.94 (0.21) | 2.28 (0.11) | 3.57 (0.23) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 38.5 (0.6) | 0.361 (0.002) | 0.549 (0.003) | 1.52 (0.02) | 60.64 (0.32) | 2.35 (0.21) | 5.04 (0.21) | 86.54 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 50.9 (0.5) | 0.332 (0.003) | 0.631 (0.002) | 1.89 (0.01) | 57.40 (0.21) | 2.43 (0.13) | 4.21 (0.42) | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw chitosan | 49.5 (0.6) | 0.338 (0.002) | 0.630 (0.002) | 1.86 (0.02) | 57.41 (0.22) | 2.41 (0.31) | 4.24 (0.34) | — |
Composition | Processing way | TR (%) | Pyc (MPa) | FES (%) | PL (%) | PuL (%) | PuL − PL (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a TR, tableting ratio; FES, fast elastic stretch; Py, yield pressure; PL, porosity loaded; PuL, porosity unloaded; PM, the physical mixture of the raw filler and HPMC; SD, the spray-dried raw filler; co-SD, the co-spray dried product of the raw filler with HPMC; co-SD + PVPP, the physical mixture of co-SD and 3.5% PVPP; DCPA, anhydrous dibasic calcium phosphate; CC, calcium carbonate.b Standard deviation.c The yield pressure was determined under the compaction force range of 60–120 MPa. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mannitol–7% HPMC | Co-SD | 18.93 (0.09)b | 175.22 (0.80) | 7.63 (0.23) | 12.36 (0.44) | 18.66 (0.47) | 6.30 (0.44) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 18.20 (0.01) | 170.92 (0.68) | 7.74 (0.16) | 11.40 (0.48) | 18.00 (0.36) | 6.60 (0.36) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 21.18 (0.34) | 196.11 (0.59) | 7.83 (0.10) | 11.73 (0.60) | 18.19 (0.43) | 6.46 (0.43) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 19.11 (0.10) | 203.88 (0.61) | 8.11 (0.14) | 10.65 (0.01) | 17.17 (0.27) | 6.51 (0.27) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw mannitol | 19.39 (0.01) | 232.67 (0.33) | 7.43 (0.34) | 11.16 (0.12) | 17.49 (0.32) | 6.33 (0.12) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lactose–7% HPMC | Co-SD | 14.95 (0.01) | 167.42 (0.17) | 7.07 (0.11) | 17.62 (0.18) | 23.43 (0.30) | 5.81 (0.18) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 14.91 (0.03) | 155.07 (0.83) | 7.46 (0.01) | 16.81 (0.13) | 22.58 (0.37) | 5.77 (0.13) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 15.86 (0.11) | 210.79 (0.12) | 8.32 (0.29) | 13.80 (0.12) | 19.42 (0.02) | 5.61 (0.12) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 17.73 (0.20) | 253.89 (0.20) | 8.04 (0.01) | 15.81 (0.36) | 22.47 (0.34) | 6.66 (0.34) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw lactose | 17.47 (0.11) | 331.63 (0.11) | 8.40 (0.40) | 14.98 (0.09) | 21.62 (0.12) | 6.64 (0.12) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DCPA–7% HPMC | Co-SD | 19.25 (0.04) | 373.24 (0.89) | 6.97 (0.46) | 25.75 (0.31) | 30.59 (0.01) | 4.84 (0.31) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 19.37 (0.12) | 375.60 (1.17) | 7.84 (0.40) | 25.90 (0.66) | 31.29 (0.37) | 5.39 (0.37) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 25.22 (0.16) | 482.59 (0.73) | 7.33 (0.64) | 26.32 (0.64) | 31.36 (0.16) | 5.04 (0.13) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 21.85 (0.04) | 486.91 (0.95) | 7.90 (0.11) | 27.28 (0.39) | 32.60 (0.38) | 5.32 (0.38) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw DCPA | 25.01 (0.13) | 506.70 (1.44) | 6.63 (0.15) | 24.35 (0.14) | 29.02 (0.10) | 4.67 (0.10) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CC–7% HPMC | Co-SD | 15.60 (0.27) | 313.58 (0.76) | 8.53 (0.12) | 25.48 (0.18) | 31.06 (0.67) | 5.58 (0.18) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 15.52 (0.06) | 312.36 (0.88) | 9.14 (0.24) | 26.20 (0.31) | 32.15 (0.48) | 5.95 (0.48) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 23.30 (0.33) | 385.31 (0.71) | 8.48 (0.34) | 25.68 (0.42) | 31.23 (0.55) | 5.55 (0.42) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 21.20 (0.01) | 388.85 (0.93) | 8.29 (0.25) | 26.84 (0.26) | 32.44 (0.17) | 5.61 (0.17) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw CC | 20.25 (0.26) | 399.28 (0.13) | 9.79 (0.16) | 23.75 (0.34) | 30.77 (0.60) | 7.01 (0.34) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Starch–7% HPMC | Co-SD | 17.00 (0.20) | 103.85 (0.62) | 12.40 (0.16) | 6.26 (0.68) | 16.60 (0.54) | 10.34 (0.54) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 17.09 (0.06) | 104.46 (0.42) | 11.65 (0.14) | 6.94 (0.22) | 16.71 (0.30) | 9.77 (0.22) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 23.51 (0.20) | 119.15 (1.21) | 12.97 (0.08) | 5.34 (0.55) | 16.21 (0.44) | 10.87 (0.44) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 18.49 (0.03) | 132.71 (1.04) | 11.94 (0.30) | 8.21 (0.24) | 17.75 (0.48) | 9.55 (0.24) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw starch | 18.14 (0.09) | 135.30 (0.33) | 12.58 (0.13) | 7.63 (0.45) | 18.14 (0.07) | 10.51 (0.45) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chitosan–7% HPMC | Co-SD | 15.52 (0.07) | 110.58 (0.36) | 14.25 (0.21) | 3.75 (0.75) | 15.74 (0.27) | 12.00 (0.27) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Co-SD + PVPP | 15.51 (0.07) | 106.15 (0.98) | 13.92 (0.11) | 3.67 (0.15) | 15.44 (0.09) | 11.77 (0.15) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SD | 18.41 (0.32) | 112.35 (0.33) | 14.31 (0.23) | 2.68 (0.68) | 15.31 (0.23) | 12.63 (0.23) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PM | 15.87 (0.03) | 131.96 (0.82) | 14.68 (0.16) | 4.54 (0.29) | 16.65 (0.47) | 12.11 (0.29) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Raw chitosan | 15.87 (0.01) | 136.09 (0.46) | 14.88 (0.06) | 4.33 (0.51) | 16.72 (0.43) | 12.39 (0.43) |
Yield pressure (Py) is another parameter related to the ability of a material to deform under pressures.22,23 Typically, lower values of Py indicate the onset of deformation at lower applied pressures. A low Py value is an essential characteristic for a material to act as an excellent tableting excipient. In this study, linear correlations of all the Athy–Heckel plots were accurate over the compaction pressure range of 60–120 MPa with correlation coefficients between 0.9951 and 0.9990. As a whole, the data of Py are well coincided with those of tableting ratio, also clearly indicating that the compactibility of the fillers was improved by co-spray drying with HPMC. This is attributed to the plastic deformation nature of HPMC. In general, amorphous materials have a tendency to plastic deformation and crystalline to brittle fracture. For polymers, even if having a high crystalline portion, they may also tend to plastic deformation facilitated by the presence of slip planes, dislocations, and the nano-sized individual microcrystals. For example, the plastic behaviour of MCC has been deduced from plenty of studies.24 Compared to MCC, HPMC E3 is also a cellulose derivative, but an amorphous polymer.8 During compaction, entangled flexible HPMC macromolecules tend to permanent deformation by nonspecific plastic flow. At some contact areas among, and within, particles, temperatures might be higher than the glass transition temperature of HPMC E3. The transition from the glass state to the rubber state further facilitates the plastic flow.
In addition, different types of fillers exhibited some differences in Py reduction. For water-soluble mannitol and lactose, spray drying without HPMC has already led to significant reductions in their Py values by 16% and 36%, respectively. Co-spray drying with HPMC caused further reductions in Py by 11% and 20%, compared to spray-dried mannitol and lactose, respectively. For water-insoluble DCPA and CC, the effect of spray drying without HPMC on Py was negligible. Only approximately 4% reductions were observed. In comparison, co-spray drying with HPMC reduced both of the Py values of DCPA and CC by approximately 24%. Since corn starch and chitosan are macromolecules and plastic in nature, they themselves have significantly lower Py values than the other two types of fillers. Spray drying without HPMC reduced their Py values by 12% and 18%, respectively. However, co-spray drying with HPMC caused different further changes for the two macromolecules, i.e., a 13% further reduction for corn starch and nearly no change for chitosan. This abnormal phenomenon for chitosan might be due to a specific interaction between chitosan and HPMC molecules and might also be related to the abnormal tensile strength versus tableting pressure profiles for chitosan-based excipients (Fig. 2f). As to the parameters of fast elastic stretch and porosity, no clear trends were observed for all the six groups, suggesting that the effect of HPMC on them might be insignificant.
Molecular interactions between the filler and HPMC also vary with the type of the filler. For water-soluble mannitol and lactose, their dissolved molecules co-precipitated with HPMC molecules during drying to form amorphous solid dispersion. The intimate molecular interactions facilitate the stability of amorphous parts of the fillers, which also contribute to some degree to the improved compactibility of their co-processed excipients. For water-insoluble DCPA and CC, there should be no prominent intermolecular interactions between the filler and HPMC molecules. Instead, HPMC molecules precipitated on the filler particles and bound them together to form the composite secondary particles. The case for chitosan should be similar to that for water-insoluble fillers except more intimate interface interactions. However, intimate molecular interactions might happen between molecules of gelatinized corn starch and HPMC, resulting in the formation of a combined binder layer on the primary and composite particles.
To further evaluate the compactibility, tensile strength profiles for the six groups of excipients were constructed over the tableting pressure range of 123–229 MPa (Fig. 2). A high tensile strength is related to a large area of bond formation, which is associated with the surface area.25 Some common trends are observed in the study. Firstly, the profiles for the physical mixtures are either overlapped with, or just slightly higher than, those for the raw fillers, indicating that the effects of physically-mixed 7% HPMC on the compactibility of all the six fillers are insignificant. Secondly, the profiles for the co-spray dried products are markedly higher than those for the physical mixtures (4.20 to 6.28, 1.63 to 4.12, 1.81 to 2.69, 1.34 to 1.63, and 1.05 to 1.24 times higher for the CC, lactose, corn starch, mannitol, and DCPA groups, respectively), with the exception of the chitosan group (1.02 to 1.11 times lower rather than higher for this group). These results, together with those previously reported,26–28 clearly suggest the importance of the specific distribution form of HPMC (homogeneous distribution on the surface of the primary and composite particles) achieved by the co-spray drying process. Thirdly, both the formation of a small portion of amorphous mannitol and lactose and the partial gelatinization of corn starch also contribute to some degree to the compactibility improvement of raw materials.29–31 Lastly, the addition of the superdisintegrant PVPP has no remarkable influence on the compactibility of the co-spray dried products.
The Esp values, which represent the energy retained in the tablet after unloading and are related to the deformation properties of tested materials as well as their binding properties, were calculated based on the works recorded by the press. In general, except for the chitosan group, the trends of the Esp curves are similar to those of tensile strength (Fig. 2 and 3). A higher Esp value means that a larger part of the energy input was utilized in irreversible deformation of the tableted material, and thus, a tablet with higher tensile strength would be made. The abnormity for the chitosan group indicates that spray drying, on the one hand, improved the flowability of the material, thus reducing the friction and increasing the net work during tableting; on the other hand, it must induce certain changes in surface properties of chitosan particles, resulting in a considerable reduction in binding ability between particles. Moreover, co-spray drying with HPMC appears to further aggravate, rather than mitigate, the reduction.
In this study, the tablet tensile strength versus lubricant mixing time curves were constructed over the tableting pressure range of 123–229 MPa (Fig. 4) to evaluate the lubrication sensitivity of co-spray dried products. It was found that both the plastic corn starch- and chitosan-based co-processed products showed some lubrication sensitivity. After they were mixed with 0.5% magnesium stearate for 10 min, the tensile strengths of tablets they formed reduced by 21% and 15%, respectively. Lactose, mannitol, DCPA, and CC are all crystal materials, having some brittleness, and thus, undergoing some fragmentation during tableting. This, together with large specific surface areas and high porosity of co-spray dried products, effectively offset the adverse effect that magnesium stearate brought in. As a result, no obvious lubrication sensitivity was observed for the products based on them.
This journal is © The Royal Society of Chemistry 2015 |