Nano polypropylenimine dendrimer (DAB-PPI-G1): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives

Behrooz Maleki* and Safoora Sheikh
Department of Chemistry, Hakim Sabzevari University, Sabzevar 96179-76487, Iran. E-mail: b.maleki@hsu.ac.ir; Fax: +9844010300; Tel: +985144013324

Received 13th March 2015 , Accepted 16th April 2015

First published on 16th April 2015


Abstract

The nano polypropylenimine dendrimer (DAB-PPI-G1) Lewis base catalyst was found to be a highly efficient and recoverable catalyst for the rapid and convenient synthesis of 2-amino-2-chromene derivatives through the three-component condensation of aromatic aldehydes, malononitrile or ethyl cyanoacetate and phenols under solvent-free conditions in excellent yields and short reaction times.


Introduction

Dendrimers are monodisperse and usually highly symmetric, spherical compounds. Nano polypropylenimine is an important class of dendrimer. In fact, dendrimers are polymer nanostructures with unique capabilities. First generation polypropylenimine dendrimers consist of four free terminal NH2 groups.1 These groups make polypropylenimine (PPI) dendrimers polyvalent and also increase their basic properties. Polypropylenimine dendrimers are used as agents for targeted drug delivery and gene transfer.2 The physical characteristics of dendrimers, including their monodispersity, water solubility, encapsulation ability, and large number of functionalizable peripheral groups, make these macromolecules appropriate candidates for evaluation as drug delivery vehicles (Fig. 1).
image file: c5ra04458h-f1.tif
Fig. 1 Schematic representation of dendrimeric structures.

2-Amino-2-chromen derivatives have attracted extensive interest owing to their biological activity.3 There is a widespread interest in the synthesis of chromene and its derivatives owing to their diverse range of biological properties such as their antimicrobial,4 TNF-α inhibitory,5 antifungal,6 estrogenic,7 anticancer,8 anti-HIV,9 and anti-bacterial properites.10 Such compounds have also been applied in pigments,11 pesticides and insecticides.12 Among the several methods reported for the synthesis of 2-amino-2-chromen derivatives, the three-component reaction between aldehydes, malononitrile or ethyl cyanoacetate and phenols is particularly popular. Catalysts that have been used for this conversion include a basic ionic liquid [1-(n-butyl)-3-methylimidazolium hydroxide ([bmim]OH)],13 p-dimethylaminopyridine (DMAP),14 Triton B,15 K2CO3,16 MCM-41-NH2,17 cetyltrimethylammonium chloride (CTACl),18 cetyltrimethylammonium bromide (CTABr),19 K3PO4·3H2O,20 piperazine,21 tetramethylguanidine,22 H14[NaP5W30O110],23 CuSO4·5H2O,24 methanesulfonic acid,25 KF-Al2O3,26 potassium phthalimide-N-oxyl,27 the nanostructured diphosphate Na2CaP2O7,28 DBU,29 and Ca(OH)2.30 However, most of the reported methods suffer from one or more of the following drawbacks: low yields, long reaction times, harsh reaction conditions, tedious work-up leading to the generation of large amounts of toxic waste, and the use of unrecyclable, hazardous, catalysts. Therefore, the use of eco-friendly and non-toxic catalysts with high efficiency in the synthesis of these compounds is highly regarded.

Results and discussion

During the course of our recent studies directed toward the development of practical, safe and environmentally friendly procedures for some important transformations,31 we hoped to report a simple and efficient procedure for the synthesis of 2-amino-chromenes using the nano polypropylenimine dendrimer (DAB-PPI-G1) under solvent-free conditions (Scheme 1).
image file: c5ra04458h-s1.tif
Scheme 1 One-pot synthesis of 2-amino-2-chromene derivatives.

The core of PPI is a diamine (commonly 1,4-diaminobutane). The reaction began with the addition of four molecules of acrylonitrile to the central 1,4-diaminobutane core, and produced the generation 0.5 polypropylenimine dendrimer with four terminal nitrile groups. In the next step, we reduced the nitrile groups using NaBH4 in the presence of anhydrous cobalt chloride catalyst and produced the generation 1 nano polypropylenimine dendrimer with four terminal amine groups (Scheme 2).


image file: c5ra04458h-s2.tif
Scheme 2 Synthesis of the nano polypropylenimine dendrimer (DAB-PPI-G1).

Scanning electron microscopy images of the nano polypropylenimine dendrimer are shown in Fig. 2A. The morphology indicates agglomeration of the dendrimer particles and a porous structure. The images shown in Fig. 2B have been prepared by an optical microscope with nano focus, they show the approximate size of particles of PPI dendrimer that have been sprayed onto the glass through the use of a color scale (Fig. 2B).


image file: c5ra04458h-f2.tif
Fig. 2 (A) Scanning electron microscopy images of dendrimer PPI G1 (i and ii); (B) optical microscopy nano focus images of dendrimer PPI G1: (i) dendrimer PPI sprayed on glass (a film of PPI G1) and (ii) an image obtained from the particle sizes within the PPI G1 film on glass; (C) particle size dispersion of PPI by a dynamic light scattering method (DLS).

The size dispersion of the PPI synthesized by the proposed method was investigated by dynamic light scattering (DLS) and shown in Fig. 2C. As it can be seen, the nanoparticle size is between 13–53 nm and the mean diameter is 24 nm.

Creation of molecular functionality and diversity32 from common starting materials while combining economic33 and environmental34 aspects constitutes a great challenge in modern organic chemistry.35 In these contexts, multicomponent reactions (MCRs) under solvent-free conditions are valuable procedures in organic synthesis because a multistep reaction may produce considerable amounts of environmentally unfavorable wastes mainly due to a series of complex isolation procedures, which often need expensive, toxic, and hazardous solvents after each step. Malononitrile is one of the most versatile reagents to be used in MCRs because of the high reactivity of both the methylene and the cyano groups.36 From this perspective, we used malononitrile (1.5 mmol) as the active reagent to react with benzaldehyde (1 mmol) and 1-naphthol (1 mmol) to optimize the reaction conditions at first. A summary of the optimization experiments is provided in Table 1.

Table 1 Optimization of reaction conditions
Entry Catalyst Conditions Time (min) Yielda (%)
a Isolated yields.b No reaction.
1 PPI (15 mol%) Solvent-free/110 °C 3 95
2 EDA (5 drops) Solvent-free/110 °C 3 70
3 DAB (5 drops) Solvent-free/110 °C 3 45
4 TEA (5 drops) Solvent-free/110 °C 7 85
5 DEA (5 drops) Solvent-free/110 °C 5 86
6 PAMAM (5 drops) Solvent-free/110 °C 3 Trace
7 PPI (15 mol%) Solvent-free/120 °C 3 90
8 PPI (15 mol%) Solvent-free/100 °C 3 74
9 PPI (10 mol%) Solvent-free/110 °C 3 86
10 PPI (20 mol%) Solvent-free/110 °C 3 89
11 Solvent-free/110 °C 20 b


Initially, we performed the three-component reaction using the nano polypropylenimine dendrimer (PPI) as the catalyst under solvent-free conditions at 110 °C, and exhilaratingly obtained the target product in 95% yield after 3 min (Table 1, entry 1). To further optimize the reaction conditions, a series of catalysts such as ethylenediamine (EDA), 1,4-diamino butane (DAB), triethanolamine (TEA), diethanolamine (DEA), and poly(amido amine) (PAMAM) dendrimers were investigated (entries 2–6). Compared with other catalysts, PPI was the best catalyst in terms of the yield and reaction time (entry 1). Next, we screened the proper temperature for the model reaction (entries 7–8). Afterwards, the loading of PPI was selected, and 15 mol% of PPI was established as the optimal amount (entries 9–10). To evaluate the effect of PPI, the reaction was examined in the absence of PPI under solvent-free conditions at 110 °C; no product was formed after 20 min at 110 °C (entry 11).

In recent years, various nano-materials have been used as suitable catalysts for the synthesis of various organic compounds.37 They increase the efficiency of time consuming reactions compared to regular catalysts. One efficient approach to enhance the catalytic activity of catalysts is their nanostructure construction. Favorable properties of nano polypropylenimine dendrimers (PPI) including increased surface area, saving of material, and cost efficiency, make them more efficient catalysts than their counterparts. In our quest to prove the efficiency of nano polypropylenimine dendrimers (PPI), where nanostructures play an important role in the catalytic properties, the synthesis of 6a was investigated using similar non nanostructures (Table 1, entries 2–6). As it can be seen, better efficiency for the nano polypropylenimine dendrimer (PPI) is found in the synthesis of 6a.

Based on the optimized reaction conditions, the reactions of 1 or 2-naphthol or resorcinol, malonitrile, and various aromatic (heterocyclic) aldehydes were investigated. As shown in Table 2, aromatic aldehydes carrying either electron-withdrawing or electron-donating substituents afforded excellent yields of product with high purity at 110 °C under solvent-free conditions.

Table 2 One-pot synthesis of 2-amino-2-chromene derivatives
Entry R Phenols R1 Products Time (min) Yielda (%) (ref.)
a Isolated yields.
1 C6H5 image file: c5ra04458h-u1.tif CN image file: c5ra04458h-u2.tif 3 95 (ref. 24)
6a
2 2-ClC6H5 image file: c5ra04458h-u3.tif CN image file: c5ra04458h-u4.tif 4 95 (ref. 24)
6b
3 3-NO2C6H5 image file: c5ra04458h-u5.tif CN image file: c5ra04458h-u6.tif 12 94 (ref. 24)
6c
4 4-ClC6H5 image file: c5ra04458h-u7.tif CN image file: c5ra04458h-u8.tif 4 96 (ref. 24)
6d
5 3-NO2C6H5 image file: c5ra04458h-u9.tif CO2Et image file: c5ra04458h-u10.tif 20 88 (ref. 25)
6e
6 4-FC6H5 image file: c5ra04458h-u11.tif CN image file: c5ra04458h-u12.tif 15 78 (ref. 26)
6f
7 4-ClC6H5 image file: c5ra04458h-u13.tif CO2Et image file: c5ra04458h-u14.tif 30 95 (ref. 26)
7g
8 4-BrC6H5 image file: c5ra04458h-u15.tif CO2Et image file: c5ra04458h-u16.tif 30 89 (new)
7h
9 4-OHC6H5 image file: c5ra04458h-u17.tif CO2Et image file: c5ra04458h-u18.tif 50 88 (new)
7i
10 4-ClC6H5 image file: c5ra04458h-u19.tif CN image file: c5ra04458h-u20.tif 15 92 (ref. 27)
7j
11 4-NO2C6H5 image file: c5ra04458h-u21.tif CO2Et image file: c5ra04458h-u22.tif 20 89 (new)
7k
12 3-NO2C6H5 image file: c5ra04458h-u23.tif CO2Et image file: c5ra04458h-u24.tif 20 90 (ref. 15)
7l
13 C6H5 image file: c5ra04458h-u25.tif CN image file: c5ra04458h-u26.tif 20 82 (ref. 27)
8m
14 4-BrC6H5 image file: c5ra04458h-u27.tif CN image file: c5ra04458h-u28.tif 25 85 (ref. 27)
8n
15 2-Furyl image file: c5ra04458h-u29.tif CN image file: c5ra04458h-u30.tif 30 76 (ref. 27)
8o
16 4-ClC6H5 image file: c5ra04458h-u31.tif CN image file: c5ra04458h-u32.tif 20 87 (ref. 27)
8p
17 2-ClC6H5 image file: c5ra04458h-u33.tif CN image file: c5ra04458h-u34.tif 20 89 (ref. 27)
8q


A possible reaction mechanism is proposed in Scheme 3. We presume that the reaction proceeds via initial formation of I through a Knoevenagel condensation of the aryl aldehyde and malononitrile. Then, 1-naphthol loses a hydrogen atom under the action of PPI. Subsequently, Michael addition between II and I produces intermediate III, followed by intramolecular cyclization to form IV. The isomerization of IV gives the final product 6.


image file: c5ra04458h-s3.tif
Scheme 3 Proposed mechanism.

Table 3 summarizes the results and compares them with results obtained by other groups. Based on this comparison, our method is simpler and more efficient for the synthesis of 2-amino-2-chromene derivatives. These results clearly demonstrate that the polypropylenimine dendrimer catalyst is better and in all cases much more efficient for this reaction than the other catalysts (including acidic and basic catalysts).

Table 3 Comparison of methods for the synthesis of 2-amino-2-chromene including acidic and basic catalysts
Entry Compounds Conditions Time (min) Yield (%)
1 image file: c5ra04458h-u35.tif Solvent-free/110 °C/PPI (present work) 3 95
MCM-41-NH2/H2O/70 °C (ref. 17) 30 69
CTABr/H2O/ultrasonic/rt (ref. 19) 150 92
Piperazine/MWI/solvent-free (ref. 21) 7 88
CuSO4·5H2O/water/reflux (ref. 24) 60 95
Methanesulfonic acid/CH3CN/reflux (ref. 25) 180 90
7a Na2CaP2O7/water/reflux (ref. 28) 300 81
2 image file: c5ra04458h-u36.tif Solvent-free/110 °C/PPI (present work) 4 95
DMAP/solvent-free/MWI (ref. 14) 60 95
CTABr/H2O/ultrasonic/rt (ref. 19) 150 80
CuSO4.5H2O/water/reflux (ref. 24) 30 85
7b KF-Al2O3/EtOH/80 °C/reflux (ref. 26) 300 86
3 image file: c5ra04458h-u37.tif Solvent-free/110 °C/PPI (present work) 12 94
CTABr/H2O/ultrasonic/rt (ref. 19) 40 93
K3PO4·3H2O/100 °C/solvent-free (ref. 20) 60 77
Methanesulfonic acid/CH3CN/reflux (ref. 25) 240 90
7c Na2CaP2O7/water/reflux (ref. 28) 300 84


Experimental

General

All the chemicals required were purchased from Merck or Aldrich. Melting points were determined using Electrothermal 9100 apparatus. FT-IR spectra were recorded on a Shimadzu FT IR-8400S instrument (with the samples as KBr disks for the range 400–4000 cm−1). 1H and 13C NMR spectra were determined on a Bruker DRX-300 Avance spectrometer in DMSO-d6 or CDCl3, and shifts are given in δ downfield from tetramethylsilane (TMS) as an internal standard. Optical microscopy was performed with a nano focus AG lindner strabe 98 D-46149 Oberhausen.
1. Synthesis of nano polypropylenimine dendrimer (PPI).
1.1. Synthesis of polypropylenimine dendrimer generation 0.5 (DAB-PPI-G0.5). To a mixture of 1,4-diaminobutane (10 mL) was added dropwise acrylonitrile (35 mL) at 0 °C for 30 min. Then, the excess acrylonitrile was removed by rotary vacuum at 0.1 mm and a temperature of 45 °C. The polypropylenimine dendrimer generation 0.5 (DAB-PPI-G0.5) was obtained as an oily viscous light yellow solution in 95% yield.
1.2. Synthesis of polypropylenimine dendrimer generation 1 (DAB-PPI-G1). To a mixture of polypropylenimine dendrimer generation 0.5 (10 g) in methanol (35 mL) at 0 °C, was added NaBH4 (6.23 g) and anhydrous cobalt chloride (0.0002 g). The reaction mixture was stirred for 60 min at this temperature. Then, the mixture was filtered, washed with methanol (30 mL), and then dried at room temperature to give polypropylenimine dendrimer generation 1 (DAB-PPI-G1) as a white powder (92% yield).
2. General procedure for synthesis of 2-amino-2-chromene. PPI (15 mol%) was added to a mixture of the aromatic aldehyde (1 mmol), active methylene (malononitrile or ethyl cyanoacetate) (1 mmol), and phenol (α or β-naphthol or resorcinol) (1 mmol) in a 10 mL flask at room temperature. The temperature was then raised to 110 °C and maintained for the appropriate time (see Table 2) with stirring. After the completion of the reaction as indicated by TLC (hexane–ethyl acetate, 4[thin space (1/6-em)]:[thin space (1/6-em)]1), hot EtOH (96%, 5 mL) was added and the mixture was stirred for 2 min.

Next, the resulting crude product was poured onto a mixture of crushed ice and cold water to get the pure 2-amino-2-chromene derivative as a solid product, which was separated, filtered, and recrystallized from EtOH (3 mL).

3. Spectral data for new compounds.
3.1. Ethyl-3-amino-1-(4-bromo phenyl)-1H-benzo[f]chromene-2-carboxylate (7h). White solid, m.p. 204–206 °C; IR (KBr, cm−1): 3328, 3463, 3082, 2977, 1670, 1635, 1504, 1222, 1072; 1H NMR (300 MHz, CDCl3) δ ppm: 1.19 (t, 3H, CH3), 4.67 (m, 2H, CH2), 5.35 (s, 1H, CH), 6.13 (br, 2H, NH2, D2O exchangeable), 7.19–7.76 (m, 10H); 13C NMR (75 MHz, CDCl3) δ ppm: 14.6, 36.7, 59.7, 79.8, 116.7, 118.5, 119.8, 123.3, 124.9, 127.0, 128.6. 129.0, 130.0, 130.8, 131.2, 131.3, 145.5, 147.0, 159.9, 169.0; anal. calcd for C22H18BrNO3: C, 62.25; H, 4.27; N, 3.30. Found: C, 62.13; H, 4.35; N, 3.18.
3.2. Ethyl-3-amino-1-(4-hydroxy phenyl)-1H-benzo[f]chromene-2-carboxylate (7i). White solid, m.p. 129–130 °C; IR (KBr, cm−1): 3332, 3463, 3062, 2981, 1662, 1593, 1512, 1222, 1076; 1H NMR (300 MHz, CDCl3) δ ppm: 1.39 (t, 3H, CH3), 4.24 (m, 2H, CH2), 5.62 (s, 1H, CH), 6.33 (br, 2H, NH2, D2O exchangeable), 7.05–7.89 (m, 10H), 10.21 (s, 1H, OH); 13C NMR (75 MHz, CDCl3) δ ppm: 14.6, 36.7, 59.7, 79.9, 116.7, 118.5, 123.3, 124.8, 127.0, 128.2, 128.6, 129.0, 129.5, 130.9, 131.3, 131.7, 145.0, 147.0, 159.9, 169.0; anal. calcd for C22H19NO4: C, 73.10; H, 5.30; N, 3.87. Found: C, 72.95; H, 5.46; N, 3.79.
3.3. Ethyl-3-amino-1-(4-nitro phenyl)-1H-benzo[f]chromene-2-carboxylate (7k). Yellow solid, m.p. 180–182 °C. IR (KBr, cm−1): 3301, 3448, 3070, 2990, 1678, 1639, 1515, 1390, 1224, 1072; 1H NMR (300 MHz, CDCl3) δ ppm: 1.39 (t, 3H, CH3), 4.25 (m, 2H, CH2), 5.71 (s, 1H, CH), 6.44 (br, 2H, NH2, D2O exchangeable); 7.08–8.06 (m, 10H); 13C NMR (75 MHz, CDCl3) δ ppm: 14.6, 37.2, 59.9, 78.9, 116.7, 117.5, 123.0, 123.6, 125.1, 127.2, 128.8, 129.0, 129.5, 130.7, 131.3, 146.2, 147.1, 153.8, 160.0, 168.7; anal. calcd for C22H18N2O5: C, 67.66; H, 4.65; N, 7.18. Found: C, 67.57; H, 4.81; N, 7.02.
3.4. Polypropylenimine dendrimer generation 0.5. Yellow solution. IR (KBr, cm−1): 2250 (C–N), 720 (CH2–DAB), 1220, 1315 (C–N).
3.5. Polypropylenimine dendrimer generation 1. Yellow solid. IR (KBr, cm−1): 3400 (N–H), 1668 (N–H), 1219, 1315 (C–N), 1130 (C–C).

Conclusion

In conclusion, we have reported a green and eco-friendly synthesis of 2-amino-2-chromene derivatives using a highly efficient polymeric nanomaterial PPI catalyst. PPI is classified as a dendrimer with special properties such as being antimicrobial, antibacterial, non-toxic, and environmentally friendly. The most important advantages of this reaction include a mild, green synthesis; avoidance of the use of toxic organic solvents, excellent yield, short reaction times and a simple work up procedure.

Acknowledgements

We are thankful to the University of Hakim Sabzevari Research Council for the partial support of this research.

References

  1. D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev., 2010, 110, 1857 CrossRef CAS PubMed .
  2. (a) C. Dufès, I. F. Uchegbu and A. G. Schätzlein, Adv. Drug Delivery Rev., 2005, 57, 2177 CrossRef PubMed ; (b) U. Boas and P. M. H. Heegaard, Chem. Soc. Rev., 2004, 33, 43 RSC ; (c) T. Dutta, M. Garg and N. K. Jain, Eur. J. Pharm. Sci., 2008, 34, 181 CrossRef CAS PubMed .
  3. (a) E. E. Schweizer and D. Meeder-Nycz, in Heterocyclic Compounds: Chromenes, ed. G. P. Ellis, Wiley, New York, 1977, pp. 11–139 Search PubMed ; (b) Y. Kang, Y. Du and Z. Jin, Org. Lett., 2003, 5, 4481 CrossRef CAS PubMed .
  4. (a) J. Pospisil and I. E. Markó, J. Am. Chem. Soc., 2007, 129, 3516 CrossRef CAS PubMed ; (b) A. M. El-Saghier, M. B. Naili, B. K. Rammash, N. A. Saleh and K. M. Kreddan, ARKIVOC, 2007, 16, 83 CrossRef .
  5. J. F. Cheng, A. Ishikawa, Y. Ono, T. Arrhenius and A. Nadzan, Bioorg. Med. Chem. Lett., 2003, 13, 3647 CrossRef CAS PubMed .
  6. T. Suresh, V. Arunima, K. Atin, G. Sandeep, V. R. Prarthana and R. K. Ganesh, Acta Pol. Pharm., 2010, 67, 423 Search PubMed .
  7. N. Jain, J. Xu, M. Ramesh, F. Du, G. Jian-Zhong, P. Emmanuel and Z. Sui, J. Med. Chem., 2009, 52, 7544 CrossRef CAS PubMed .
  8. (a) J. Mun, A. A. Jabbar, N. S. Devi, Y. Liu, E. G. Van Meir and M. M. Goodman, Bioorg. Med. Chem., 2012, 20, 4590 CrossRef CAS PubMed ; (b) A. H. Banskota, Y. Tezuka, K. Q. Tran, I. Saiki, Y. Miwa, T. Taga and S. Kadota, Bioorg. Med. Chem. Lett., 1998, 8, 3519 CrossRef CAS .
  9. C. K. Denish, K. P. Hetal and K. G. Nilesh, Asian J. Biochem. Pharm. Res., 2012, 2, 126 Search PubMed .
  10. M. Kidwai, S. Saxena, M. K. Rahman Khan and S. S. Thukral, Bioorg. Med. Chem. Lett., 2005, 15, 4295 CrossRef CAS PubMed .
  11. G. P. Ellis, in The Chemistry of Heterocyclic of Compounds. Chromenes, Harmones and Chromones, ed. Weissberger, A. and Taylor, E. C., John Wiley, New York, 1977, ch. 2, pp. 11–13 Search PubMed .
  12. (a) J. A. Klocke, M. F. Balandrin, R. P. Adams and E. Kingsford, J. Chem. Ecol., 1985, 11, 701 CrossRef CAS PubMed ; (b) P. Proksch, M. Proksch, G. Towers and E. Rodriguez, J. Nat. Prod., 1983, 46, 331 CrossRef CAS .
  13. K. Gong, H. L. Wang, D. Fang and Z. L. Liu, Catal. Commun., 2008, 9, 650 CrossRef CAS PubMed .
  14. K. R. Desale, K. P. Nandre and S. L. Patil, Org. Commun., 2012, 5, 179 CAS .
  15. G. Sabitha, M. Bhikshapathi, S. Nayak, R. Srinivas and J. S. Yadav, J. Heterocycl. Chem., 2011, 48, 267 CrossRef CAS PubMed .
  16. M. Pourmohammad and M. Mokhtary, C. R. Chim., 2015, 18, 554 CrossRef CAS PubMed .
  17. M. Mirza-Aghayan, S. Nazmdeh, R. Boukherroub, M. Rahimifard, A. A. Tarlani and M. Abolghasemi-Malakshah, Synth. Commun., 2013, 43, 1499 CrossRef CAS PubMed .
  18. R. Ballini, G. Bosica, M. L. Conforti, R. Maggi, A. Mazzacani, P. Righi and G. Sartori, Tetrahedron, 2001, 57, 1395 CrossRef CAS .
  19. T. S. Jin, J. C. Xiao, S. J. Wang and T. S. Li, Ultrason. Sonochem., 2004, 11, 393 CAS .
  20. M. R. Naimi-Jamal, S. Mashkouri and A. Sharifi, Mol. Diversity, 2010, 14, 473 CrossRef CAS PubMed .
  21. A. Mobinikhaledi, H. Moghanian and F. Sasani, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2011, 41, 262 CAS .
  22. R. M. N. Kalla, S. J. Byeon, M. S. Heo and I. Kim, Tetrahedron, 2013, 69, 10544 CrossRef CAS PubMed .
  23. M. M. Heravi, K. Bakhtiari, V. Zadsirjan, F. F. Bamoharram and O. M. Heravi, Bioorg. Med. Chem. Lett., 2007, 17, 4262 CrossRef CAS PubMed .
  24. F. K. Behbahani and M. Sadeghi, J. Korean Chem. Soc., 2013, 57, 357 CrossRef CAS .
  25. M. M. Heravi, B. Baghernejad and H. A. Oskooie, J. Chin. Biochem. Soc., 2008, 55, 659 CrossRef CAS PubMed .
  26. X. S. Wang, D. Q. Shi, H. Z. Yu, G. F. Wang and S. J. Tu, Synth. Commun., 2004, 34, 509 CrossRef CAS .
  27. M. G. Dekamin, M. Eslami and A. Maleki, Tetrahedron, 2013, 69, 1074 CrossRef CAS PubMed .
  28. A. Solhy, A. Elmakssoudi, R. Tahir, M. Karkouri, M. Larzek, M. Bousmina and M. Zahouily, Green Chem., 2010, 12, 2261 RSC .
  29. D. S. Raghuvanshi and K. N. Singh, ARKIVOC, 2010, x, 305 CrossRef .
  30. S. R. Kolla and Y. R. Lee, Tetrahedron, 2011, 67, 8271 CrossRef CAS PubMed .
  31. (a) B. Maleki, S. Hemmati, A. Sedrpoushan, S. Sedigh Ashrafi and H. Veisi, RSC Adv., 2014, 4, 40505 RSC ; (b) B. Maleki, D. Azarifar, H. Viesi, S. F. Hojati, H. Salehabadi and R. Nejat Yami, Chin. Chem. Lett., 2010, 21, 1346 CrossRef CAS PubMed ; (c) B. Maleki, S. Hemmati, R. Tayebee, S. Salemi, Y. Farokhzad, M. Baghayeri, F. Mohammadi Zonoz, E. Akbarzadeh, R. Moradi, A. Entezari, M. R. Abdi, S. Sedigh Ashrafi, F. Taimazi and M. Hashemi, Helv. Chim. Acta, 2013, 96, 2147 CrossRef CAS PubMed ; (d) B. Maleki, S. Barzegar, Z. Sepehr, M. Kermanian and R. Tayebee, J. Iran. Chem. Soc., 2012, 9, 757 CrossRef CAS PubMed ; (e) B. Maleki and F. Taimazi, Org. Prep. Proced. Int., 2014, 46, 252 CrossRef CAS PubMed ; (f) B. Maleki, E. Rezaee-Seresht and Z. Ebrahimi, Org. Prep. Proced. Int., 2015, 47, 149 CrossRef CAS PubMed ; (g) B. Maleki, Org. Prep. Proced. Int., 2015, 47, 173 CrossRef CAS PubMed ; (h) B. Maleki, S. Sedigh Ashrafi and R. Tayebee, RSC Adv., 2014, 4, 41521 RSC ; (i) B. Maleki and S. Sedigh Ashrafi, J. Mex. Chem. Soc., 2014, 58, 159 CAS ; (j) B. Maleki, S. Barat Nam Chalaki, S. Sedigh Ashrafi, E. R. Ezaee Seresht, F. Moeinpour, A. Khojastehnezhad and R. Tayebee, Appl. Organomet. Chem., 2015, 29, 290 CrossRef CAS PubMed ; (k) H. Veisi, B. Maleki, F. Hosseini Eshbala, H. Veisi, R. Masti, S. Sedigh Ashrafi and M. Baghayeri, RSC Adv., 2014, 4, 30683 RSC ; (l) B. Maleki and S. Sedigh Ashrafi, RSC Adv., 2014, 4, 42873 RSC ; (m) H. Veisi, A. Maleki, Z. Omrani and S. Lotfi, RSC Adv., 2014, 4, 55313 RSC ; (n) B. Maleki, S. Babaee and R. Tayebee, Appl. Organomet. Chem., 2015, 29 DOI:10.1002/aoc.3306 ; (o) M. Baghayeri, H. Veisi, H. Veisi, B. Maleki, H. Karimi-Maleh and H. Beitollahi, RSC Adv., 2014, 4, 49595 RSC ; (p) H. Veisi, B. Maleki, M. Hamelian and S. Sedigh Ashrafi, RSC Adv., 2015, 5, 6365 RSC ; (q) R. Tayebee, M. Jarrahi, B. Maleki, M. Kargar Razi, Z. B. Mokhtari and S. M. Baghbanian, RSC Adv., 2015, 5, 10869 RSC .
  32. S. L. Schreiber, Science, 2000, 287, 1964 CrossRef CAS .
  33. (a) P. A. Wender, G. G. Gamber, R. D. Hubbard, S. M. Pham and L. Zhang, J. Am. Chem. Soc., 2005, 127, 2836 CrossRef CAS PubMed ; (b) B. M. Trost, Science, 1991, 254, 1471 CAS .
  34. C. B. Grissom, Chem. Rev., 1995, 95, 3 CrossRef CAS .
  35. (a) D. Enders, M. R. M. Huttl, C. Grondal and G. Raab, Nature, 2006, 441, 861 CrossRef CAS PubMed ; (b) M. Lu, D. Zhu, Y. Lu, B. Hou, B. Tan and G. Zhong, Angew. Chem., Int. Ed., 2008, 47, 10187 CrossRef CAS PubMed .
  36. (a) F. Freeman, Chem. Rev., 1969, 69, 591 CrossRef CAS ; (b) M. Esmaeilpour, J. Javidi, F. Dehghani and F. Nowroozi Dodeji, RSC Adv., 2015, 5, 26625 RSC ; (c) M. R. Bodireddy, N. C. G. Reddy and S. D. Kumar, RSC Adv., 2014, 4, 17196 RSC ; (d) Y. Gu, Green Chem., 2012, 14, 2091 RSC ; (e) A. Fallah-Shojaei, K. Tabatabaeian, F. Shirini and S. Z. Hejazi, RSC Adv., 2014, 4, 9509 RSC ; (f) J. Mondal, A. Modak, M. Nandi, H. Uyama and A. Bhaumik, RSC Adv., 2012, 2, 11306 RSC ; (g) Z. Vafajoo, H. Veisi, M. T. Maghsoodlou and H. Ahmadian, C. R. Chim., 2014, 17, 301 CrossRef CAS PubMed .
  37. (a) S. P. Lim, A. Pandikumar, N. M. Huang and H. N. Lim, RSC Adv., 2014, 4, 38111 RSC ; (b) M. O. Ansari, M. Mansoob Khan, S. A. Ansari, J. Lee and M. H. Cho, RSC Adv., 2014, 4, 23713 RSC ; (c) J. Safaei-Ghomi, H. Shahbazi-Alavi and E. Heidari-Baghbahadorani, RSC Adv., 2014, 4, 50668 RSC ; (d) H. Veisi, A. Amini Manesh, N. Eivazi and A. R. Faraji, RSC Adv., 2015, 5, 20098 RSC ; (e) D. Habibi, A. R. Faraji, D. Sheikh, M. Sheikhi and S. Abedi, RSC Adv., 2014, 4, 47625 RSC ; (f) M. A. Bhosale and B. M. Bhanage, RSC Adv., 2014, 4, 15122 RSC ; (g) R. K. Sharma, S. Sharma and G. Gaba, RSC Adv., 2014, 4, 49198 RSC ; (h) H. Veisi and N. Morakabati, New J. Chem., 2015, 39, 2901 RSC ; (i) H. Veisi, A. Amini Manesh, N. Eivazi and A. R. Faraji, RSC Adv., 2015, 5, 20098 RSC ; (j) H. Veisi, P. Mohammadi and J. Gholami, Appl. Organomet. Chem., 2014, 28, 868 CrossRef CAS PubMed ; (k) H. Veisi, J. Gholami, H. Ueda, P. Mohammadi and M. Noroozi, J. Mol. Catal. A: Chem., 2015, 396, 216 CrossRef CAS PubMed ; (l) H. Veisi, M. Hamelian and S. Hemmati, J. Mol. Catal. A: Chem., 2014, 395, 25 CrossRef CAS PubMed ; (m) H. Veisi, R. Masti, D. Kordestani, M. Safaei and O. Sahin, J. Mol. Catal. A: Chem., 2014, 384, 61 CrossRef PubMed ; (n) H. Veisi, D. Kordestani and A. R. Faraji, J. Porous Mater., 2014, 21, 141 CrossRef CAS ; (o) R. Ghorbani-Vaghei, S. Hemmati and H. Veisi, J. Mol. Catal. A: Chem., 2014, 393, 240 CrossRef CAS PubMed .

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra04458h

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.