Copper/β-diketone-catalysed N-arylation of carbazoles

Fei Chen, Ning Liu*, Enhui Ji and Bin Dai*
School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China. E-mail: ninglau@163.com; dbinly@126.com; Fax: +86-0993-205-7270; Tel: +86-0993-205-7277

Received 27th April 2015 , Accepted 3rd June 2015

First published on 3rd June 2015


Abstract

A copper-catalysed C–N bond-forming reaction of carbazoles with aryl iodides is described. Several commercially available ligands such as β-diketone and diamine, are tested in the N-arylation of carbazoles. The catalytic system generated in situ from an inexpensive copper salt, simple β-diketone and inorganic base efficiently N-arylated the carbazoles. A wide range of aryl iodides and carbazoles can be coupled to generate N-arylcarbazoles in the presence of various functional groups. However, the sterically hindered effect of aryl iodides is evident in this catalytic system. The selectivity of two iodine atoms on the aromatic ring of diiodobenzene is evaluated in the developed catalytic system. Results showed that the selectivity of diiodobenzene can be tuned by the reaction temperature.


Introduction

Carbazole is extensively applied as a building block in natural products,1 pharmaceuticals,2 dye-sensitized solar cells,3 and advanced materials science4 because of its unique physical properties. The absorption, light-emitting properties, and electronic properties of carbazole can be tuned by introducing substituents into its structure.5 The prevalence of substituted carbazoles in organic chemistry drives the need for a new approach to synthesize these compounds.6

Classical approaches to prepare N-arylcarbazoles include the aromatic nucleophilic substitution reaction7 and copper-catalysed Ullmann coupling reaction.8 These methods often suffer from several drawbacks such as harsh reaction conditions, the need to use stoichiometric quantities of copper, and limited substrate scope.

Since the pioneering work of Buchwald9 and Hartwig,10 numerous studies on the palladium- and copper-catalysed C–N bond-forming reaction have been published.11 Copper-catalysed coupling reaction has attracted considerable interest because copper is very inexpensive, and undergoes desirable reactions for industrial applications. Different copper-fitted ligands, including α-amino acids,12 phenanthrolines,13 diamines,14 diketone,15 imines,16 and others17 as well as “ligand-free” systems,18 have emerged. β-Diketone and diamine derivatives are commercially available and efficient ligands for the copper-catalysed N-arylation of aryl halides with azoles. In 2001 Buchwald et al. found that the use of diamine-based ligands greatly accelerates copper-catalysed C–N coupling reaction.19 Subsequently, Song et al. disclosed that 2,2,6,6-tetramethylheptane-3,5-dione was an efficient ligand for copper-catalysed C–O coupling.20 Maligres et al. also recently reported a copper(II)/diketonate catalyst that showed higher catalytic activity for C–N and C–O coupling.21 However, few studies have reported on the copper-catalysed N-arylation of carbazoles with aryl halides.

In this study, we report a simple and efficient method for the synthesis of N-arylcarbazoles via copper/diketone catalyst. The electronic and sterically hindered effect of aryl iodides and carbazoles were investigated in the developed catalytic system. A range of aryl iodides and carbazoles can be coupled to generate N-arylcarbazoles, even bearing various functional groups, such as halogen atom, that performed well under such catalytic system. The halogenated carbazoles are of great use and versatility in organic synthesis because they can be converted into useful synthetic intermediates through transition-metal-catalysed coupling.

Results and discussion

The coupling reaction of iodobenzene and carbazole was selected as the model reaction to optimize reaction conditions. The effect of different ligands on the coupling reaction was firstly investigated.

To prove the efficiency of ligands, we designed control experiments by conducting the reaction in the presence of Cu2O but in the absence of ligands. The results indicated that the reaction was difficult to proceed with Cu2O in the absence of ligands, and only 16% product yield was obtained. A wide range of β-diketone ligand was initially evaluated, and the results showed that 2,2,6,6-tetramethylheptane-3,5-dione (L7) was the most efficient for iodobenzene conversion and provided a 67% product yield. The potential catalytic efficiency of four 1,2-ethanediamine derivatives was subsequently tested in the coupling of iodobenzene and carbazole. The results indicated that N,N′-dimethyl-1,2-ethanediamine (L14) was more catalytically active than other ethanediamine derivatives. L-Proline (L16) and trans-1,2-diaminocyclohexane (L17) were also examined, but poor results were obtained (Fig. 1).


image file: c5ra07690k-f1.tif
Fig. 1 Ligands for copper-catalysed cross-coupling.

The cross-coupling of iodobenzene with carbazole was selected as the model reaction to optimize the reaction conditions using L7 as ligand, many solvent, copper sources, bases and temperature were evaluated. The effect of different solvents on the coupling between iodobenzene and carbazole was initially examined (Table 1, entries 1–4). The results showed that the solvent served a crucial function in the coupling reaction. N,N-Dimethylformamide (DMF) was the most efficient for the product formation (Table 1, entry 4).

Table 1 Optimization of reaction conditiona

image file: c5ra07690k-u1.tif

Entry Solvent Copper Base T (°C) Yieldb (%)
a Reaction conditions: iodobenzene (0.5 mmol), carbazole (0.75 mmol), copper source (10 mol%), L7 (10 mol%), base (1.0 mmol) in solvent (2 mL) under N2.b Isolated yield.
1 DMA Cu2O KOH 90 Trace
2 NMP Cu2O KOH 90 Trace
3 DMSO Cu2O KOH 90 16
4 DMF Cu2O KOH 90 67
5 DMF CuI KOH 90 53
6 DMF CuCl KOH 90 48
7 DMF CuSO4 KOH 90 20
8 DMF Cu(OAc)2 KOH 90 39
9 DMF Cu(NO3)2 KOH 90 30
10 DMF CuO KOH 90 None
11 DMF Cu KOH 90 24
12 DMF Cu2O K2CO3 90 35
13 DMF Cu2O K3PO4·3H2O 90 38
14 DMF Cu2O KtOBu 90 33
15 DMF Cu2O NaOH 90 40
16 DMF Cu2O Na2CO3 90 21
17 DMF Cu2O NaHCO3 90 18
18 DMF Cu2O NatOBu 90 25
19 DMF Cu2O CH3ONa 90 34
20 DMF Cu2O C6H5ONa 90 30
21 DMF Cu2O Cs2CO3 90 25
22 DMF Cu2O KOH 110 89
23 DMF Cu2O KOH 130 80


Copper-catalysed cross-coupling is affected by the oxidation state of the copper source. Therefore, different copper sources [Cu(I), Cu(II) and Cu(0)] were evaluated. Cu(I) catalysts were more catalytically active than the other copper sources. The Cu(I) states showed moderate catalytic activity, and Cu2O provided the best results (Table 1, entries 4 vs. 5 and 6). Among Cu(II) sources, CuSO4, Cu(OAc)2 and Cu(NO3)2 showed relatively higher catalytic activity than CuO (Table 1, entries 7–9 vs. 10), and Cu(OAc)2 was superior to the other Cu(II) sources (Table 1, entry 8 vs. 7, 9 and 10). Cu(0) powder yielded much slower conversion (Table 1, entry 11).

The nature of the base is an important factor that determines the efficiency of the copper-catalysed C–N bond formation reaction. Among potassium bases, potassium hydroxide was superior to a range of other potassium bases, with carbonate, phosphate and alcoholate exhibiting lower conversion (Table 1, entries 4 vs. 12–14). Sodium hydroxide was superior to other sodium salts (Table 1, entries 15 vs. 16–20). The strong base of cesium carbonate showed lower conversion (Table 1, entry 21).

The effect of reaction temperature on cross-coupling was also explored, and the results suggested that the product yield increased with increasing temperature from 90 °C to 110 °C (Table 1, entries 4 and 22). However, when temperature reached to 130 °C, the product yield began to decrease (Table 1, entry 23). GC-MS analysis showed that small amounts of deiodinated products were also observed. This result indicated that an amount of iodobenzene consumption was responsible for the decrease in efficiency. Thus, considering efficiency and cost, 110 °C was selected as the optimized reaction temperature and used in the following studies.

The scope and limitations of coupling of aryl iodides were explored using Cu2O as catalyst, L7 as ligand, KOH as base and DMF as solvent at 110 °C (Table 2).

Table 2 Copper-catalysed coupling of aryl iodidesa
a Reaction conditions: aryl iodides (0.5 mmol), carbazole (0.75 mmol), Cu2O (10 mol%), L7 (10 mol%), KOH (1.0 mmol) in DMF (2 mL) under N2, 110 °C, 24 h. Isolated yield.
image file: c5ra07690k-u2.tif


The nature of the substituents bearing aryl iodides was initially evaluated under optimized reaction conditions. The electronic effect of para-substituents with the aromatic ring of aryl iodides was observed. The aryl iodides containing electron-neutral and electron-withdrawing groups such as 4-NO2, 4-F, 4-Cl, and 4-Br, smoothly reacted with carbazole to afford the corresponding products in good to excellent yields (Table 2, 1a–e). However, the aryl iodides containing electron-donating group such as 4-OMe, 4-Me, and 4-OEt, were less reactive in this system and resulted in moderate product yields (Table 2, 1f–h).

The electronic effect of meta-substituted aryl iodides influenced the reaction rate. The reaction worked well with aryl iodides bearing the electron-withdrawing group on the meta-sites to afford the desired product in good yield (Table 2, 1i–k). However the aryl iodides bearing the electron-donating group on the meta-sites, showed slightly slower conversion (Table 2, 1l).

The coupling reaction of the aryl iodides bearing the sterically hindered group was also examined, and the results showed evident sterically hindered effect on the coupling reaction. The aryl iodides bearing electron-withdrawing group on the ortho-sites yielded a low conversion (Table 2, 1m–o), but the reaction with those bearing electron-donating group was difficult to trigger (Table 2, 1p).

The scope and limitations of the coupling of carbazoles were also investigated under optimized reaction conditions (Table 3). The electronic effect of substituents bearing the aromatic ring of carbazoles was observed (Table 3, 2a–d). Iodobenzene smoothly reacted with the carbazoles bearing electron-donating 3,6-di-tert-butyl groups to give good product yields (Table 3, 2a). However, carbazoles bearing electron-withdrawing substituents such as 3-bromo, 3,6-dibromo and 2,7-dibromo groups, showed relatively lower reactivity in this catalytic system (Table 3, 2b–d). Aryl iodides containing electron-withdrawing group such as 4-Br, 4-Cl, and 4-F, reacted with representative electron-poor, electron-neutral or electron-rich carbazoles to provide the corresponding cross-coupling products in moderate to good yields (Table 3, 2e–m). Aryl iodides bearing electron-donating group showed high reactivity with carbazoles containing electron-donating group (Table 3, 2n and 2o), but exhibited lower reactivity with those containing electron-withdrawing group (Table 3, 2p). In addition, the electronic effect of meta-substituents bearing the aromatic ring of aryl iodides was evaluated. The results indicated that the reaction worked well with aryl iodides bearing the electron-withdrawing group on meta-site and carbazoles to afford the desired product in good yield (Table 3, 2q and 2r). Steric hindrance effects of aryl iodides significantly influenced the outcome of the reaction, and the aryl iodides bearing the steric hindrance group were difficult to react (Table 3, 2t).

Table 3 Copper-catalysed coupling of carbazolesa
a Reaction conditions: aryl iodides (0.5 mmol), carbazoles (0.75 mmol), Cu2O (10 mol%), L7 (10 mol%), KOH (1.0 mmol) in DMF (2 mL) under N2, 130 °C, 24 h. Isolated yield.
image file: c5ra07690k-u3.tif


Optimized reaction conditions were also applied in the coupling between diiodobenzene and carbazole, in which the selectivity of two iodine atoms on the aromatic ring was evaluated (Table 4). The electronic effect of substituents bearing the aromatic ring of carbazoles was initially explored. Carbazoles bearing electron-donating group showed higher reactivity than those bearing electron-withdrawing or -neutral group. For the carbazoles bearing electron-withdrawing or -neutral group, the selectivity for single coupling over double coupling was remarkably strong, and the product of single coupling was obtained in good yield (Table 4, entries 1–4). However, carbazoles bearing electron-donating group exhibited poor selectivity on either para-diiodobenzene or meta-diiodobenzene. NMR analysis showed varying amounts of disubstituted and deiodinated products (Table 4, entries 5 and 8). We inferred that high temperature was responsible for the poor results. Therefore, the lower temperature of 90 °C was used to test the selectivity of diiodobenzenes. As expected, the coupling of para-diiodobenzene or meta-diiodobenzene with 3,6-di-tert-butyl carbazole proceeded smoothly and resulted in moderate product yield (Table 4, entries 6 and 9). At a higher temperature, the coupling between 3-bromocarbazole and meta-diiodobenzene was also prone to undergo double C–N coupling to give 78% yield of the disubstituted product (Table 4, entry 10). Single coupling resulted in 51% yield of product when the reaction temperature was reduced to 90 °C (Table 4, entry 10). These results indicated that the distribution of products was tuned by the reaction temperature.

Table 4 Copper-catalysed coupling of diiodobenzenea

image file: c5ra07690k-u4.tif

Entry Aryl iodides Products
a Reaction conditions: aryl iodides (0.5 mmol), carbazole (0.75 mmol), Cu2O (10 mol%), L7 (10 mol%), KOH (1.0 mmol) in DMF (2 mL) under N2, 130 °C, 24 h. Isolated yield.b 90 °C.c 110 °C.d 3.0 equiv. carbazole.e Without Cu2O.
1 image file: c5ra07690k-u5.tif image file: c5ra07690k-u6.tif
2 image file: c5ra07690k-u7.tif image file: c5ra07690k-u8.tif
3 image file: c5ra07690k-u9.tif image file: c5ra07690k-u10.tif
4 image file: c5ra07690k-u11.tif image file: c5ra07690k-u12.tif
5 image file: c5ra07690k-u13.tif image file: c5ra07690k-u14.tif
6 image file: c5ra07690k-u15.tif image file: c5ra07690k-u16.tif
7 image file: c5ra07690k-u17.tif image file: c5ra07690k-u18.tif
8 image file: c5ra07690k-u19.tif image file: c5ra07690k-u20.tif
9 image file: c5ra07690k-u21.tif image file: c5ra07690k-u22.tif
10 image file: c5ra07690k-u23.tif image file: c5ra07690k-u24.tif
11 image file: c5ra07690k-u25.tif image file: c5ra07690k-u26.tif
12 image file: c5ra07690k-u27.tif image file: c5ra07690k-u28.tif
13 image file: c5ra07690k-u29.tif image file: c5ra07690k-u30.tif
14 image file: c5ra07690k-u31.tif image file: c5ra07690k-u32.tif


Furthermore, the selective coupling of poly-halogenated benzene with carbazole was investigated in this copper/β-diketone catalytic system. The fluorine and iodine atoms on the benzene ring of 1-bromo-2-fluoro-4-iodobenzene showed similar reactivity and provided disubstituted product (Table 4, entry 13). Given that the formation of disubstituted product required 2.0 equiv. of carbazoles, a 3.0 equiv. of carbazoles was used to obtain higher product yield (Table 4, entry 13). To probe the main factors responsible for the selectivity of the fluoride group bearing benzene ring, control experiments were designed in the absence of Cu2O (Table 4, entry 14). The control experiment revealed that the 1-bromo-2-fluoro-4-iodobenzene underwent highly selective coupling at the fluoride group with carbazole through nucleophilic substitution reaction in the copper-free condition. We supposed that the bromide group at the position ortho to the fluoride group activated C–F bond through the effect of electron-withdrawing, the effect was responsible for the selectivity of fluoride group.

Halogens, such as chlorine, bromine and iodine, on the aromatic ring are well tolerated in the developed copper/β-diketone catalytic system. This characteristic provides an opportunity to further functionalize the N-arylated carbazole compounds and convert them into useful pharmaceutical, dye-sensitized solar cells and advanced material intermediates. We selected the obtained 9-(4-iodophenyl)-carbazole as model substrate to explore its reactivity on a series of transition-metal-catalysed cross-coupling reaction. Fig. 2 illustrates that 9-(4-iodophenyl)-carbazole was successfully converted into valuable intermediates via classical transition-metal-catalysed Suzuki coupling, Ullmann-type reaction, and Sonogashira coupling.


image file: c5ra07690k-f2.tif
Fig. 2 Functionalization of 9-(4-iodophenyl)-carbazole.

The mechanism for the copper-catalysed C–N bond-forming reaction has been well summarized by Ma.12b Three studies toward elucidation of the mechanism for the Ullmann-type coupling reactions have been reported: (1) oxidative addition/reductive elimination mechanism;22 (2) π-complex mechanism;23 (3) radical mechanism.24 The first mechanism has well explained the phenomena observed in our reaction process. For example, the halogen displacement order of aryl halides is I > Br > Cl, and aryl halides bearing electron-withdrawing group showed relatively high reactivity than those bearing electron-donating group. On the basis of oxidative addition/reductive elimination mechanism, a proposed mechanism for N-arylation of carbazole is depicted in Fig. 3. The reaction proceeds via copper(I) complex I, which is in situ generated through coordination of copper(I) oxide with β-diketone. The subsequent oxidative addition of copper(I) complex I with PhI occurs to form copper(III) complex II. And then transmetalation between copper(III) complex II and carbazole takes place to afford a copper(III) complex III. At last, copper(III) complex III proceeds reductive elimination to provide the desired product IV while simultaneously releasing active copper(I) complex I.


image file: c5ra07690k-f3.tif
Fig. 3 Proposed mechanism for N-arylation of carbazole.

Experimental

General experimental methods

All reactions were performed in Schlenk tubes under nitrogen atmosphere. DMF, DMSO, DMA, and NMP were distilled from 4 Å-molecular sieves. All solvents and reagents were purchased from Alfa Aesar, Acros and Adamas-beta. NMR spectra were recorded on a Varian Inova-400 or a Bruke Avance III HD 400 spectrometer using TMS as internal standard (400 MHz for 1H NMR, 100 MHz for 13C NMR and 376 MHz for 19F NMR). The mass data of the compounds were collected on a Bruker ultrafleXtreme mass spectrometer. All products were isolated by short chromatography on a silica gel (200–300 mesh) column.

General procedure for N-arylation of carbazoles

A mixture of aryl iodides (0.5 mmol), carbazoles (0.75 mmol), copper sources (0.05 mmol), ligand (0.05 mmol) and base (1.0 mmol) in solvent (2 mL) was allowed to react under nitrogen atmosphere. The reaction mixture was heated to the specified temperature for 24 h. After reaction, the reaction mixture was added to brine (15 mL) and extracted three times with dichloromethane (3 × 15 mL). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel (200–300 mesh) column.
9-Phenyl-9H-carbazole (1a)25. Purification by flash chromatography (petroleum ether): a white solid (108 mg, 89%), mp = 82–83 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (d, J = 8.0 Hz, 2H), 7.66–7.59 (m, 4H), 7.52–7.48 (m, 1H), 7.46–7.42 (m, 4H), 7.36–7.29 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.94, 137.76, 129.90, 127.48, 127.19, 125.96, 123.39, 120.34, 119.94, 109.81, ppm.
9-(4-Nitrophenyl)-9H-carbazole (1b)26. Purification by flash chromatography (petroleum ether): a yellow solid (117 mg, 81%), mp = 172–173 °C; 1H NMR (400 MHz, CDCl3): δ 8.48 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 7.6 Hz, 2H), 7.80 (d, J = 8.8 Hz, 2H), 7.51–7.43 (m, 4H), 7.35 (t, J = 7.2 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 144.78, 142.82, 138.81, 125.70, 125.44, 124.49, 123.13, 120.17, 119.59, 108.57, ppm.
9-(4-Fluorophenyl)-9H-carbazole (1c)25. Purification by flash chromatography (petroleum ether): a white solid (102 mg, 78%), mp = 113–115 °C; 1H NMR (400 MHz, CDCl3): δ 8.15–8.13 (m, 2H), 7.54–7.49 (m, 2H), 7.43–7.39 (m, 2H), 7.33–7.24 (m, 6H), ppm; 13C NMR (100 MHz, CDCl3): δ 161.60 (d, JC–F = 245.8 Hz), 141.07, 133.66 (d, JC–F = 2.9 Hz), 129.05 (d, JC–F = 8.5 Hz), 126.05, 123.32, 120.39, 120.04, 116.88 (d, JC–F = 22.6 Hz), 109.55, ppm; 19F NMR (376 MHz, CDCl3): δ −113.66, ppm.
9-(4-Chlorophenyl)-9H-carbazole (1d)25. Purification by flash chromatography (petroleum ether): a white solid (104 mg, 75%), mp = 144–147 °C; 1H NMR (400 MHz, CDCl3): δ 8.13 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.43–7.35 (m, 4H), 7.31–7.23 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.68, 136.25, 133.01, 130.10, 128.39, 126.05, 123.44, 120.37, 120.17, 109.53, ppm.
9-(4-Bromophenyl)-9H-carbazole (1e)5c. Purification by flash chromatography (petroleum ether): a pale yellow solid (153 mg, 95%), mp = 143–146 °C; 1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.42–7.34 (m, 6H), 7.29–7.26 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.57, 135.76, 132.07, 127.68, 125.04, 122.44, 119.85, 119.35, 119.17, 108.51, ppm.
9-(4-Methoxyphenyl)-9H-carbazole (1f)25. Purification by flash chromatography (petroleum ether): a white solid (94 mg, 69%), mp = 139–140 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 7.6 Hz, 2H), 7.45–7.37 (m, 4H), 7.33–7.24 (m, 4H), 7.10 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 158.83, 141.35, 130.28, 128.55, 125.81, 123.08, 120.22, 119.61, 115.04, 109.67, 55.58, ppm.
9-(p-Tolyl)-9H-carbazole (1g)25. Purification by flash chromatography (petroleum ether): a white solid (82 mg, 64%), mp = 105 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 7.6 Hz, 2H), 7.45–7.36 (m, 8H), 7.29–7.25 (m, 2H), 2.49 (s, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.10, 137.39, 135.04, 130.49, 127.03, 125.88, 123.27, 120.29, 119.75, 109.82, 21.28, ppm.
9-(4-Ethoxyphenyl)-9H-carbazole (1h). Purification by flash chromatography (petroleum ether): a white solid (83 mg, 61%), mp = 120 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 7.6 Hz, 2H), 7.44–7.38 (m, 4H), 7.33–7.25 (m, 4H), 7.09 (d, J = 8.4 Hz, 2H), 4.13 (q, J = 6.8 Hz, 2H), 1.49 (t, J = 6.8 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 158.24, 141.37, 130.10, 128.53, 125.80, 123.07, 120.21, 119.58, 115.55, 109.69, 63.82, 14.88, ppm.
9-(3-Fluorophenyl)-9H-carbazole (1i). Purification by flash chromatography (petroleum ether): a white solid (115 mg, 88%), mp = 78–79 °C; 1H NMR (400 MHz, CDCl3): δ 8.18 (dt, J = 7.6 Hz, J = 0.8 Hz, 2H), 7.63–7.58 (m, 1H), 7.50–7.41 (m, 5H), 7.38–7.32 (m, 3H), 7.21 (ddd, J = 8.4 Hz, J = 2.8 Hz, J = 1.2 Hz, 1H), ppm; 13C NMR (100 MHz, CDCl3): δ 163.47 (d, JC–F = 246.6 Hz), 140.56, 139.34 (d, JC–F = 9.8 Hz), 131.08 (d, JC–F = 9.2 Hz), 126.16, 123.59, 122.73 (d, JC–F = 3.2 Hz), 120.44, 120.36, 114.52 (d, JC–F = 7.1 Hz), 114.30 (d, JC–F = 8.8 Hz), 109.73, ppm; 19F NMR (376 MHz, CDCl3): δ −110.46, ppm; HRMS (MALDI): m/z calcd for C18H12FN [M]+ 261.0948, found 261.0947.
9-(3-Bromophenyl)-9H-carbazole (1j)27. Purification by flash chromatography (petroleum ether): a colorless oil (135 mg, 84%); 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 7.6 Hz, 2H), 7.70 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.41–7.37 (m, 5H), 7.28–7.25 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.59, 139.17, 131.16, 130.54, 130.17, 126.19, 125.75, 123.60, 123.28, 120.46, 120.41, 109.67, ppm.
9-(3-Chlorophenyl)-9H-carbazole (1k)25. Purification by flash chromatography (petroleum ether): a pale yellow oil (106 mg, 76%); 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 1.6 Hz, 1H), 7.47–7.36 (m, 7H), 7.29–7.22 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.43, 138.88, 135.29, 130.75, 127.46, 127.12, 126.04, 125.10, 123.45, 120.31, 120.25, 109.54, ppm.
9-(m-Tolyl)-9H-carbazole (1l). Purification by flash chromatography (petroleum ether): a yellow oil (85 mg, 66%); 1H NMR (400 MHz, CDCl3): δ 8.22 (dt, J = 7.6 Hz, J = 0.8 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.51–7.43 (m, 6H), 7.39–7.33 (m, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.01, 139.94, 137.67, 129.68, 128.29, 127.73, 125.91, 124.21, 123.36, 120.32, 119.85, 109.90, 21.51, ppm; HRMS (MALDI): m/z calcd for C19H15N [M]+ 257.1199, found 257.1201.
9-(2-Fluorophenyl)-9H-carbazole (1m). Purification by flash chromatography (petroleum ether): a yellow oil (46 mg, 35%); 1H NMR (400 MHz, CDCl3): δ 8.18 (dt, J = 8.0 Hz, J = 0.8 Hz, 2H), 7.60 (td, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.55–7.50 (m, 1H), 747–7.37 (m, 4H), 7.35–7.31 (m, 2H), 7.27 (dt, J = 8.0 Hz, J = 0.8 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 158.36 (d, JC–F = 251.4 Hz), 140.85, 129.88 (d, JC–F = 1.2 Hz), 129.61 (d, JC–F = 7.6 Hz), 126.05, 125.10 (d, JC–F = 3.9 Hz), 123.55, 120.33, 120.18, 117.39 (d, JC–F = 19.6 Hz), 109.89 (d, JC–F = 1.5 Hz), ppm; 19F NMR (376 MHz, CDCl3): δ −118.46, ppm; HRMS (MALDI): m/z calcd for C18H12FN [M]+ 261.0948, found 261.0947.
9-(2-Chlorophenyl)-9H-carbazole (1n)28. Purification by flash chromatography (petroleum ether): a pale yellow solid (38 mg, 27%), mp = 98–99 °C; 1H NMR (400 MHz, CDCl3): δ 8.13 (d, J = 7.6 Hz, 2H), 7.66–7.64 (m, 1H), 7.49–7.42 (m, 3H), 7.38 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 8.0 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.80, 133.98, 132.67, 129.96, 129.79, 128.71, 127.01, 124.87, 122.24, 119.26, 118.94, 108.90, ppm.
9-(2-Bromophenyl)-9H-carbazole (1o)29. Purification by flash chromatography (petroleum ether): a white solid (66 mg, 41%), mp = 95–96 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 8.0 Hz, 2H), 7.84 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.52–7.43 (m, 2H), 7.39 (t, J = 8.0 Hz, 3H), 7.28 (t, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.79, 136.69, 134.18, 131.09, 130.10, 128.77, 125.89, 123.79, 123.20, 120.31, 119.94, 109.98, ppm.
3,6-Di-tert-butyl-9-phenyl-9H-carbazole (2a)30. Purification by flash chromatography (petroleum ether): a white solid (135 mg, 76%), mp = 155 °C; 1H NMR (400 MHz, CDCl3): δ 8.23 (d, J = 1.6 Hz, 2H), 7.66–7.61 (m, 4H), 7.54–7.46 (m, 3H), 7.42 (d, J = 8.8 Hz, 2H), 1.54 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 142.84, 139.33, 138.26, 129.79, 127.01, 126.83, 123.63, 123.39, 116.26, 109.25, ppm.
3-Bromo-9-phenyl-9H-carbazole (2b)31. Purification by flash chromatography (petroleum ether): a white solid (87 mg, 54%), mp = 75–76 °C; 1H NMR (400 MHz, CDCl3): δ 8.30 (d, J = 1.2 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.0 Hz, 2H), 7.57–7.51 (m, 4H), 7.48–7.42 (m, 2H), 7.36–7.30 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.25, 139.58, 137.28, 130.03, 128.63, 127.80, 127.07, 126.72, 125.14, 123.09, 122.32, 120.53, 120.37, 112.73, 111.30, 110.05, ppm.
3,6-Dibromo-9-phenyl-9H-carbazole (2c)32. Purification by flash chromatography (petroleum ether): a white solid (66 mg, 33%), mp = 164 °C; 1H NMR (400 MHz, CDCl3): δ 8.22 (s, 2H), 7.64 (t, J = 7.2 Hz, 2H), 7.53–7.51 (m, 5H), 7.27 (d, J = 8.8 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.87, 136.79, 130.12, 129.38, 128.11, 126.96, 123.93, 123.21, 113.05, 111.51, ppm.
2,7-Dibromo-9-phenyl-9H-carbazole (2d)31. Purification by flash chromatography (petroleum ether): a white solid (52 mg, 26%), mp = 184–185 °C; 1H NMR (400 MHz, CDCl3): δ 7.97 (d, J = 8.4 Hz, 2H), 7.69–7.64 (m, 2H), 7.57–7.51 (m, 5H), 7.42 (dd, J = 8.0 Hz, J = 1.6 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.90, 136.44, 130.28, 128.39, 127.12, 123.62, 121.68, 121.47, 120.00, 113.04, ppm.
9-(4-Bromophenyl)-3,6-di-tert-butyl-9H-carbazole (2e)33. Purification by flash chromatography (petroleum ether): a white solid (165 mg, 76%), mp = 158–159 °C; 1H NMR (400 MHz, CDCl3): δ 8.13 (d, J = 2.0 Hz, 2H), 7.71 (dt, J = 8.8 Hz, J = 2.8 Hz, 2H), 7.48–7.42 (m, 4H), 7.32 (dt, J = 8.4 Hz, J = 0.4 Hz, 2H), 1.47 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 143.15, 138.93, 137.27, 132.95, 128.28, 123.71, 123.46, 120.24, 116.30, 108.96, 34.73, 31.98, ppm.
3-Bromo-9-(4-bromophenyl)-9H-carbazole (2f)29. Purification by flash chromatography (petroleum ether): a white solid (130 mg, 65%), mp = 138–139 °C; 1H NMR (400 MHz, CDCl3): δ 8.24 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.50–7.40 (m, 4H), 7.36–7.29 (m, 2H), 7.23 (d, J = 8.0 Hz, 1H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.95, 139.30, 136.32, 133.25, 128.76, 128.64, 126.83, 125.23, 123.15, 122.40, 121.31, 120.62, 120.57, 112.98, 111.03, 109.78, ppm.
3,6-Dibromo-9-(4-bromophenyl)-9H-carbazole (2g)8a. Purification by flash chromatography (petroleum ether): a white solid (127 mg, 53%), mp = 217–218 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (s, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.62, 135.85, 133.39, 129.56, 128.56, 124.06, 123.33, 121.72, 113.37, 111.28, ppm.
2,7-Dibromo-9-(4-bromophenyl)-9H-carbazole (2h)34. Purification by flash chromatography (petroleum ether): a white solid (113 mg, 47%), mp = 190–192 °C; 1H NMR (400 MHz, CDCl3): δ 7.94 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.46–7.38 (m, 6H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.63, 135.48, 133.55, 128.72, 123.92, 122.07, 121.80, 121.55, 120.13, 112.87, ppm.
3-Bromo-9-(4-chlorophenyl)-9H-carbazole (2i). Purification by flash chromatography (petroleum ether): a white solid (75 mg, 42%), mp = 131–133 °C; 1H NMR (400 MHz, CDCl3): δ 8.22 (s, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.47–7.40 (m, 4H), 7.33–7.27 (m, 2H), 7.19 (d, J = 8.0 Hz, 1H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.95, 138.29, 134.71, 132.34, 129.18, 127.68, 127.24, 125.75, 124.13, 122.07, 121.30, 119.53, 119.51, 111.90, 109.95, 108.71, ppm; HRMS (MALDI): m/z calcd for C18H11BrClN [M]+ 354.9758, found 354.9751.
3,6-Dibromo-9-(4-chlorophenyl)-9H-carbazole (2j)35. Purification by flash chromatography (petroleum ether): a white solid (105 mg, 48%), mp = 214–216 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (s, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.71, 135.32, 133.85, 130.40, 129.54, 128.26, 124.03, 123.32, 113.34, 111.28, ppm.
2,7-Dibromo-9-(4-chlorophenyl)-9H-carbazole (2k). Purification by flash chromatography (petroleum ether): a white solid (85 mg, 39%), mp = 166–168 °C; 1H NMR (400 MHz, CDCl3): δ 7.94 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.46–7.40 (m, 6H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.71, 134.94, 134.18, 130.56, 128.43, 123.89, 121.77, 121.55, 120.11, 112.87, ppm; HRMS (MALDI): m/z calcd for C18H10Br2ClN [M]+ 432.8863, found 432.8859.
3,6-Di-tert-butyl-9-(4-fluorophenyl)-9H-carbazole (2l). Purification by flash chromatography (petroleum ether): a pale yellow solid (99 mg, 53%), mp = 192–193 °C; 1H NMR (400 MHz, CDCl3): δ 8.15 (dd, J = 1.6 Hz, J = 0.4 Hz, 2H), 7.53–7.49 (m, 2H), 7.47 (dd, J = 8.4 Hz, J = 2.0 Hz, 2H), 7.30–7.25 (m, 4H), 1.47 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 161.29 (d, JC–F = 245.5 Hz), 142.86, 139.36, 134.05 (d, JC–F = 2.9 Hz), 128.56 (d, JC–F = 8.4 Hz), 123.60, 123.20, 116.65 (d, JC–F = 22.6 Hz), 116.22, 108.86, 34.69, 31.96, ppm; 19F NMR (376 MHz, CDCl3): δ −36.65 to −36.72 (m), ppm; HRMS (MALDI): m/z calcd for C26H28FN [M]+ 373.2200, found 373.2199.
3,6-Dibromo-9-(4-fluorophenyl)-9H-carbazole (2m). Purification by flash chromatography (petroleum ether): a white solid (124 mg, 59%), mp = 164–166 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (dd, J = 2.0 Hz, J = 0.4 Hz, 2H), 7.51 (dd, J = 8.8 Hz, J = 2.0 Hz, 2H), 7.48–7.45 (m, 2H), 7.33–7.29 (m, 2H), 7.17 (dd, J = 8.4 Hz, J = 0.4 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 161.95 (d, JC–F = 247.4 Hz), 140.01, 132.67 (d, JC–F = 3.2 Hz), 129.46, 128.91 (d, JC–F = 8.7 Hz), 123.86, 123.25, 117.14 (d, JC–F = 22.8 Hz), 113.16, 111.24, ppm; 19F NMR (376 MHz, CDCl3): δ −34.72 to −34.79 (m), ppm; HRMS (MALDI): m/z calcd for C18H10Br2FN [M]+ 416.9159, found 416.9159.
3,6-Di-tert-butyl-9-(p-tolyl)-9H-carbazole (2n)36. Purification by flash chromatography (petroleum ether): a yellow oil (148 mg, 80%); 1H NMR (400 MHz, CDCl3): δ 8.22 (d, J = 1.2 Hz, 2H), 7.53–7.47 (m, 4H), 7.43 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 2.53 (s, 3H), 1.54 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 142.64, 139.51, 136.86, 135.55, 130.40, 126.71, 123.56, 123.27, 116.23, 109.26, 34.79, 32.12, 21.28, ppm.
3,6-Di-tert-butyl-9-(4-methoxyphenyl)-9H-carbazole (2o)37. Purification by flash chromatography (petroleum ether): a white solid (176 mg, 91%), mp = 160 °C; 1H NMR (400 MHz, CDCl3): δ 8.17 (dd, J = 2.0 Hz, J = 0.8 Hz, 2H), 7.49–7.45 (m, 4H), 7.29 (d, J = 8.8 Hz, 2H), 7.14–7.10 (m, 2H), 3.94 (s, 3H), 1.50 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 158.54, 142.49, 139.77, 130.83, 128.27, 123.49, 123.04, 116.17, 114.95, 109.07, 55.59, 34.73, 32.06, ppm.
3-Bromo-9-(p-tolyl)-9H-carbazole (2p)38. Purification by flash chromatography (petroleum ether): a white solid (69 mg, 41%), mp = 152–153 °C; 1H NMR (400 MHz, CDCl3): δ 8.27 (d, J = 1.6 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.51–7.38 (m, 7H), 7.33–7.25 (m, 2H), 2.52 (s, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.40, 139.74, 137.76, 134.54, 130.59, 128.52, 126.91, 126.59, 124.98, 122.99, 122.17, 120.44, 120.15, 21.17, ppm.
3-Bromo-9-(3-bromophenyl)-9H-carbazole (2q)29. Purification by flash chromatography (petroleum ether/EtOAc = 40[thin space (1/6-em)]:[thin space (1/6-em)]1): a white solid (124 mg, 62%), mp = 80–82 °C; 1H NMR (400 MHz, CDCl3): δ 8.24 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.70 (s, 1H), 7.63–7.59 (m, 1H), 7.50–7.25 (m, 7H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.87, 139.22, 138.61, 131.22, 130.86, 130.07, 128.78, 126.85, 125.64, 125.25, 123.32, 123.13, 122.41, 120.71, 120.55, 113.08, 111.09, 109.82, ppm.
3,6-Di-tert-butyl-9-(3-fluorophenyl)-9H-carbazole (2r). Purification by flash chromatography (petroleum ether): a white solid (140 mg, 75%), mp = 143–145 °C; 1H NMR (400 MHz, CDCl3): δ 8.16 (d, J = 2.0 Hz, 2H), 7.59–7.53 (m, 1H), 7.50 (dd, J = 4.8 Hz, J = 2.0 Hz, 2H), 7.42–7.38 (m, 3H), 7.33 (dt, J = 7.6 Hz, J = 0.8 Hz, 2H), 7.42–7.38 (m, 3H), 7.18–7.13 (m, 1H), 1.50 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 163.36 (d, JC–F = 246.5 Hz), 143.22, 139.75 (d, JC–F = 9.9 Hz), 138.81, 130.84 (d, JC–F = 9.3 Hz), 123.72, 123.50, 122.18 (d, JC–F = 3.2 Hz), 116.27, 113.91, 113.69 (d, JC–F = 2.3 Hz), 109.10, 34.71, 31.96, ppm; 19F NMR (376 MHz, CDCl3): δ −33.09 to −33.15 (m), ppm; HRMS (MALDI): m/z calcd for C26H28FN [M]+ 373.2200, found 373.2198.
9-(2-Bromophenyl)-3,6-di-tert-butyl-9H-carbazole (2s)39. Purification by flash chromatography (petroleum ether): a white solid (137 mg, 63%), mp = 173–174 °C; 1H NMR (400 MHz, CDCl3): δ 8.20 (d, J = 2.0 Hz, 2H), 7.89 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.55–7.38 (m, 5H), 7.03 (d, J = 8.4 Hz, 2H), 1.51 (s, 18H), ppm.
9-(4-Iodophenyl)-9H-carbazole (3a)40. Purification by flash chromatography (petroleum ether): a white solid (98 mg, 53%), mp = 133–135 °C; 1H NMR (400 MHz, CDCl3): δ 8.13 (dt, J = 8.0 Hz, J = 1.2 Hz, 2H), 7.95–7.91 (m, 2H), 7.44–7.37 (m, 4H), 7.35–7.28 (m, 4H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.50, 139.07, 137.50, 128.92, 126.06, 123.50, 120.37, 120.21, 109.55, 92.02, ppm.
3-Bromo-9-(4-iodophenyl)-9H-carbazole (3b). Purification by flash chromatography (petroleum ether): a white solid (105 mg, 47%), mp = 171–172 °C; 1H NMR (400 MHz, CDCl3): δ 8.23 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.49–7.41 (m, 2H), 7.36–7.22 (m, 5H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.84, 139.20, 137.01, 128.81, 128.74, 126.81, 125.24, 123.13, 122.41, 120.62, 120.56, 112.99, 111.03, 109.78, 92.47, ppm; HRMS (MALDI): m/z calcd for C18H11BrIN [M]+ 446.9114, found 446.9112.
3,6-Dibromo-9-(4-iodophenyl)-9H-carbazole (3c)40. Purification by flash chromatography (petroleum ether): a white solid 142 mg, 54%, mp = 188–190 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (s, 2H), 7.94 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 4H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.53, 139.36, 136.56, 129.55, 128.74, 124.09, 123.32, 113.38, 111.29, 92.93, ppm.
2,7-Dibromo-9-(4-iodophenyl)-9H-carbazole (3d)41. Purification by flash chromatography (petroleum ether): a white solid (145 mg, 55%), mp = 207–208 °C; 1H NMR (400 MHz, CDCl3): δ 7.98–7.92 (m, 4H), 7.46 (s, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.54, 139.52, 136.19, 128.89, 123.93, 121.83, 121.55, 120.13, 112.88, 93.32, ppm.
1,4-Bis(3,6-di-tert-butyl-9H-carbazol-9-yl)benzene (3e)42. Purification by flash chromatography (petroleum ether): a white solid (184 mg, 58%), mp = 297–298 °C; 1H NMR (400 MHz, CDCl3): δ 8.22 (s, 4H), 7.81 (s, 4H), 7.58–7.51 (m, 8H), 1.53 (s, 36H), ppm; 13C NMR (100 MHz, CDCl3): δ 143.16, 139.18, 136.73, 127.84, 123.77, 123.54, 116.36, 109.24, 34.80, 32.06, ppm.
3,6-Di-tert-butyl-9-(4-iodophenyl)-9H-carbazole (3f)5d. Purification by flash chromatography (petroleum ether): a white solid (113 mg, 47%), mp = 177 °C; 1H NMR (400 MHz, CDCl3): δ 8.15 (dd, J = 2.0 Hz, J = 0.4 Hz, 2H), 7.94–7.90 (m, 2H), 7.48 (dd, J = 8.4 Hz, J = 1.6 Hz, 2H), 7.36–7.33 (m, 4H), 1.49 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 143.20, 138.94, 138.85, 138.01, 128.53, 123.73, 123.52, 116.33, 109.01, 99.99, 91.34, 34.76, 32.00, ppm.
9-(3-Iodophenyl)-9H-carbazole (3g)43. Purification by flash chromatography (petroleum ether): a white solid (61 mg, 33%), mp = 111–112 °C; 1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 7.6 Hz, 2H), 7.93 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.40 (q, J = 8.0 Hz, 4H), 7.30 (q, J = 8.0 Hz, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.57, 138.98, 136.46, 136.00, 131.25, 126.44, 126.11, 123.51, 120.38, 120.31, 109.61, 94.58, ppm.
3,6-Di-tert-butyl-9-(3-iodophenyl)-9H-carbazole (3h). Purification by flash chromatography (petroleum ether): a white solid (106 mg, 44%), mp = 170–171 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (d, J = 2.0 Hz, 2H), 7.98 (t, J = 2.0 Hz, 1H), 7.81–7.79 (m, 1H), 7.61–7.58 (m, 1H), 7.52 (dd, J = 8.4 Hz, J = 1.6 Hz, 2H), 7.40–7.32 (m, 3H), 1.52 (s, 18H), ppm; 13C NMR (100 MHz, CDCl3): δ 143.30, 139.50, 138.93, 135.94, 135.60, 131.18, 126.00, 123.80, 123.56, 116.35, 109.09, 99.99, 94.56, 34.79, 32.04, ppm.
3-Bromo-9-(3-iodophenyl)-9H-carbazole (3ia)43. Purification by flash chromatography (petroleum ether): a colorless oil (114 mg, 51%); 1H NMR (400 MHz, CDCl3): δ 8.26 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 2.0 Hz, 1H), 7.86–7.83 (m, 1H), 7.54–7.45 (m, 3H), 7.41–7.26 (m, 4H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.90, 139.24, 138.50, 136.81, 135.90, 131.40, 128.82, 126.91, 126.35, 125.27, 123.18, 122.43, 120.76, 120.61, 113.13, 111.13, 109.88, 94.76, ppm.
1,3-Bis(3-bromo-9H-carbazol-9-yl)benzene (3ib)44. Purification by flash chromatography (petroleum ether): a white solid (221 mg, 78%), mp = 119 °C; 1H NMR (400 MHz, CDCl3): δ 8.28 (d, J = 2.0 Hz, 2H), 8.12 (d, J = 7.6 Hz, 2H), 7.89 (t, J = 8.0 Hz, 1H), 7.77 (t, J = 2.0 Hz, 1H), 7.71 (dd, J = 8.0 Hz, J = 2.0 Hz, 2H), 7.56–7.47 (m, 6H), 7.41 (d, J = 8.8 Hz, 2H), 7.37–7.33 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.90, 139.24, 139.05, 131.49, 128.86, 126.95, 126.07, 125.39, 125.17, 123.26, 122.55, 120.82, 120.69, 113.18, 111.10, 109.84, ppm.
2,7-Dibromo-9-(3-iodophenyl)-9H-carbazole (3j). Purification by flash chromatography (petroleum ether): a white solid (142 mg, 54%), mp = 200 °C; 1H NMR (400 MHz, CDCl3): δ 7.96 (s, 1H), 7.94 (s, 1H), 7.91–7.87 (m, 2H), 7.52–7.37 (m, 6H), ppm; 13C NMR (100 MHz, CDCl3): δ 141.68, 137.64, 137.60, 136.08, 131.64, 126.65, 124.00, 121.77, 121.55, 120.16, 112.90, 94.95, ppm; anal. calcd for C18H10Br2IN: C, 41.02; H, 1.91; N, 2.66. Found: C, 41.22; H, 1.99; N, 2.69.
3,6-Dibromo-9-(3-iodophenyl)-9H-carbazole (3k). Purification by flash chromatography (petroleum ether): a white solid (87 mg, 33%), mp = 180–181 °C; 1H NMR (400 MHz, CDCl3): δ 8.21 (d, J = 2.0 Hz, 2H), 7.89–7.85 (m, 2H), 7.56–7.50 (m, 3H), 7.37 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.8 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 139.59, 138.03, 137.17, 135.85, 131.49, 129.60, 126.29, 124.07, 123.32, 113.47, 111.36, 94.78, ppm; anal. calcd for C18H10Br2IN: C, 41.02; H, 1.91; N, 2.66. Found: C, 41.97; H, 2.28; N, 2.61.
9,9′-(4-Bromo-1,3-phenylene)bis(9H-carbazole) (3l). Purification by flash chromatography (petroleum ether): a white solid (185 mg, 76%), mp = 226 °C; 1H NMR (400 MHz, CDCl3): δ 8.21–8.12 (m, 5H), 7.79 (d, J = 2.4 Hz, 1H), 7.73 (dd, J = 8.4 Hz, J = 2.3 Hz, 1H), 7.55–7.45 (m, 6H), 7.35 (q, J = 8.0 Hz, 4H), 7.27 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.66, 140.23, 138.51, 138.38, 135.50, 129.17, 128.32, 126.33, 126.19, 123.76, 123.50, 121.89, 120.69, 120.56, 120.54, 120.37, 110.00, 109.48, ppm; HRMS (MALDI): m/z calcd for C30H19BrN2 [M]+ 486.0726, found 486.0726.
9-(2-Bromo-5-iodophenyl)-9H-carbazole (3m). Purification by flash chromatography (petroleum ether): a white solid (114 mg, 51%), mp = 138 °C; 1H NMR (400 MHz, CDCl3): δ 8.18 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 2.0 Hz, 1H), 7.75 (dd, J = 8.4 Hz, J = 2.4 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.48–7.44 (m, 2H), 7.37–7.33 (m, 2H), 7.12 (d, J = 8.0 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.59, 139.90, 139.14, 138.23, 135.54, 126.13, 123.95, 123.42, 120.47, 120.38, 110.00, 92.40, ppm; HRMS (MALDI): m/z calcd for C18H11BrIN [M]+ 446.9120, found 446.9119.
9-(4′-Fluoro-[1,1′-biphenyl]-4-yl)-9H-carbazole (4a). Purification by flash chromatography (petroleum ether): a white solid (74 mg, 44%), mp = 205–206 °C; 1H NMR (400 MHz, CDCl3): δ 8.20 (d, J = 7.6 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.70–7.66 (m, 4H), 7.51–7.44 (m, 4H), 7.34 (t, J = 8.0 Hz, 2H), 7.23 (t, J = 8.4 Hz, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 162.69 (d, JC–F = 245.4 Hz), 140.85, 139.32, 136.91, 136.42 (d, JC–F = 3.2 Hz), 128.74 (d, JC–F = 8.0 Hz), 128.40, 127.41, 126.01, 123.47, 120.37, 120.04, 115.89 (d, JC–F = 21.3 Hz), 109.81, ppm; 19F NMR (376 MHz, CDCl3): δ −115.04, ppm; HRMS (MALDI): m/z calcd for C24H16FN [M]+ 337.1261, found 337.1263.
9-(4-(1H-Pyrrol-1-yl)phenyl)-9H-carbazole (4b). Purification by flash chromatography (petroleum ether): a white solid (113 mg, 73%), mp = 208–209 °C; 1H NMR (400 MHz, CDCl3): δ 8.20 (d, J = 8.0 Hz, 2H), 7.65 (s, 4H), 7.50–7.44 (m, 4H), 7.37–7.33 (m, 2H), 7.23–7.22 (s, 2H), 6.47–6.46 (m, 2H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.93, 139.76, 135.05, 128.35, 126.09, 123.45, 121.66, 120.44, 120.13, 119.40, 111.00, 109.70, ppm; HRMS (MALDI): m/z calcd for C22H16N2 [M]+ 308.1308, found 308.1306.
9-(4-(m-Tolylethynyl)phenyl)-9H-carbazole (4c). Purification by flash chromatography (petroleum ether): a white solid (109 mg, 61%), mp = 114 °C; 1H NMR (400 MHz, CDCl3): δ 8.18 (d, J = 8.0 Hz, 2H), 7.81–7.77 (m, 2H), 7.62–7.59 (m, 2H), 7.50–7.42 (m, 6H), 7.36–7.29 (m, 3H), 7.22 (d, J = 7.6 Hz, 1H), 2.42 (s, 3H), ppm; 13C NMR (100 MHz, CDCl3): δ 140.61, 138.18, 137.53, 133.14, 132.31, 129.48, 128.84, 128.40, 126.88, 126.12, 123.61, 122.90, 122.43, 120.43, 120.27, 109.81, 90.61, 88.42, 21.34, ppm; HRMS (MALDI): m/z calcd for C27H19N [M]+ 357.1512, found 357.1513.

Conclusions

We have developed a copper/β-diketone-catalysed method for C–N bond-forming reaction of carbazoles with aryl iodides. Aryl iodides bearing electron-withdrawing group showed slightly higher reactivity than those bearing electron-donating group in this catalytic system. Aryl iodides bearing sterically hindered group were difficult to react with carbazoles. Reaction temperature significantly affected the site-selectivity of diiodobenzene. At high reaction temperature, carbazoles bearing electron-withdrawing group were prone to undergo single coupling with diiodobenzene with high selectivity. However, carbazoles bearing electron-donating group underwent double coupling and formed disubstituted or deiodinated product, but the trend was inhibited by reduced reaction temperature. The resulting iodinated N-arylated carbazoles have been proven to be useful intermediates in organic synthesis.

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (grant number 21466033).

Notes and references

  1. (a) A. W. Schmidt, K. R. Reddy and H. J. Knölker, Chem. Rev., 2012, 112, 3193–3328 CrossRef CAS PubMed ; (b) I. Bauer and H. J. Knölker, in Topics in Current Chemistry, ed. H. J. Knölker, Springer-Verlag Berlin Heidelberg, 2012, vol. 309, pp. 203–254 Search PubMed ; (c) C. Börger, O. Kataeva and H. J. Knölker, Org. Biomol. Chem., 2012, 10, 7269–7273 RSC .
  2. (a) E. A. Dubois, J. C. van den Bos, T. Doornbos, P. A. P. M. van Doremalen, G. A. Somsen, J. A. J. M. Vekemans, A. G. M. Janssen, H. D. Batink, G. J. Boer, M. Pfaffendorf, E. A. van Royen and P. A. van Zwieten, J. Med. Chem., 1996, 39, 3256–3262 CrossRef CAS PubMed ; (b) T. A. Choi, R. Czerwonka, W. Fröhner, M. P. Krahl, K. R. Reddy, S. G. Franzblau and H.-J. Knölker, ChemMedChem, 2006, 1, 812–815 CrossRef CAS PubMed ; (c) T. A. Choi, R. Czerwonka, R. Forke, A. Jäger, J. Knöll, M. P. Krahl, T. Krause, K. R. Reddy, S. G. Franzblau and H.-J. Knölker, Med. Chem. Res., 2008, 17, 374–385 CrossRef CAS ; (d) D. Zhu, M. Chen, M. Li, B. Luo, Y. Zhao, P. Huang, F. Xue, S. Rapposelli, R. Pi and S. Wen, Eur. J. Med. Chem., 2013, 68, 81–88 CrossRef CAS PubMed .
  3. (a) C. Teng, X. C. Yang, C. Z. Yuan, C. Y. Li, R. K. Chen, H. N. Tian, S. F. Li, A. Hagfeldt and L. C. Sun, Org. Lett., 2009, 11, 5542–5545 CrossRef CAS PubMed ; (b) J. Tang, J. L. Hua, W. J. Wu, J. Li, Z. G. Jin, Y. T. Long and H. Tian, Energy Environ. Sci., 2010, 3, 1736–1745 RSC ; (c) B. J. Song, H. M. Song, I. T. Choi, S. K. Kim, K. D. Seo, M. S. Kang, M. J. Lee, D. W. Cho, M. J. Ju and H. K. Kim, Chem.–Eur. J., 2011, 17, 11115–11121 CrossRef CAS PubMed .
  4. (a) K. R. J. Thomas, J. T. Lin, Y. T. Tao and C. W. Ko, J. Am. Chem. Soc., 2001, 123, 9404–9411 CrossRef CAS PubMed ; (b) W. Y. Wong, C. L. Ho, Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah and Z. Y. Lin, Angew. Chem., Int. Ed., 2006, 45, 7800–7803 CrossRef CAS PubMed .
  5. (a) T. Sahu, S. K. Pal, T. Misra and T. Ganguly, J. Photochem. Photobiol., C, 2005, 171, 39–50 CrossRef CAS PubMed ; (b) J. Q. Ding, B. H. Zhang, J. H. Lü, Z. Y. Xie, L. X. Wang, X. B. Jing and F. S. Wang, Adv. Mater., 2009, 21, 4983–4986 CrossRef CAS PubMed ; (c) B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He and X. C. Gao, Adv. Funct. Mater., 2010, 20, 2448–2458 CrossRef CAS PubMed ; (d) E. M. Barea, C. Zafer, B. Gultekin, B. Aydin, S. Koyuncu, S. Icli, F. F. Santiago and J. Bisquert, J. Phys. Chem. C, 2010, 114, 19840–19848 CrossRef CAS ; (e) M. Martínez-Palau, E. Perea, F. López-Calahorra and D. Velasco, Lett. Org. Chem., 2004, 1, 231–237 CrossRef ; (f) J.-H. Pan, Y.-M. Chou, H.-L. Chiu and B.-C. Wang, Aust. J. Chem., 2009, 62, 483–492 CrossRef CAS .
  6. (a) K. Nozaki, K. Takahashi, K. Nakano, T. Hiyama, H.-Z. Tang, M. Fujiki, S. Yamaguchi and K. Tamao, Angew. Chem., Int. Ed., 2003, 42, 2051–2053 CrossRef CAS PubMed ; (b) W. C. P. Tsang, N. Zheng and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 14560–14561 CrossRef CAS PubMed ; (c) L. Ackermann and A. Althammer, Angew. Chem., Int. Ed., 2007, 46, 1627–1629 CrossRef CAS PubMed ; (d) R. Hosseinzadeh, M. Tajbakhsh, M. Alikarami and M. Mohadjerani, J. Heterocycl. Chem., 2008, 45, 1815–1818 CrossRef CAS PubMed ; (e) B. J. Stokes, B. Jovanović, H. J. Dong, K. J. Richert, R. D. Riell and T. G. Driver, J. Org. Chem., 2009, 74, 3225–3228 CrossRef CAS PubMed ; (f) M. E. Budén, V. A. Vaillard, S. E. Martin and R. A. Rossi, J. Org. Chem., 2009, 74, 4490–4498 CrossRef PubMed ; (g) S. H. Cho, J. Yoon and S. Chang, J. Am. Chem. Soc., 2011, 133, 5996–6005 CrossRef CAS PubMed ; (h) Y. A. Qiu, W. Q. Kong, C. L. Fu and S. M. Ma, Org. Lett., 2012, 14, 6198–6201 CrossRef CAS PubMed ; (i) S. Chakrabarty, I. Chatterjee, L. Tebben and A. Studer, Angew. Chem., Int. Ed., 2013, 52, 2968–2971 CrossRef CAS PubMed ; (j) A. C. Hernandez-Perez and S. K. Collins, Angew. Chem., Int. Ed., 2013, 52, 12696–12700 CrossRef CAS PubMed ; (k) N. C. Bruno, N. Niljianskul and S. L. Buchwald, J. Org. Chem., 2014, 79, 4161–4166 CrossRef CAS PubMed ; (l) D. Zhu, Q. Liu, B. Luo, M. Chen, R. Pi, P. Huang and S. Wen, Adv. Synth. Catal., 2013, 355, 2172–2178 CrossRef CAS PubMed .
  7. (a) C. S. Wu, J. W. Wu and Y. Chen, J. Mater. Chem., 2012, 22, 23877–23884 RSC ; (b) J. F. Burnett and R. E. Zahler, Chem. Rev., 1951, 49, 273–412 CrossRef ; (c) J. A. Zoltewicz, Top. Curr. Chem., 1975, 59, 33–64 CAS .
  8. (a) J. Kwak, Y. Y. Lyu, H. Lee, B. Choi, K. Char and C. Lee, J. Mater. Chem., 2012, 22, 6351–6355 RSC ; (b) R. M. Adhikari, R. Mondal, B. K. Shah and D. C. Neckers, J. Org. Chem., 2007, 72, 4727–4732 CrossRef CAS PubMed ; (c) F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382–2384 CrossRef PubMed ; (d) F. Ullmann and E. Illgen, Ber. Dtsch. Chem. Ges., 1914, 47, 380–383 CrossRef CAS PubMed .
  9. (a) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116, 7901–7902 CrossRef CAS ; (b) J. P. Wolfe, S. Wagaw and S. L. Buchwald, J. Am. Chem. Soc., 1996, 118, 7215–7216 CrossRef CAS ; (c) J. P. Wolfe, S. Wagaw, J. Marcoux and S. L. Buchwald, Acc. Chem. Res., 1998, 31, 805–818 CrossRef CAS ; (d) B. H. Yang and S. L. Buchwald, J. Organomet. Chem., 1999, 576, 125–146 CrossRef CAS ; (e) A. R. Muci and S. L. Buchwald, Top. Curr. Chem., 2002, 219, 131–209 CAS ; (f) K. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman and S. L. Buchwald, Angew. Chem., Int. Ed., 2006, 45, 6523–6527 CrossRef CAS PubMed .
  10. (a) J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37, 2046–2067 CrossRef CAS ; (b) J. F. Hartwig, Acc. Chem. Res., 1998, 31, 852–860 CrossRef CAS ; (c) J. F. Hartwig, Pure Appl. Chem., 1999, 71, 1417–1424 CrossRef CAS ; (d) J. F. Hartwig, Synlett, 1997, 329–340 CrossRef CAS PubMed ; (e) D. Baranano, G. Mann and J. F. Hartwig, Curr. Org. Chem., 1997, 1, 287–305 CrossRef CAS .
  11. (a) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400–5449 CrossRef CAS PubMed ; (b) D. W. Ma and Q. Cai, Acc. Chem. Res., 2008, 41, 1450–1460 CrossRef CAS PubMed ; (c) M. Carril, R. SanMartin and E. Domínguez, Chem. Soc. Rev., 2008, 37, 639–647 RSC ; (d) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954–6971 CrossRef CAS PubMed ; (e) D. S. Surry and S. L. Buchwald, Chem. Sci., 2010, 1, 13–31 RSC ; (f) H.-H. Rao and H. Fu, Synlett, 2011, 745–769 CAS ; (g) S. R. Chemler, Science, 2013, 341, 624–626 CrossRef CAS PubMed .
  12. (a) D. W. Ma, Y. D. Zhang, J. C. Yao, S. H. Wu and F. G. Tao, J. Am. Chem. Soc., 1998, 120, 12459–12467 CrossRef CAS ; (b) H. Zhang, Q. Cai and D. W. Ma, J. Org. Chem., 2005, 70, 5164–5173 CrossRef CAS PubMed ; (c) S. Biswas and S. Batra, Eur. J. Org. Chem., 2013, 4895–4902 CrossRef CAS PubMed ; (d) F. M. Cordero, B. B. Khairnar, P. Bonanno, A. Martinelli and A. Brandi, Eur. J. Org. Chem., 2013, 4879–4886 CrossRef CAS PubMed .
  13. (a) A. Kiyomori, J. F. Marcoux and S. L. Buchwald, Tetrahedron Lett., 1999, 40, 2657–2660 CrossRef CAS ; (b) H. B. Goodbrand and N. X. Hu, J. Org. Chem., 1999, 64, 670–674 CrossRef CAS ; (c) W. Y. Wong, L. Liu, D. M. Cui, L. M. Leung, C. F. Kwong, T. H. Lee and H. F. Ng, Macromolecules, 2005, 38, 4970–4976 CrossRef CAS ; (d) R. A. Altman, E. D. Koval and S. L. Buchwald, J. Org. Chem., 2007, 72, 6190–6199 CrossRef CAS PubMed .
  14. (a) K. R. Crawford and A. Padwa, Tetrahedron Lett., 2002, 43, 7365–7368 CrossRef CAS ; (b) D. P. Phillips, A. R. Hudson, B. Nguyen, T. L. Lau, M. H. McNeill, J. E. Dalgard, J. H. Chen, R. J. Penuliar, T. A. Miller and L. Zhi, Tetrahedron Lett., 2006, 47, 7137–7138 CrossRef CAS PubMed ; (c) D. P. Phillips, X. F. Zhu, T. L. Lau, X. H. He, K. Y. Yang and H. Liu, Tetrahedron Lett., 2009, 50, 7293–7296 CrossRef CAS PubMed ; (d) P. F. Larsson, P. Astvik and P. O. Norrby, Beilstein J. Org. Chem., 2012, 8, 1909–1915 CrossRef CAS PubMed .
  15. (a) A. Shafir and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 8742–8743 CrossRef CAS PubMed ; (b) B. de Lange, M. H. Lambers-Verstappen, L. S. van de Vondervoort, N. Sereinig, R. de Rijk, A. H. M. de Vries and J. G. de Vries, Synlett, 2006, 3105–3109 CrossRef CAS ; (c) X. Lv and W. L. Bao, J. Org. Chem., 2007, 72, 3863–3867 CrossRef CAS PubMed ; (d) Z. X. Xi, F. H. Liu, Y. B. Zhou and W. Z. Chen, Tetrahedron, 2008, 64, 4254–4259 CrossRef CAS PubMed .
  16. (a) H. J. Cristau, P. P. Cellier, J. F. Spindler and M. Taillefer, Chem.–Eur. J., 2004, 10, 5607–5622 CrossRef CAS PubMed ; (b) Y. Wang, Z. Q. Wu, L. X. Wang, Z. K. Li and X. G. Zhou, Chem.–Eur. J., 2009, 15, 8971–8974 CrossRef CAS PubMed ; (c) Z. Q. Wu, L. Zhou, Z. Q. Jiang, D. Wu, Z. K. Li and X. G. Zhou, Eur. J. Org. Chem., 2010, 4971–4975 CrossRef CAS PubMed .
  17. (a) P. J. Fagan, E. Hauptman, R. Shapiro and A. Casalnuovo, J. Am. Chem. Soc., 2000, 122, 5043–5051 CrossRef CAS ; (b) F. Y. Kwong, A. Klapars and S. L. Buchwald, Org. Lett., 2002, 4, 581–584 CrossRef CAS PubMed ; (c) F. Y. Kwong and S. L. Buchwald, Org. Lett., 2003, 5, 793–796 CrossRef CAS PubMed ; (d) A. S. Gajare, K. Toyota, M. Yoshifuji and F. Ozawa, Chem. Commun., 2004, 1994–1995 RSC ; (e) H. H. Rao, Y. Jin, H. Fu, Y. Y. Jiang and Y. F. Zhao, Chem.–Eur. J., 2006, 12, 3636–3646 CrossRef CAS PubMed ; (f) D. S. Jiang, H. Fu, Y. Y. Jiang and Y. F. Zhao, J. Org. Chem., 2007, 72, 672–674 CrossRef CAS PubMed ; (g) L. B. Zhu, L. Cheng, Y. X. Zhang, R. G. Xie and J. S. You, J. Org. Chem., 2007, 72, 2737–2743 CrossRef CAS PubMed ; (h) H. C. Ma and X. Z. Jiang, J. Org. Chem., 2007, 72, 8943–8946 CrossRef CAS PubMed ; (i) M. H. Yang and F. Liu, J. Org. Chem., 2007, 72, 8969–8971 CrossRef CAS PubMed ; (j) P. Suresh and K. Pitchumani, J. Org. Chem., 2008, 73, 9121–9124 CrossRef CAS PubMed ; (k) Q. Zhang, D. P. Wang, X. Y. Wang and K. Ding, J. Org. Chem., 2009, 74, 7187–7190 CrossRef CAS PubMed ; (l) L. Liang, Z. K. Li and X. G. Zhou, Org. Lett., 2009, 11, 3295–3297 Search PubMed ; (m) D. P. Wang, F. X. Zhang, D. Z. Kuang, J. X. Yu and J. H. Li, Green Chem., 2012, 14, 1268–1271 RSC .
  18. (a) L. B. Zhu, P. Guo, G. C. Li, J. B Lan, R. G. Xie and J. S. You, J. Org. Chem., 2007, 72, 8535–8538 CrossRef CAS PubMed ; (b) L. B. Zhu, G. C. Li, L. Luo, P. Guo, J. B Lan and J. S. You, J. Org. Chem., 2009, 74, 2200–2202 CrossRef CAS PubMed ; (c) B. Sreedhar, R. Arundhathi, P. L. Reddy and M. L. Kantam, J. Org. Chem., 2009, 74, 7951–7954 CrossRef CAS PubMed ; (d) H. H. Xu and C. Wolf, Chem. Commun., 2009, 1715–1717 RSC ; (e) J. Y. Dong, Y. Wang, Q. J. Xiang, X. R. Lv, W. Weng and Q. L. Zeng, Adv. Synth. Catal., 2013, 355, 692–696 CrossRef CAS PubMed ; (f) O. A. Davis, M. Hughes and J. A. Bull, J. Org. Chem., 2013, 78, 3470–3475 CrossRef CAS PubMed .
  19. A. Klapars, J. C. Antilla, X. H. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2001, 123, 7727–7729 CrossRef CAS .
  20. E. Buck, Z. J. Song, D. Tschaen, P. G. Dormer, R. P. Volante and P. J. Reider, Org. Lett., 2002, 4, 1623–1626 CrossRef CAS PubMed .
  21. P. E. Maligres, S. W. Krska and P. G. Dormer, J. Org. Chem., 2012, 77, 7646–7651 CrossRef CAS PubMed .
  22. T. Cohen, J. Wood and A. G. Dietz Jr, Tetrahedron Lett., 1974, 15, 3555–3558 CrossRef .
  23. A. J. Paine, J. Am. Chem. Soc., 1987, 109, 1496–1502 CrossRef CAS .
  24. (a) J. Lindley, Tetrahedron, 1984, 40, 1433–1456 CrossRef CAS ; (b) H. L. Aalten, G. Van Koten, D. M. Grove, T. Kuilman, O. G. Piekstra, L. A. Hulshof and R. A. Sheldon, Tetrahedron, 1989, 45, 5565–5578 CrossRef CAS .
  25. Y. Zhou and J. G. Verkade, Adv. Synth. Catal., 2010, 352, 616–620 CrossRef CAS PubMed .
  26. X. Li, D. Yang, Y. Jiang and H. Fu, Green Chem., 2010, 12, 1097–1105 RSC .
  27. D. H. Lee, S. G. Lee, D. I. Jung and J. T. Hahn, Asian J. Chem., 2013, 25, 501–504 CAS .
  28. P. Kautny, D. Lumpi, Y. Wang, A. Tissot, J. Bintinger, E. Hork el, B. Stöger, C. Hametner, H. Hagemann, D. Ma and J. Fröhlich, J. Mater. Chem. C, 2014, 2, 2069–2081 RSC .
  29. H. S. Son and J. Y. Lee, Org. Electron., 2011, 12, 1025–1032 CrossRef CAS PubMed .
  30. M. Czerwińska, M. Wierzbicka, K. Guzow, I. Bylińska and W. Wiczk, RSC Adv., 2014, 4, 19310–19320 RSC .
  31. W. Jiang, L. Duan, J. Qiao, G. Dong, D. Zhang, L. Wang and Y. Qiu, J. Mater. Chem., 2011, 21, 4918–4926 RSC .
  32. R. S. Klausen, J. R. Widawsky, T. A. Su, H. Li, Q. Chen, M. L. Steigerwald, L. Venkataraman and C. Nuckolls, Chem. Sci., 2014, 5, 1561–1564 RSC .
  33. Y. Liu, M. Nishiura, Y. Wang and Z. Hou, J. Am. Chem. Soc., 2006, 128, 5592–5593 CrossRef CAS PubMed .
  34. J. K. Kwon, J. H. Cho, Y.-S. Ryu, S. H. Oh and E. K. Yum, Tetrahedron, 2011, 67, 4820–4825 CrossRef CAS PubMed .
  35. L. Liu, W.-Y. Wong, J.-X. Shi, K. W. Cheah, T.-H. Lee and L. M. Leung, J. Organomet. Chem., 2006, 691, 4028–4041 CrossRef CAS PubMed .
  36. S.-K. Chiu, Y.-C. Chung, G.-S. Liou and Y. O. Su, J. Chin. Chem. Soc., 2012, 59, 331–337 CrossRef CAS PubMed .
  37. T. Xu, R. Lu, X. Liu, X. Zheng, X. Qiu and Y. Zhao, Org. Lett., 2007, 9, 797–800 CrossRef CAS PubMed .
  38. C.-H. Siu, C.-L. Ho, J. He, T. Chen, P. Majumda, J. Zhao, H. Li and W.-Y. Wong, Polyhedron, 2014, 82, 71–79 CrossRef CAS PubMed .
  39. J. Lv, Q. Liu, J. Tang, F. Perdih and K. Kranjc, Tetrahedron Lett., 2012, 53, 5248–5252 CrossRef CAS PubMed .
  40. Y.-C. Chen, G.-S. Huang, C.-C. Hsiao and S.-A. Chen, J. Am. Chem. Soc., 2006, 128, 8549–8558 CrossRef CAS PubMed .
  41. H. Jian and J. M. Tour, J. Org. Chem., 2003, 68, 5091–5103 CrossRef CAS PubMed .
  42. B. R. Kaafarani, A. O. El-Ballouli, R. Trattnig, A. Fonari, S. Sax, B. Wex, C. Risko, R. S. Khnayzer, S. Barlow, D. Patra, T. V. Timofeeva, E. J. W. List, J. L. Brédas and S. R. Marder, J. Mater. Chem. C, 2013, 1, 1638–1650 RSC .
  43. J. H. Park, T. W. Koh, Y. Do, M. H. Lee and S. Yoo, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2356–2365 CrossRef PubMed .
  44. S. O. Jeon and J. Y. Lee, J. Mater. Chem., 2012, 22, 7239–7244 RSC .

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra07690k

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.