Issue 76, 2015

Temperature and pH-dependent swelling and copper(ii) adsorption of poly(N-isopropylacrylamide) copolymer hydrogel

Abstract

Poly(N-isopropylacrylamide-co-acrylamide-co-maleic acid) (P(NIPAM-AM-MA)) hydrogel has been synthesized by free radical polymerization. The incorporation of functional monomer in the hydrogel was confirmed by Fourier transform infrared spectrometer (FTIR). Swelling measurements and differential scanning calorimeter (DSC) were employed to investigate the volume phase transition of P(NIPAM-AM-MA) hydrogel. P(NIPAM-AM-MA) shows higher swelling ratio and LCST than poly(N-isopropylacrylamide) (PNIPAM) and poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-AM)). The adsorption behavior of copper(II) (Cu2+) ions on P(NIPAM-AM-MA) hydrogel is temperature and pH-dependent. The adsorption isotherm is well fitted by the Freundlich model and the adsorption kinetics can be described by the pseudo-second order equation. In 20 mL of CuSO4 solution containing 4 mg Cu2+, the adsorption capacity reaches 24.4 mg g−1 dry hydrogel at 30 °C and pH = 5. After the volume phase transition, the Cu2+-loaded P(NIPAM-AM-MA) hydrogel can release almost 90% of absorbed water containing few heavy metal ion. Synchrotron radiation small-angle X-ray scattering (SAXS) was used to study the effect of temperature and Cu2+ ions on the microstructure of P(NIPAM-AM-MA) hydrogel. The occurrence of volume phase transition increases the size of cross-linked domains and mass fractal dimension, while the presence of Cu2+ ions has an opposite effect. The adsorbed hydrogel can be easily regenerated by hydrochloric acid and reused in the following adsorption process. This pH and temperature sensitive hydrogel may be used for water purification and enrichment of heavy metal ions.

Graphical abstract: Temperature and pH-dependent swelling and copper(ii) adsorption of poly(N-isopropylacrylamide) copolymer hydrogel

Article information

Article type
Paper
Submitted
27 May 2015
Accepted
13 Jul 2015
First published
20 Jul 2015

RSC Adv., 2015,5, 62091-62100

Temperature and pH-dependent swelling and copper(II) adsorption of poly(N-isopropylacrylamide) copolymer hydrogel

J. Cheng, G. Shan and P. Pan, RSC Adv., 2015, 5, 62091 DOI: 10.1039/C5RA09965J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements