Base-promoted [1,4]-Wittig rearrangement of chalcone-derived allylic ethers leading to aromatic β-benzyl ketones

Pei-Sen Gaoab, Fei Yeb, Xiao-Yun Donga, Yun Chena, Zi-Wei Gao*a, Wei-Qiang Zhanga and Li-Wen Xu*ab
aKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China. E-mail: licpxulw@yahoo.com; Fax: +86-571-28867756
bKey Laboratory of Organosilicon Chemistry, Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, P. R. China. E-mail: liwenxu@hznu.edu.cn; Fax: +86 2886 5135; Tel: +86 2886 5135

Received 4th March 2015 , Accepted 7th April 2015

First published on 7th April 2015


Abstract

n-BuLi-promoted [1,4]-Wittig rearrangement of allylic ethers was developed successfully in this work, in which the Wittig rearrangement reaction provided a facile approach to the synthesis of aromatic β-benzyl ketones under mild reaction conditions.


Since Wittig and Löhmann reported the first example of 1,2-alkyl migration from an oxygen atom to a carbanion center in the rearrangement reaction of benzylic ethers with phenyllithium in 1942,1 Wittig arrangement of ethers to alcohols has been proven to be a synthetically useful reaction in organic synthesis.2 Especially in the past years, [1,2]- and [2,3]-Wittig rearrangements are a particularly attractive for the synthesis of secondary alcohols with both variations having found widespread use in synthesis.3,4 In this context, we have ever reported a facile and practical methodology for the preparation of chiral alcohols via [1,2]-Wittig rearrangement, in which the axially chiral monoalkylated BINOLs could be converted into optically pure 1,1′-binaphthalene-2-α-arylmethanol-2′-ols (Ar-BINMOLs) with axial and sp3-central chirality through the axial-to-central chirality transfer during the neighbouring lithium-assisted [1,2]-Wittig rearrangement (NLAWR).5 This work provided a springboard for the synthesis and application of a series of Ar-BINMOL-based chiral ligands in versatile catalytic asymmetric transformations.6 Although the earlier investigation on [1,4]-Wittig rearrangement of allylic ethers have also been demonstrated in the past decades,7 relative to its [1,2]- and [2,3]-counterparts, the research work of [1,4]-Wittig rearrangement remained limited because of its narrow scope of this method and imperfect chemoselectivity. Notably, different from [2,3]-and [1,2]-Wittig rearrangement, [1,4]-Wittig rearrangement is unique in its ability to generate stereodefined enolates and the ketone derivatives (Scheme 1).8 And it has been demonstrated that the role of base and solvent was key to the reactivity and different reaction pathways, [1,4]- or [2,3]-Wittig rearrangement.8d In this regard, Maleczka and coworkers have recently reported their findings on the [1,4]-Wittig rearrangement of α-benzyloxyallylsilanes or α-alkoxysilanes to α-substituted acylsilanes, in which the [1,4]-Wittig rearrangement provided a unique method for the synthesis of a variety of synthetically useful acylsilanes.9 Nonetheless, the substrate scope of the [1,4]-Wittig rearrangement of allylic ethers is not well documented and thus its potential in synthetic organic chemistry needs to be further elucidated.
image file: c5ra03846d-s1.tif
Scheme 1 Possible pathways for the different variations of Wittig rearrangement of allylic ethers with benzylic group.

To the best of our knowledge, no reports of base-mediated [1,4]-Wittig rearrangement of general allylic benzyl ethers, and the Wittig rearrangement of chalcone-derived allylic ethers with benzylic groups is unclear (Scheme 2). On the basis of our previous findings on [1,2]-Wittig rearrangement of THP (tetrahydropyran) acetal compounds10 and monoalkylated BINOLs,5,6 we continued to establish a simple Wittig rearrangement of chalcone-derived allylic ethers to the facile synthesis of aromatic β-benzyl ketones. Fortunately, we successfully find the [1,4]-Wittig rearrangement was the major pathway for this transformation of carbon–oxygen bond cleavage and subsequent new carbon–carbon bond-forming reaction.


image file: c5ra03846d-s2.tif
Scheme 2 What's the product of base-promoted Wittig rearrangement of chalcone-derived allylic ether (1a)?

Initially, the rearrangement precursor 1a was prepared by the allylic alkylation of allylic acetate with benzylic alcohols in the presence of palladium catalyst.11 Then the Wittig rearrangement of allylic ether 1a was investigated under different condition showed in Table 1. Employing, 1.2 equivalents of n-BuLi in hexane as base, allylic ether 1a was rearrangement smoothly under low temperature (−40 °C). Good yield (80%) of the β-benzyl ketone 2a was achieved via [1,4]-Wittig rearrangement. With this preliminary study complete, we tested different lithium, sodium, or potassium bases in the Wittig rearrangement of allylic ether 1a. The control experiments revealed that other strong bases, such as NaOtBu, LiHDMS, KOtBu, and t-BuLi, gave low or moderate yields at the same reaction temperature. The use of sodium and potassium bases led to almost no [1,4]-Wittig rearrangement reaction. When LiHDMS or t-BuLi was used as base in this reaction, only moderate yield was obtained (33–42% yields). Thus n-BuLi proved to be superior to t-BuLi and other lithium bases, leading to high conversion of the allylic ether 1a. Notably, the THF was found to be better solvent than Et2O in this reaction. And interestingly, we did not find the formation of 3a that could be obtained via [2,3]- or [1,2]-Wittig rearrangement in the presence of n-BuLi. The ketone 2a could be isolated as the only product in this rearrangement reaction. These results showed the strong base and relative thermodynamic stabilities of C1′ and C2 anions might favor the [1,4]-Wittig rearrangement over [2,3]-Wittig rearrangement.2c,9,15c Although deprotonation at benzylic carbon center (Ph-CH2(C1′)-O) is associated with [2,3]-Wittig rearrangement as well, we suggested the deprotonation at the benzylic carbon center (C1′) led to the formation of a higher reactive benzylic anion than that of allylic carbon (Ph-CH(C2)–CH[double bond, length as m-dash]CH) anion because of steric repulsion. Thus the method allows providing a straightforward alternative for preparing the rather elusive γ-arylated ketones that are synthetically useful intermediates in organic synthesis and have been found in as basic backbone in natural products.12

Table 1 Optimizing the [1,4]-Wittig rearrangement of chalcone-derived allylic ether 1a

image file: c5ra03846d-u1.tif

Entrya Base Solvent Yield of 2ab (%)
a The Wittig rearrangement was carried out with 0.5 mmol of allylic ether 1a, 0.6 mmol of n-BuLi in hexane, in THF, at −40 °C, for 6 h.b Isolated yield of 2a, and the selectivity was perfect because product 3a of [2,3]-Wittig rearrangement was not detected in this reaction.
1 n-BuLi THF 80
2 NaOtBu DCM <5
3 LiHDMS DCM 42
4 KOtBu DCM <5
5 n-BuLi Et2O 65
6 t-BuLi THF 33
7 NaOtBu THF <5
8 KOtBu THF <5
9 n-BuLi DCM 57
10 n-BuLi MeCN 24
11 n-BuLi DMAc 68
12 n-BuLi Toluene 77


With the optimized conditions in hand, the scope of the allylic ethers was investigated in the next study. As shown in Scheme 3, various chalcone-derived allylic ethers (1) possessing a variety of substitution pattern involving a benzylic group were subjected to the reaction conditions. Reactions of 1b and 1c, which have para-substituted methyl or methoxyl group on benzylic ether moiety, proceeded to provide the corresponding products 2b and 2c, respectively, in good yield. The substrate 1d with steric group on two ortho-substituted methyl groups also gave good yield of product 2d. Interestingly, the trifluoromethoxyl group on the allylic ether did not affect the [1,4]-Wittig rearrangement obviously due to the promising conversion (62% isolated yield) in this reaction. Not surprisingly, substituted chalcones with electron-donor group as starting material for the construction of corresponding allylic ether substrates, were also exhibited to be good substrates in the [1,4]-Wittig rearrangement. However, the allylic ethers with electron-deficient substituents, such as CF3, NO2, and halides (Cl, Br, I) were not suitable substrates because of poor conversions or dehalogenation.


image file: c5ra03846d-s3.tif
Scheme 3 [1,4]-Wittig rearrangement of chalcone-derived allylic ethers to aromatic β-benzyl ketones.

In order to synthesize the chiral aromatic β-benzyl ketone, additional investigation of such [1,4]-Wittig rearrangement involved application to possible enantioselective transformation of chiral allylic ether. In our previous report, we demonstrated successfully its effectiveness of our novel chiral phosphine ligand (CycloN2P2-Phos) in palladium-catalyzed asymmetric allylic etherification (AAE) of general alcohols and silanols (Scheme 4), which afforded the corresponding allylic ethers with excellent enantioselectivities (93–99% ee).13 Thus we applied the chiral allylic ether (R)-1a (96% ee) in the [1,4]-Wittig rearrangement. Unfortunately, the [1,4]-Wittig rearrangement of chiral allylic ether resulted in racemic product 2a. On the other hand, the result illustrated in Scheme 5 provides considerable information about the likely radical mechanism of the Wittig rearrangement.14 The conversion of chiral substrate 1a to racemic product 2a suggests this mechanism of this unusual rearrangement involves the formation of enolate intermediate that make the stereogenic sp3 carbon-center to sp2 carbon center.


image file: c5ra03846d-s4.tif
Scheme 4 Synthesis of chiral allylic ethers through Pd/CycloN2P2-Phos-catalyzed asymmetric allylic etherification of various alcohols with allylic acetates.

image file: c5ra03846d-s5.tif
Scheme 5 [1,4]-Wittig rearrangement of chiral allylic ether 1a (96% ee).

On the basis of these results and previous reports on base-mediated benzylic rearrangement,2,3,5,15 a plausible mechanism for the conversion of allylic ether 1 to aromatic β-benzyl ketone 2 is illustrated in Scheme 6. In the radical pathway (Path A), the treatment of allylic benzyl ether 1 with strong base (such as n-BuLi) leads to the formation of allylic or benzylic anion (I) by deprotonation at the benzylic position, which is a common intermediate for variations of Wittig rearrangement. And then the dissociative process involving the formation of a pair of radicals and subsequent recombination occur to form the enolate (III). Upon workup, protonation of the enolate would generate the intermediate IV and the total product 2a. The alternative reaction pathway looks possibly for the intramolecular nucleophilic addition of benzylic anion to double bond, and then performs a Claisen-like 1,4-sigamatropic rearrangement followed protonation of enolate intermediate to form the observed product 2a (Path B). However, the [1,4]-Wittig rearrangement of chiral allylic ether 1a revealed that the Path B is not reasonable or major pathway because there is no ee value for the desired product 2a. In addition, we found that the [1,4]-Wittig rearrangement did not occur in the presence of 2,2,4,4-tetramethyl-1-piperidinyloxy (TEMPO), in which the direct evidence supported the radical pathway (Path A) in the proposed mechanism.


image file: c5ra03846d-s6.tif
Scheme 6 Possible mechanism of base-promoted [1,4]-Wittig rearrangement of allylic ether 1.

Conclusions

In summary, we have discovered an unusual [1,4]-Wittig rearrangement reaction of chalcone-derived allylic ethers upon deprotonation with n-BuLi. The reactions produce potentially useful aromatic β-benzyl ketone in moderate to good yields with unprecedented selectivity. It appears to proceed via radical alkylation and enolate intermediate. Further studies will be directed toward improving enantioselectivity of [1,4]-Wittig rearrangement and expanding the scope of these transformations.

Acknowledgements

This Project was supported by the National Natural Science Founder of China (no. 21173064 and 21472031), Fundamental Research Funds for the Central Universities (GK201501005), Shaanxi hundred talents program, and Zhejiang Provincial Natural Science Foundation of China (LR14B030001).

Notes and references

  1. G. Wittig and L. Löhmann, Justus Liebigs Ann. Chem., 1942, 550, 260–268 CrossRef CAS PubMed.
  2. (a) K. Tomooka, H. Yamamoto and T. Nakai, J. Am. Chem. Soc., 1996, 118, 3317–3318 CrossRef CAS; (b) R. E. Maleczka Jr and F. Geng, J. Am. Chem. Soc., 1998, 120, 8551–8552 CrossRef; (c) M. Tsubuki, T. Kamata, H. Okita, M. Arai, A. Shigihara and T. Honda, Chem. Commun., 1999, 2263–2264 RSC; (d) K. Tomooka, H. Yamamoto and T. Nakai, Angew. Chem., Int. Ed., 2000, 39, 4500–4502 CrossRef CAS; (e) K. Tomooka, M. Kikuchi, K. Igawa, M. Suzuki, P. Keong and T. Nakai, Angew. Chem., Int. Ed., 2000, 39, 4502–4505 CrossRef CAS; (f) A. Garbi, L. Allian, F. Chorki, M. Ourévitch, B. Crousse, D. Bonnet-Delpon, T. Nakai and J. P. Bégué, Org. Lett., 2001, 3, 2529–2531 CrossRef CAS PubMed; (g) A. Garbi, L. Allain, F. Chorki, M. Ourèvitich, B. Crousse, D. Bonnet-Delpon, T. Nakai and J. P. Bégué, Org. Lett., 2001, 3, 2529–2531 CrossRef CAS PubMed; (h) J. Barluenga, F. J. Fañanás, R. Sanz, C. Marcos and M. Trabada, Org. Lett., 2002, 4, 1587–1590 CrossRef CAS PubMed; (i) M. Schlosser and F. Bailly, J. Am. Chem. Soc., 2006, 128, 16042–16043 CrossRef CAS PubMed.
  3. For representative reviews, see: (a) K. Tomooka, H. Yamamoto and T. Nakai, Liebigs Ann./Recl., 1997, 1275–1281 CrossRef CAS PubMedFor recent examples on [1,2]-Wittig rearrangement reactions, see: (b) F. L. Gu, L. X. Liu, G. Q. Lai, J. X. Jiang, C. Q. Sheng, H. Y. Qiu and L. W. Xu, Org. Commun., 2011, 4, 9–17 CAS; (c) S. Horri, I. Ishimaru, Y. Ukaji and K. Inomata, Chem. Lett., 2011, 40, 521–523 CrossRef; (d) J. Y. Yang, A. Wangweerawong and G. B. Dudley, Heterocycles, 2012, 85, 1603–1606 CrossRef CAS; (e) T. Nakao, T. Soeta, K. Endo, K. Inomata and Y. Ukaji, J. Org. Chem., 2013, 78, 12654 CrossRef PubMedand references cited therein.
  4. For recent examples on [2,3]-Wittig rearrangement reactions, see: (a) Y. Hirokawa, M. Kitamura, C. Kato, Y. Kurata and N. Maezaki, Tetrahedron Lett., 2011, 52, 581–583 CrossRef CAS PubMed; (b) B. Chandrasekhar, J. P. Rao, B. V. Rao and P. Naresh, Tetrahedron Lett., 2011, 52, 5921–5925 CrossRef CAS PubMed; (c) X. W. Song, J. Lei, C. Z. Sun, Z. L. Song and L. J. Yan, Org. Lett., 2012, 14, 1094–1097 CrossRef PubMed; (d) Y. Hirokawa, M. Kitamura, M. Mizubayashi, R. Nakatsuka, Y. Kobori, C. Kato, Y. Kurata and N. Maezaki, Eur. J. Org. Chem., 2013, 721–723 CrossRef CAS PubMed; (e) R. K. Everett and J. P. Wolfe, Org. Lett., 2013, 15, 2926–2929 CrossRef CAS PubMed; (f) A. Kondoh and M. Terada, Org. Lett., 2013, 15, 4568–4571 CrossRef CAS PubMed; (g) Y. Katsuyama, X. W. Li, R. Muller and B. Nay, ChemBioChem, 2014, 15, 2349–2352 CrossRef CAS PubMed.
  5. G. Gao, F. L. Gu, J. X. Jiang, K. Jiang, C. Q. Sheng, G. Q. Lai and L. W. Xu, Chem.–Eur. J., 2011, 17, 2698–2703 CrossRef CAS PubMed.
  6. For recent review, see: (a) L. S. Zheng, T. Song and L. W. Xu, Chin. J. Org. Chem., 2014, 34, 1255–1267 CrossRef CASFor recent examples, see: (b) L. S. Zheng, K. Z. Jiang, Y. Deng, X. F. Bai, G. Gao, F. L. Gu and L. W. Xu, Eur. J. Org. Chem., 2013, 748–755 CrossRef CAS PubMed; (c) F. Li, L. Li, W. Yang, L. S. Zheng, K. Jiang, Y. Lu and L. W. Xu, Tetrahedron Lett., 2013, 54, 1584–1588 CrossRef CAS PubMed; (d) L. S. Zheng, L. Li, K. F. Yang, Z. J. Zheng, X. Q. Xiao and L. W. Xu, Tetrahedron, 2013, 69, 8777–8784 CrossRef CAS PubMed; (e) Y. L. Wei, K. F. Yang, F. Li, Z. J. Zheng, Z. Xu and L. W. Xu, RSC Adv., 2014, 4, 37859–37867 RSC; (f) L. S. Zheng, Y. L. Wei, K. Z. Jiang, Y. Deng, Z. J. Zheng and L. W. Xu, Adv. Synth. Catal., 2014, 356, 3769–3776 CrossRef CAS PubMed; (g) T. Song, L. S. Zheng, F. Ye, W. H. Deng, Y. L. Wei, K. Z. Jiang and L. W. Xu, Adv. Synth. Catal., 2014, 356, 1708–1718 CrossRef CAS PubMed; (h) T. Song, L. Li, W. Zhou, Z. J. Zheng, Y. Deng, Z. Xu and L. W. Xu, Chem.–Eur. J., 2015, 21, 554–558 CrossRef CAS PubMed; (i) Y. L. Wei, W. S. Huang, Y. M. Cui, K. F. Yang, Z. Xu and L. W. Xu, RSC Adv., 2015, 5, 3098–3103 RSCand references cited therein.
  7. (a) U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 1970, 9, 763–773 CrossRef PubMed; (b) U. Schöllkopf, K. Fellenberger and M. Rizk, Justus Liebigs Ann. Chem., 1970, 734, 106–115 CrossRef PubMed; (c) H. Felkin and C. Frajeermann, Tetrahedron Lett., 1977, 18, 3485–3488 CrossRefand references cited therein; (d) K. Sayo, Y. Kumara and T. Nakai, Tetrahedron Lett., 1982, 23, 3931–3934 CrossRef; (e) K. Hayakawa, A. Hayashida and K. Kanematsu, J. Chem. Soc., Chem. Commun., 1988, 1108–1110 RSC; (f) M. Schlösser and S. Strunk, Tetrahedron, 1989, 45, 2649–2664 CrossRef; (g) W. F. Bailey and L. M. Zarcone, Tetrahedron Lett., 1991, 32, 4425–4426 CrossRef CAS; (h) W. F. Bailey, E. R. Punzalan and L. M. Zarcone, Heteroat. Chem., 1992, 3, 55–61 CrossRef CAS PubMed; (i) A. Nakazaki, T. Nakai and K. Tomooka, Angew. Chem., Int. Ed., 2006, 45, 2235–2238 CrossRef CAS PubMed.
  8. (a) V. Rautenstrauch, Helv. Chim. Acta, 1972, 55, 594–609 CrossRef CAS PubMed; (b) R. Briére, M. Chérest, H. Felkin and C. Frajerman, Tetrahedron Lett., 1977, 18, 3489–3492 CrossRef; (c) M. Schlosser and S. Strunk, Tetrahedron, 1989, 45, 2649–2664 CrossRef CAS; (d) J. P. Reid, C. A. McAdam, A. J. S. Johnston, M. N. Grayson, J. M. Goodman and M. J. Cook, J. Org. Chem., 2015, 80, 1472–1498 CrossRef CAS PubMedand references cited therein.
  9. (a) E. N. Onyeozili and R. E. Maleczka, Chem. Commun., 2006, 2466–2468 RSC; (b) E. N. Onyeozili and R. E. Maleczka, Tetrahedron Lett., 2006, 47, 6565–6568 CrossRef CAS PubMed; (c) E. N. Onyeozili, L. M. Mori-Quiroz and R. E. Maleczka, Tetrahedron, 2013, 69, 849–860 CrossRef CAS PubMed; (d) L. M. Mori-Quiroz and R. E. Maleczka, J. Org. Chem., 2015, 80, 1163–1191 CrossRef CAS PubMed.
  10. F. L. Gu, L. X. Liu, G. Q. Lai, J. X. Jiang, C. Q. Sheng, H. Y. Qiu and L. W. Xu, Org. Commun., 2011, 4, 9–17 CAS.
  11. (a) F. L. Lam, T. T. L. Au-Yeung, F. Y. Kwong, Z. Zhou, K. Y. Wong and A. S. C. Chan, Angew. Chem., Int. Ed., 2008, 47, 1280–1283 CrossRef CAS PubMed; (b) P. Fang, C. H. Ding, X. L. Hou and L. X. Dai, Tetrahedron: Asymmetry, 2010, 21, 1176–1178 CrossRef CAS PubMed; (c) M. Kato, T. Nakamura, K. Ogata and S.-I. Fukuzawa, Eur. J. Org. Chem., 2009, 5232–5238 CrossRef CAS PubMed; (d) Z. Liu and H. Du, Org. Lett., 2010, 12, 3054–3057 CrossRef CAS PubMed; (e) J. Mazuela, O. Pàmies and M. Diéguez, Chem.–Eur. J., 2013, 19, 2416–2432 CrossRef CAS PubMed.
  12. For selected examples on γ-arylation or the synthesis of aromatic β-benzyl ketones, see: (a) N. S. Nudelman, G. V. García and H. G. Schulz, J. Org. Chem., 1998, 63, 5730–5731 CrossRef CAS; (b) I. Shibata, T. Kano, N. Kanazawa, S. Fukuoka and A. Baba, Angew. Chem., Int. Ed., 2002, 41, 1389–1392 CrossRef CAS; (c) T. Nishimura, S. Matsumura, Y. Maeda and S. Uemura, Chem. Commun., 2002, 50–51 RSC; (d) A. M. Hyde and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 177–180 CrossRef CAS PubMed; (e) A. M. Hyde and S. L. Buchwald, Org. Lett., 2009, 11, 2663–2666 CrossRef CAS PubMed; (f) D. S. Huang and J. F. Hartwig, Angew. Chem., Int. Ed., 2010, 49, 5757–5761 CrossRef CAS PubMed; (g) S. Duez, S. Bernhardt, J. Heppekausen, F. F. Fleming and P. Knochel, Org. Lett., 2011, 13, 1690–1693 CrossRef CAS PubMed; (h) A. Ziadi and R. Martin, Org. Lett., 2012, 14, 1266–1269 CrossRef CAS PubMed.
  13. F. Ye, Z. J. Zheng, L. Li, K. F. Yang, C. G. Xia and L. W. Xu, Chem.–Eur. J., 2013, 19, 15452–15457 CrossRef CAS PubMed.
  14. M. Kitamura, Y. Hirokawa, Y. Yoshioka and N. Maezaki, Tetrahedron, 2012, 68, 4280–4285 CrossRef CAS PubMed.
  15. (a) Á. M. Montaña, S. Ponzano, C. Batalla and M. Font-Bardia, Tetrahedron, 2012, 68, 8276–8285 CrossRef PubMed; (b) C. S. B. Chia, M. S. Taylor, S. Dua, S. J. Blanksby and J. H. Bowie, J. Chem. Soc., Perkin Trans. 2, 1998, 1435–1441 RSC; (c) P. C. Brookes, P. J. Murphy, K. Sommer, D. E. Hibbs, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Perkin Trans. 1, 1998, 1899–1901 RSC; (d) M. Matsumoto, N. Watanabe, A. Ishikawa and H. Murakami, Chem. Commun., 1997, 2395–2396 RSC.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra03846d

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.