Palladium-catalyzed direct alkenylation of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-ones using oxygen as the oxidant

Junliang Lv, Ying Liang*, Peiling He, Zhihao Cai, Jianwen Liu and Fengxi Huang
School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. of China. E-mail: liangyinggdpu@126.com

Received 15th February 2015 , Accepted 14th April 2015

First published on 14th April 2015


Abstract

A direct C-3 alkenylation of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-ones through palladium-catalyzed C–H activation using oxygen as the terminal oxidant has been developed. This method provides an easy access to functionalized new 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one derivatives.


The Fujiwara–Moritani reaction via C–H bond cleavage has emerged as a powerful tool to construct C–C bonds in recent years.1 This synthetic strategy employing Pd,2 Ru,3 Rh,4 and Cu5 complexes has been widely used to prepare various organic materials, natural products and drugs. Despite these impressive advances, the large or stoichiometric amounts of oxidants such as copper(II) salts,6 silver(I) salts,7 or organic oxidants8 were still required and produced as waste. The current challenge is to use green and ecological oxidants such as molecular oxygen to fulfill the catalytic cycle. To the best of our knowledge, only few reports have used pure oxygen as an oxidant.9 In addition, the substrate scope has remained limited.

The 4H-pyrido[1,2-a]pyrimidin-4-one moiety is an important scaffold in biologically molecules, medicines, and functional materials.10 Risperidone with this structural unit was the mostly widely prescribed as atypical antipsychotic drug.11 More recently, some 3-vinyl-4H-pyrido[1,2-a]pyrimidin-4-one compounds have been reported as efflux pump inhibitors in Pseudomonas aeruginosa.12 The construction of 4H-pyrido[1,2-a]pyrimidin-4-one scaffold is usually employed acid-catalyzed condensation or thermal cyclization reaction.13 Meanwhile, Vilsmeyer, Wittig and Suzuki reactions have been used to construct C–C bonds for further derivatization.12a–c,14 Despite many efforts in this area, the transition-metal-catalyzed C–H bond functionalization can provide a facile and atom-economical route for the construction of 4H-pyrido[1,2-a]pyrimidin-4-one compounds.15 Herein, we disclose an efficient C-3 alkenylation of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-ones with alkenes through palladium-catalyzed C–H activation using oxygen as the terminal oxidant (Fig. 1).


image file: c5ra02932e-f1.tif
Fig. 1 Selected examples of biologically active 4H-pyrido[1,2-a]pyrimidin-4-ones.

Initially, we investigated the reaction of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one 1a and n-butyl acrylate 2a in the presence of Pd(OAc)2 (10 mol%) and pure oxygen as terminal oxidant in DMF at 80 °C for 24 h. We are pleased to find the coupling product 3a in 23% yield (Table 1, entry 1). Notably, the alkenylation product 3a was formed with absolute regio- and stereoselectivity (C-3 and E-isomers). As reported in previous literatures,16 an additive source was required to facilitate the Pd-catalyzed direct alkenylation. After acid additives screening, PivOH could dramatically enhance the reaction efficiency, promoting the yield of 3a to 43% (Table 1, entries 2–4). The reason for enhanced reactivity may be that Pd–PivOH combination could lower the energy of aromatic C–H bond cleavage.6,17 Next, the amount of PivOH was investigated, the yield of product 3a could be increased up to 80% when 5 equiv. of PivOH was used (Table 1, entries 5–7). The basic additives (K2CO3 and pyridine) hindered the alkenylation process (Table 1, entries 8–9). Several other solvents were investigated but all with inferior yields (Table 1, entries 10–15). Meanwhile, the yield was obviously decreased when air was used as oxidant instead of pure oxygen (Table 1, entries 16). The reaction occurred faster when O2 bubbling instead of O2 bag for 12 h, but almost the same results were obtained for 24 h (Table 1, entries 6 and 17). The same reaction proceeded less efficiently by using other palladium source such as PdCl2, Pd(OH)2 and PdCl2(CH3CN)2 (Table 1, entries 18–20). When the reaction was conducted in the presence of other oxidants under air, product 3a was obtained in 62% (tert-butyl hydroperoxide), 43% (H2O2), and 0% (I2 and CuI) yield, respectively (Table 1, entry 21).

Table 1 Optimization of the reaction conditionsa

image file: c5ra02932e-u1.tif

Entry Cat Additive (equiv.) Solvent Yieldb (%)
a Reaction conditions: 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one 1a (0.5 mmol), n-butyl acrylate 2a (1.0 mmol), catalyst (10 mol%), O2 (gas bag) and additive in 1 mL of solvent at 80 °C for 24 h.b GC yield.c 12 h.d Using air as an oxidant.e O2 bubbling.f Other oxidants were used under air (tert-butyl hydroperoxide, H2O2, I2 and CuI; 2 equiv.).
1 Pd(OAc)2 DMF 23
2 Pd(OAc)2 AcOH (1) DMF 32
3 Pd(OAc)2 PivOH (1) DMF 43
4 Pd(OAc)2 TFA (1) DMF 12
5 Pd(OAc)2 PivOH (3) DMF 65
6 Pd(OAc)2 PivOH (5) DMF (56)c80
7 Pd(OAc)2 PivOH (8) DMF 79
8 Pd(OAc)2 K2CO3 DMF Trace
9 Pd(OAc)2 Pyridine DMF 6
10 Pd(OAc)2 PivOH (5) DCE 39
11 Pd(OAc)2 PivOH (5) 1,4-Dioxane 53
12 Pd(OAc)2 PivOH (5) DMA 68
13 Pd(OAc)2 PivOH (5) DMSO 45
14 Pd(OAc)2 PivOH (5) Toluene 57
15 Pd(OAc)2 PivOH (5) NMP 48
16d Pd(OAc)2 PivOH (5) DMF 60
17e Pd(OAc)2 PivOH (5) DMF (63)c79
18 PdCl2 PivOH (5) DMF 41
19 Pd(OH)2 PivOH (5) DMF 54
20 PdCl2(CH3CN)2 PivOH (5) DMF 46
21f Pd(OAc)2 PivOH (5) DMF ≤ 62


With the optimal reaction condition in hand, we explored the scope of olefins 2 (Table 2). As expected, all olefins could react smoothly with substrate 1a to generate the desired products in moderate to good yields. Acrylate esters successfully coupled with 1a to give the corresponding products 3a–e in 63–79% yield. Meanwhile, we demonstrated that non-activated styrene derivatives could be employed for this alkenylation via C–H activation (3f–j). The desired product 3f was generated from the coupling reaction of 1a with styrene in 73% yield. Styrene containing electron-withdrawing fluoro or chloro group gave us the desired products 3i–j in slightly low yield. In addition, acrylamide was proved to be a good coupling partner and provided the corresponding product 3k in 83% yield.

Table 2 Scope of olefinsa

image file: c5ra02932e-u2.tif

a All reaction were performed with 1a (0.5 mmol), 2 (1.0 mmol), Pd(OAc)2 (10 mol%), PivOH (5 equiv.), O2 (gas bag), in 1 mL of DMF at 80 °C for 24 h. Isolated yields.
image file: c5ra02932e-u3.tif


We next probed the scope of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-ones under the optimized conditions (Table 3). 2-Methyl-4H-pyrido[1,2-a]pyrimidin-4-ones possessing methyl, fluoro or chloro groups were smoothly reacted with n-butyl acrylate or styrene and provided C-3 alkenylation products 3l–u in moderate to good yields (59–75%). Among them, fluoro or chloro substituents on 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one ring led to a lower yield (∼10%) than methyl substituent. Fluoro or chloro group as functional substituent was compatible with this coupling reaction, providing an opportunity for further functionalization.

Table 3 Scope of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-onesa

image file: c5ra02932e-u4.tif

a All reaction were performed with 1b–f (0.5 mmol), 2 (1.0 mmol), Pd(OAc)2 (10 mol%), PivOH (5 equiv.), O2 (gas bag), in 1 mL of DMF at 80 °C for 24 h. Isolated yields.
image file: c5ra02932e-u5.tif


Finally, a plausible mechanism for the direct C-3 alkenylation of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one is shown in Scheme 1. Pd(OAc)2 is treated with PivOH to get active Pd(OPiv)2, which is proposed to enable efficient C–H activation. The C-3-palladated intermediate A is formed by the electrophilic attack of Pd(OPiv)2 to substrate 1a. Then, the species A smoothly inserts into the olefin 2 to give intermediate B, which undergoes a β-hydrogen elimination to provide the coupling product 3. The Pd(0) can be reoxidized by O2 to complete the catalytic cycle.


image file: c5ra02932e-s1.tif
Scheme 1 A plausible mechanism.

Conclusions

In conclusion, we have developed a general and simple protocol for the direct C-3 alkenylation of 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-ones via C–H activation using a Pd(OAc)2-O2-PivOH system. The transformation can proceed well without metal or organic oxidants. This methodology will be attractive for the construction of new 2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one derivatives, which are of importance in medicinal chemistry.

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (21201043).

Notes and references

  1. (a) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780 CrossRef CAS PubMed; (b) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215 CrossRef CAS PubMed; (c) X. Shang and Z. Q. Liu, Chem. Soc. Rev., 2013, 42, 3253 RSC; (d) Y. Wu, J. Wang, F. Mao and F. Y. Kwong, Chem.–Asian J., 2014, 9, 26 CrossRef CAS PubMed.
  2. (a) W. Liu, S. Wang, H. Zhan, J. Lin, P. He and Y. Jiang, Tetrahedron Lett., 2014, 55, 3549 CrossRef CAS PubMed; (b) Y. Yang, H. Gong and C. Kuang, Eur. J. Org. Chem., 2013, 2013, 5276 CrossRef CAS PubMed; (c) M. Mewald, J. A. Schiffner and M. Oestreich, Angew. Chem., Int. Ed., 2012, 51, 1763 CrossRef CAS PubMed; (d) H. Jiang, Z. Feng, A. Wang, X. Liu and Z. Chen, Eur. J. Org. Chem., 2010, 2010, 1227 CrossRef PubMed; (e) E. M. Beck, N. P. Grimster, R. Hatley and M. J. Gaunt, J. Am. Chem. Soc., 2006, 128, 2528 CrossRef CAS PubMed; (f) N. P. Grimster, C. Gauntlett, C. R. Godfrey and M. J. Gaunt, Angew. Chem., Int. Ed., 2005, 44, 3125 CrossRef CAS PubMed; (g) A. Garcia-Rubia, R. Gomez Arrayas and J. C. Carretero, Angew. Chem., Int. Ed., 2009, 48, 6511 CrossRef CAS PubMed; (h) X. Zhang, S. Fan, C.-Y. He, X. Wan, Q.-Q. Min, J. Yang and Z.-X. Jiang, J. Am. Chem. Soc., 2010, 132, 4506 CrossRef CAS PubMed; (i) M. Yu, Z. Liang, Y. Wang and Y. Zhang, J. Org. Chem., 2011, 76, 4987 CrossRef CAS PubMed; (j) M. Ye, G. L. Gao and J. Q. Yu, J. Am. Chem. Soc., 2011, 133, 6964 CrossRef CAS PubMed; (k) J. Wu, X. Cui, L. Chen, G. Jiang and Y. Wu, J. Am. Chem. Soc., 2009, 131, 13888 CrossRef CAS PubMed; (l) C.-Z. Wu, C.-Y. He, Y. Huang and X. Zhang, Org. Lett., 2013, 15, 5266 CrossRef CAS PubMed; (m) W. Liu, X. Yu and C. Kuang, Org. Lett., 2014, 16, 1798 CrossRef CAS PubMed; (n) W. C. Lee, T. H. Wang and T. G. Ong, Chem. Commun., 2014, 50, 3671 RSC; (o) Y. Huang, F. Song, Z. Wang, P. Xi, N. Wu, Z. Wang, J. Lan and J. You, Chem. Commun., 2012, 48, 2864 RSC; (p) L. Y. Chan, S. Kim, T. Ryu and P. H. Lee, Chem. Commun., 2013, 49, 4682 RSC; (q) E. Capito, J. M. Brown and A. Ricci, Chem. Commun., 2005, 1854 RSC; (r) H. Cao, S. Lei, J. Liao, J. Huang, H. Qiu, Q. Chen, S. Qiu and Y. Chen, RSC Adv., 2014, 4, 50137 RSC; (s) C. Aouf, E. Thiery, J. L. Bras and J. Muzart, Org. Lett., 2009, 11, 4096 CrossRef CAS PubMed.
  3. (a) H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao and H. Cao, RSC Adv., 2014, 4, 32013 RSC; (b) H. Li, X. Xie and L. Wang, Chem. Commun., 2014, 50, 4218 RSC; (c) M. C. Reddy and M. Jeganmohan, Eur. J. Org. Chem., 2013, 2013, 1150 CrossRef CAS PubMed; (d) B. Li, J. Ma, W. Xie, H. Song, S. Xu and B. Wang, J. Org. Chem., 2013, 78, 9345 CrossRef CAS PubMed; (e) S. I. Kozhushkov and L. Ackermann, Chem. Sci., 2013, 4, 886 RSC; (f) K. Padala, S. Pimparkar, P. Madasamy and M. Jeganmohan, Chem. Commun., 2012, 48, 7140 RSC; (g) J. Li, C. Kornhaass and L. Ackermann, Chem. Commun., 2012, 48, 11343 RSC; (h) B. Li, K. Devaraj, C. Darcel and P. H. Dixneuf, Green Chem., 2012, 14, 2706 RSC; (i) K. Graczyk, W. Ma and L. Ackermann, Org. Lett., 2012, 14, 4110 CrossRef CAS PubMed; (j) K. Padala and M. Jeganmohan, Org. Lett., 2011, 13, 6144 CrossRef CAS PubMed; (k) P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf, Green Chem., 2011, 13, 3075 RSC.
  4. (a) B. C. Chary and S. Kim, Org. Biomol. Chem., 2013, 11, 6879 RSC; (b) T. Iitsuka, P. Schaal, K. Hirano, T. Satoh, C. Bolm and M. Miura, J. Org. Chem., 2013, 78, 7216 CrossRef CAS PubMed; (c) H. Li, Y. Li, X. S. Zhang, K. Chen, X. Wang and Z. J. Shi, J. Am. Chem. Soc., 2011, 133, 15244 CrossRef CAS PubMed; (d) J. Mo, S. Lim, S. Park, T. Ryu, S. Kim and P. H. Lee, RSC Adv., 2013, 3, 18296 RSC; (e) S. Sharma, S. Han, M. Kim, N. K. Mishra, J. Park, Y. Shin, J. Ha, J. H. Kwak, Y. H. Jung and I. S. Kim, Org. Biomol. Chem., 2014, 12, 1703 RSC; (f) J. Shi, Y. Yan, Q. Li, H. E. Xu and W. Yi, Chem. Commun., 2014, 50, 6483 RSC; (g) Z. Song, R. Samanta and A. P. Antonchick, Org. Lett., 2013, 15, 5662 CrossRef CAS PubMed.
  5. (a) Y. Zhu and Y. Wei, Chem. Sci., 2014, 5, 2379 RSC; (b) D. Liu, C. Liu, H. Li and A. Lei, Chem. Commun., 2014, 50, 3623 RSC.
  6. D. Kim and S. Hong, Org. Lett., 2011, 13, 4466 CrossRef CAS PubMed.
  7. (a) H.-L. Wang, R.-B. Hu, H. Zhang, A.-X. Zhou and S.-D. Yang, Org. Lett., 2013, 15, 5302 CrossRef CAS PubMed; (b) M. Miyasaka, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2010, 75, 5421 CrossRef CAS PubMed.
  8. L.-Y. Jiao and M. Oestreich, Org. Lett., 2013, 15, 5374 CrossRef CAS PubMed.
  9. (a) M. Min, Y. Kim and S. Hong, Chem. Commun., 2013, 49, 196 RSC; (b) M. Li, L. Li and H. Ge, Adv. Synth. Catal., 2010, 352, 2445 CrossRef CAS PubMed; (c) W.-L. Chen, Y.-R. Gao, S. i. Mao, Y.-L. Zhang, Y.-F. Wang and Y.-Q. Wang, Org. Lett., 2012, 14, 5920 CrossRef CAS PubMed; (d) Q. Huang, Q. Song, J. Cai, X. Zhang and S. Lin, Adv. Synth. Catal., 2013, 355, 1512 CrossRef CAS PubMed.
  10. (a) F. Awouters, J. Vermeire, F. Smeyers, P. Vermote, R. v. Beek and C. J. E. Niemegeers, Drug Dev. Res., 1986, 8, 95 CrossRef CAS PubMed; (b) I. Hermecz and Z. Mészáros, Med. Res. Rev., 1988, 8, 203 CrossRef CAS PubMed; (c) L. E. J. Kennis, F. P. Bischoff, C. J. Mertens, C. J. Love, F. A. F. V. d. Keybus, M. B. S. Pieters, A. A. H. P. Megens and J. E. Leysen, Bioorg. Med. Chem. Lett., 2002, 10, 71 CrossRef; (d) C. L. Motta, S. Sartini, L. Mugnaini, F. Simorini, S. Taliani, S. Salerno, A. M. Marini, F. D. Settimo, A. Lavecchia, E. Novellino, M. Cantore, P. Failli and M. Ciuffi, J. Med. Chem., 2007, 50, 4917 CrossRef PubMed; (e) D. G. Shulman, L. Amdahl, C. Washington and A. Graves, Clin. Ther., 2003, 25, 1096 CrossRef CAS; (f) P. V. Solanki, S. B. Uppelli, B. S. Pandit and V. T. Mathad, ACS Sustainable Chem. Eng., 2013, 1, 243 CrossRef CAS.
  11. C. Fenton and L. J. Scott, CNS Drugs, 2005, 19, 429 CrossRef CAS PubMed.
  12. (a) K. Nakayama, N. Kuru, M. Ohtsuka, Y. Yokomizo, A. Sakamoto, H. Kawato, K. Yoshida, T. Ohta, K. Hoshino, K. Akimoto, J. Itoh, H. Ishida, A. Cho, M. H. Palme, J. Z. Zhang, V. J. Leeb and W. J. Watkins, Bioorg. Med. Chem. Lett., 2004, 14, 2493 CrossRef CAS PubMed; (b) K. Yoshida, K. Nakayama, N. Kuru, S. Kobayashi, M. Ohtsuka, M. Takemura, K. Hoshino, H. Kanda, J. Z. Zhang, V. J. Lee and W. J. Watkins, Bioorg. Med. Chem., 2006, 14, 1993 CrossRef CAS PubMed; (c) K. Yoshida, K. Nakayama, M. Ohtsuka, N. Kuru, Y. Yokomizo, A. Sakamoto, M. Takemura, K. Hoshino, H. Kanda, H. Nitanai, K. Namba, K. Yoshida, Y. Imamura, J. Z. Zhang, V. J. Leed and W. J. Watkins, Bioinorg. Med. Chem., 2007, 15, 7087 CrossRef CAS PubMed; (d) K. Yoshida, K. Nakayama, Y. Yokomizo, M. Ohtsuka, M. Takemura, K. Hoshino, H. Kanda, K. Namba, H. Nitanai, J. Z. Zhang, V. J. Lee and W. J. Watkins, Bioorg. Med. Chem., 2006, 14, 8506 CrossRef CAS PubMed.
  13. (a) S. Wang, W. Liu, H. Zhan and M. Li, Synlett, 2014, 1478 CrossRef PubMed; (b) R. Cassis, R. Tapia and J. A. Valderrama, Synth. Commun., 1985, 15, 125 CrossRef CAS; (c) A. Molnár, F. Faigl, B. Podányi, Z. Finta, L. Balázs and I. Hermecz, Heterocycles, 2009, 78, 2477 CrossRef; (d) I. Ravina, D. Zicane, M. Petrova, E. Gudriniece and U. Kalejs, Chem. Heterocycl. Compd., 2002, 38, 836 CrossRef CAS; (e) M. Shur and S. S. Israelstam, J. Org. Chem., 1968, 33, 3015 CrossRef CAS.
  14. (a) P. Vanelle, Y. Kabri, M. Crozet and R. Szabo, Synthesis, 2011, 3115 CrossRef PubMed; (b) A. Molnár, A. Kapros, L. Párkányi, Z. Mucsi, G. Vlád and I. Hermecz, Org. Biomol. Chem., 2011, 9, 6559 RSC.
  15. W. Liu, S. Wang, Q. Zhang, J. Yu, J. Li, Z. Xie and H. Cao, Chem.–Asian J., 2014, 9, 2436 CrossRef CAS PubMed.
  16. (a) S. H. Cho, S. J. Hwang and S. Chang, J. Am. Chem. Soc., 2008, 130, 9254 CrossRef CAS PubMed; (b) P. Li, J.-W. Gu, Y. Ying, Y.-M. He, H.-f. Zhang, G. Zhao and S.-Z. Zhu, Tetrahedron, 2010, 66, 8387 CrossRef CAS PubMed; (c) Y.-Y. Yu, M. J. Niphakis and G. I. Georg, Org. Lett., 2011, 13, 5932 CrossRef PubMed.
  17. (a) D. Kang, J. Cho and P. H. Lee, Chem. Commun., 2013, 49, 10501 RSC; (b) Y. Y. Yu and G. I. Georg, Chem. Commun., 2013, 49, 3694 RSC; (c) G. Zhang, Z. Li, Y. Huang, J. Xu, X. Wu and H. Yao, Tetrahedron, 2013, 69, 1115 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: 1H and 13C NMR spectra of compounds 3a–3u. See DOI: 10.1039/c5ra02932e

This journal is © The Royal Society of Chemistry 2015