Sulphuric acid immobilized on silica gel (H2SO4–SiO2) as an eco-friendly catalyst for transamidation

Sk. Rasheedab, D. Nageswar Raoab, A. Siva Reddyab, Ravi Shankarb and Parthasarathi Das*ab
aAcademy of Scientific and Innovative Research(AcSIR), India
bMedicinal Chemistry Division, Indian Institute of Integrative Medicine(CSIR), Canal Road, Jammu-180001, India. E-mail: partha@iiim.ac.in; Fax: +91-191-2569019; Tel: +91-191-2560000

Received 17th December 2014 , Accepted 5th January 2015

First published on 5th January 2015


Abstract

A novel method of transamidation of carboxamides with amines by using catalytic amounts of H2SO4–SiO2 has been developed under solvent free conditions. The transamidation is compatible with a wide range of aromatic, heteroaromatic, aliphatic, cyclic/acyclic primary or secondary amines. The metal/solvent-free conditions represent a significant improvement over other existing methods as the reaction can be performed in open air conditions and no column purification is required. The versatility of this methodology was further demonstrated by synthesizing the commercially available drug procainamide.


Introduction

The amide bond is widely present both in natural products and synthetic compounds. The presence of amide functionality in top selling pharmaceutical products, makes the amidation reaction one of the most commonly used reactions in medicinal chemistry.1,2 Traditionally, amides have been synthesized by the reactions of carboxylic acids3 and their derivatives4 with amines, which in general suffers from harsh reaction conditions and large amounts of by-products, thus severely impeding large scale production. Therefore, atom-economical synthesis of amides without the use of hazardous reagents or without generating waste is a formidable challenge in organic synthesis. The transamidation process has emerged as an alternative and attractive protocol for amide bond formation.5 Recently, elegant examples of transamidation reaction from the groups of Stahl,6 Williams,7 Myers,8 Beller9 and other groups have been reported.10 Despite their wide scope these reactions suffer from high temperature and required transition-metal catalyst to promote the transamidation. Boron-mediated transamidation has been reported in the literature,11 where the boron reagents has been used either in stoichiometric or in catalytic amounts. Metal-free methods utilizing catalytic hydroxylamine hydrochloride,12 L-proline13 and ammonium chloride14 have also been reported. But these catalysts are active only in organic solvents except few are reported under solvent-free conditions.10d,13 Moreover, the scope of these methods are only limited to primary amides and most cases to primary amines. Clearly there is a lack of an efficient, general and environmentally benign protocol for transamidation.

In the recent years, H2SO4–SiO2 has shown great potentiality as an efficient and easily retrievable solid catalyst in promoting various important organic reactions under solvent-free conditions.15 The high catalytic activity, the operational simplicity and the recyclability of H2SO4–SiO2 make this reagent attractive for industrial use.16 To the best of our knowledge, H2SO4–SiO2 catalyzed transamidations have not been reported yet. Considering the economic attractiveness and environmental friendliness of H2SO4–SiO2 as catalyst, we became interested in developing a general transamidation methodology of carboxamides with amines. Herein, we report our results for the first time (Scheme 1).


image file: c4ra16571c-s1.tif
Scheme 1 Methods for transamidation.

Results and discussion

Our initial studies focused on developing an efficient catalytic system for transamidation and we used N,N-dimethyl benzamide with p-toluidine as model system (Table 1). At first the reaction was performed in presence of silica (SiO2) without solvent unfortunately no transamidation happened even at 100 °C (entry 1, Table 1). But to our delight use of H2SO4–SiO2 (100 mol%) at 100 °C gave transamidation product 1a in 50% yield. Temperature variation revealed that SiO2–H2SO4 works more efficiently at 70 °C (entry 3, Table 1). At room temperature (entry 4, Table 1) the reaction was not moving even after 12 h where as at 50 °C lower yield (50%) was obtained (entry 5, Table 1). Encouraged with this results, we performed the reaction by using 20 mol% H2SO4–SiO2 at 70 °C (entry 6, Table 1) and the transamidation product was isolated in 63% yield. The yield of product was further increased (70%) when the catalyst loading decreased to 10 mol% (entry 7, Table 1). The optimum condition was obtained when we performed the reaction by using 5 mol% H2SO4–SiO2 at 70 °C and the isolated yield was 90% (entry 8, Table 1). Interestingly, when the reaction temperature was increased to 100 °C (entry 9, Table 1) yield was decreased due to hydrolysis of corresponding amide. The catalytic potential of other protic acid on silica (TfOH–SiO2; AcOH–SiO2; HClO4–SiO2) was also assessed found are less effective (entries 10–12, Table 1). When we used only H2SO4 (5 mol%) the yield was decreased to 73% (Table 1, entry 13).
Table 1 Optimization studies for transamidationa

image file: c4ra16571c-u1.tif

Entry Catalyst (mol%) Temp [°C] Time (h) Yieldb (%)
a Reaction conditions: amine (0.93 mmol), N,N-dimethyl benzamide (2.8 mmol) H2SO4–SiO2 (5 mol%), temp = 70 °C, air.b Isolated yield; n.r. = no reaction.
1 SiO2 (100) 100 12 n.r.
2 H2SO4–SiO2 (100) 100 6 50
3 H2SO4–SiO2 (100) 70 6 60
4 H2SO4–SiO2 (100) rt 12 n.r.
5 H2SO4–SiO2 (100) 50 12 50
6 H2SO4–SiO2 (20) 70 12 63
7 H2SO4–SiO2 (10) 70 12 70
8 H2SO4–SiO2 (5) 70 6 90
9 H2SO4–SiO2 (5) 100 6 75
10 TfOH–SiO2 (100) 100 12 45
11 AcOH-SiO2 (100) 100 3 25
12 HClO4–SiO2 (100) 100 6 40
13 H2SO4 (5) 70 6 73


With the optimized catalytic conditions in hand at first the scope of the amidation reactions were explored with a wide range of amines and various N,N-dimethyl benzamides results are summarized in Table 2. N-Aryl/heteroaryl benzamides are the important structural core of many FDA approved drugs.17 Thus, finding a general route for this kind of amide bond formation will definitely add value to drug discovery process. In general, the transamidation of N,N-dimethyl benzamide with aryl/heteroaryl amines (electron-neutral, -rich, -deficient), aliphatic and cyclic secondary amines gave corresponding transamidation products in very good yields (70–90%) (1a–f). Interestingly, sterically hindered aryl amines like 2,6 dimethyl aniline undergoes the reaction smoothly and the resulted amide (1c) isolated in good yield (82%). Less reactive heteroaromatic like 2-aminopyrimidine gave the transamidation product (1d), albeit in low yield (70%) and in larger reaction time. To enhance the further substrate scope N,N-dimethyl napthamides were subjected for transamidation raction with various amines. To our delight aromatic/heteroaromatic/aliphatic amines undergoes smooth transamidation (1g–m) with excellent yields (75–87%). It is noteworthy to mention that functional groups like bromo (1k) or chloro (1l) are tolerable under these reaction conditions.

Table 2 Synthesis of benzamides/apthamide for transamidationa
a Reaction conditions: amine (0.93 mmol), N,N-dimethyl benzamide (2.8 mmol) H2SO4–SiO2 (5 mol%), 70 °C, air.
image file: c4ra16571c-u2.tif


N-Aryl/heteroaryl pivalamides are important in organic synthesis as they works as directing group in many transition-metal catalyzed reactions.18 Further N-aryl pivalamides also found in many medicinally important compounds.19

Thus, finding general synthetic protocol for this kind of amide bond formation will be interesting in organic synthesis. Here, we have applied this optimized transamidation conditions in synthesis of various N-aryl/heteroaryl pivalamides (Table 3). The versatility of this reaction was demonstrated with different aryl amines undergoes transamidation reaction with N,N-dimethyl pivalamide to give the corresponding N-aryl pivalamides (2a–f) in excellent yields (80–95%). Under these conditions heteroaromatic amines also been tested and the resulted N-heteroaryl pivalamides are isolated (2g–j) in good yields (74–80%).

Table 3 Synthesis of N-aryl/hetaryl pivalamidne for transamidationa
a Reaction conditions: amine (0.93 mmol), N,N-dimethyl pivalamide (2.8 mmol) H2SO4–SiO2 (5 mol%), 70 °C, air.
image file: c4ra16571c-u3.tif


Typically, the N-acetylation and N-formylation of an amine is carried out using hazardous, toxic, and unstable reagents.20 This led us to carry out a more comprehensive study of scope and limitation of acetylation/formylation using the present methodology. As shown in Table 4 the aromatic/heteroaromatic amines bearing either electron-rich or electron-deficient substituent in the aromatic ring all underwent the reactions smoothly to give the desired N-aryl formamides (3a–i) in excellent yields (78–98%). Functional groups like –CO2Me (3b and c), hydroxyl (3d) and iodo (3e) are tolerable under this optimized conditions. In this context, we performed the formylation of methyl ester of L-tryptophan and the corresponding formylated product (3k) was obtained in good yield (85%).

Table 4 Acetylation and formylation of amines via transamidationa
a Reaction conditions: amine (1.05 mmol), DMF/DMA (3.22 mmol & 3.12 mmol) H2SO4–SiO2 (5 mol%), 70 °C, air.
image file: c4ra16571c-u4.tif


Finally, under these optimized conditions the transamidation of N,N-dimethyacetamide with various amines was examined. The results presented in Table 4 revealed that both the aryl and hereto aryl amines underwent smooth transamidation to give the desired products (3n–u) in high yields (75–98%). It is important to highlight that this result represents a useful method for the protection of primary amines with excellent functional group tolerability.

Procainamide21 an antiarrhythmic drug used for treatment of cardiac arrhythmias prepared by following these optimized transamidation protocol (Scheme 2). In this synthesis nitro benzamide derivative (4) undergoes smooth transamidation with diamine (5) to give benzamide 6 in very good yield (82%). Subsequent reduction of nitro group gave the desired procainamide (7).


image file: c4ra16571c-s2.tif
Scheme 2 Synthesis of procainamide.

Based on the results and the fact that H2SO4–SiO2 plays the role of transferring protons from its solid surface.15b A plausible mechanism for the transamidation has been presented in Scheme 3.


image file: c4ra16571c-s3.tif
Scheme 3 Plausible transamidation mechanism.

The protonation and activation of the amide bond of N,N-dimethyl benzamide by sulfonic group of H2SO4–SiO2 generates the cationic intermediate 8. Now, the cationic intermediate reacts with amine nuclophiles, which on further elimination of –NHMe2 provides the transamidation product 1a.

Conclusion

We have developed an environment friendly H2SO4–SiO2 catalytic system for transamidation. Presented catalytic system explored with substituted aromatic, heteroaromatic, and aliphatic/alicyclic primary amines, as well as secondary amines with carboxamides. The scope of H2SO4–SiO2 catalytic system was also examined further for acetylation and formylation. Due to its manipulation ease, low-cost, and benign character, the H2SO4–SiO2 catalytic system described here represents an excellent complement to the previously reported protocols. This methodology is general and definitely will add value into the fastest growing area of transamidation chemistry.

Experimental section

General information

Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel plates (60 F254; MERCK). TLC plates were visualized by exposing UV light or by iodine vapors or immersion in ninhydrin followed by heating on hot plate. 1H and 13C NMR spectra were recorded with BRUKER 500 and 400 MHz NMR instruments. Mass spectra were recorded with VARIAN GC-MS instrument. HRMS spectra were recorded with LCMS-QTOF Module No. G6540 A (UHD) instrument. IR spectra were recorded on Jasco FT/IR-5300 spectrophotometer. Melting points were measured in open capillary tubes and are uncorrected. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers.

Preparation of sulphuric acid adsorbed on silica gel (SiO2–H2SO4)

The preparation of H2SO4–SiO2 was carried out by following reported procedure.15a To a suspension of silica gel (29.5 g, 230–400 mesh size) in EtOAc (60 mL) was added H2SO4 (1.5 g, 15.5 mmol, 0.8 mL of a 98% aq. solution of H2SO4) and the mixture was stirred magnetically for 30 min at rt. The EtOAc was removed under reduced pressure (rotary evaporator) and the residue was heated at 100 °C for 72 h under vacuum to afford H2SO4–SiO2 as a free flowing powder.

General procedure

To a mixture of aniline (0.93 mmol) and N,N-dimethyl amide (2.8 mmol) H2SO4–SiO2 (5 mol%) was added. The mixture was stirred at 70 °C and progress of the reaction monitored by TLC. After completion of the reaction, the mixture was diluted with EtOAc (20 mL), filtered, water (30 mL) added, the solution extracted with EtOAc (3 × 15 mL), and the combined organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was subjected to column chromatography to obtain the pure desired product.
N-(p-Tolyl)benzamide (1a)22a. Colourless solid (90%); mp. 133–135 °C; IR (NaCl) ν(cm−1) 3339, 2923, 1650, 1597, 1579, 1514, 1404, 1320, 1121, 1018, 926, 813, 772, 713; 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 7.5 Hz, 2H), 7.77 (s, 1H), 7.52 (m, 5H), 7.18 (d, J = 8.2 Hz, 2H), 2.35 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 165.7, 135.3, 135.0, 134.2, 131.7, 129.6, 128.78, 127.0, 120.2, 20.9; HRMS (ESI): m/z calcd for C14H14NO [M + H]+: 212.1070; found: 212.1073.
Methyl 4-(3-methoxybenzamido)benzoate (1b)22b. Colourless solid (89%); mp. 112–114 °C; IR (NaCl) ν(cm−1) 3440, 2923, 1682, 1609, 1585, 1491, 1457, 1439, 1308, 1282, 1236, 1194, 1103, 1049, 1018, 749; 1H NMR (400 MHz, CDCl3) δ 7.74 (t, J = 8.5 Hz, 2H), 7.64 (dd, J = 11.8, 2.9, 2H), 7.43 (t, J = 8.1 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.19 (m, 2H), 3.88 (s, 3H), 3.87 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 162.2, 159.8, 159.5, 130.0, 129.8, 129.5, 122.9, 122.6, 121.1, 120.4, 114.8, 114.3, 55.5, 55.4; HRMS (ESI): m/z calcd for C16H16NO4 [M + H]+: 286.1074; found: 286.1079.
2,6-Dimethyl-N-phenylbenzamide (1c). Colourless solid (82%); mp. 149–152 °C; IR (NaCl) ν(cm−1) 3261, 2913, 2835, 1644, 1585, 1513, 1485, 1470, 1446, 1376, 1328, 1302, 1242, 1182, 1040, 993, 877, 755; 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.42 (s, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.13 (m, 3H), 3.88 (s, 3H), 2.28 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 165.8, 159.9, 135.9, 135.6, 133.8, 129.7, 128.2, 127.4, 118.9, 117.9, 112.6, 55.5, 18.4; HRMS (ESI): m/z calcd for C16H18NO2 [M + H]+: 256.1332; found: 256.1336.
3-Methoxy-N-(pyrimidin-2-yl)benzamide (1d). Colourless solid (70%); mp. 110–112 °C; IR (NaCl) ν(cm−1) 3436, 2924, 2853, 1694, 1599, 1583, 1567, 1487, 1452, 1430, 1408, 1290, 1265, 1212, 1180, 1123, 1083, 1041, 995, 801, 768; 1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 6.1 Hz, 1H), 7.24 (td, J = 8.1, 1.2 Hz, 2H), 7.13 (t, J = 5.4 Hz, 1H), 7.02 (dd, J = 8.2, 2.0 Hz, 1H), 3.77 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.4, 160.6, 159.7, 158.8, 135.5, 129.6, 121.6, 119.5, 118.8, 113.8, 55.4; HRMS (ESI): m/z calcd for C12H12N3O2 [M + H]+: 230.0924; found: 230.0918.
N-(Cyclopropylmethyl)-3-methoxybenzamide (1e). Colourless solid (85%); mp. 60–62 °C; IR (NaCl) ν(cm−1) 3321, 2921, 2851, 1637, 1601, 1582, 1540, 1485, 1464, 1430, 1340, 1300, 1242, 1125, 1045, 1018, 876, 804; 1H NMR (400 MHz, CDCl3) δ 7.37 (m, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.04 (dd, J = 7.9, 2.5 Hz, 1H), 6.22 (s, 1H), 3.86 (s, 3H), 3.31 (dd, J = 7.1, 5.5 Hz, 2H), 1.06 (m, 1H), 0.56 (q, J = 4.4 Hz, 2H), 0.28 (q, J = 4.8 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 167.3, 159.8, 136.2, 129.5, 118.6, 117.5, 112.3, 55.4, 44.9, 10.7, 3.5; HRMS (ESI): m/z calcd for C12H16NO2 [M + H]+: 206.1176; found: 206.1195.
(3-Methoxyphenyl)(morpholino)methanone (1f)22c. Yellow oil (87%); IR (NaCl) ν(cm−1) 3257, 2964, 2919, 2854, 1643, 1580, 1577, 1488, 1454, 1363, 1288, 1185, 1141, 1114, 1070, 1044, 1022, 995, 946, 742; 1H NMR (400 MHz, CDCl3) δ 7.38 (m, 1H), 6.95 (d, J = 7.4 Hz, 3H), 3.82 (s, 3H), 3.77 (d, J = 3.0 Hz, 4H), 3.45 (d, J = 76.0 Hz, 4H); 13C NMR (125 MHz, CDCl3) δ 170.1, 159.6, 136.5, 129.6, 119.0, 115.6, 112.4, 66.8, 55.3, 48.1; HRMS (ESI): m/z calcd for C12H16NO3 [M + H]+: 222.1125; found: 222.1122.
N-(Naphthalen-2-yl)-1-naphthamide (1g). Colourless solid (85%); mp. 198–200 °C; IR (NaCl) ν(cm−1) 3224, 2923, 1651, 1583, 1548, 1470, 1429, 1356, 1292, 1258, 1221, 898, 781; 1H NMR (400 MHz, CDCl3) δ 8.43 (d, J = 9.0 Hz, 2H), 8.00 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 7.3 Hz, 1H), 7.87 (m, 3H), 7.81 (d, J = 7.4 Hz, 1H), 7.60 (m, 4H), 7.52 (m, 1H), 7.45 (t, J = 7.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 167.6, 135.4, 133.8, 133.7, 131.1, 130.8, 130.0, 128.9, 128.4, 127.7, 127.6, 127.4, 126.6, 125.2, 125.2, 125.1, 124.7, 119.7, 116.7; HRMS (ESI): m/z calcd for C21H16NO [M + H]+: 298.1227; found: 298.1227.
N-(Cyclopropylmethyl)-1-naphthamide (1h). Colourless solid (87%); mp. 123–124 °C; IR (NaCl) ν(cm−1) 3299, 2923, 2851, 1635, 1620, 1592, 1578, 1539, 1428, 1385, 1338, 1300, 1268, 1207, 1163, 1018, 806, 778; 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 8.0 Hz, 1H), 7.88 (m, 2H), 7.62 (d, J = 7.0 Hz, 1H), 7.54 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 6.12 (s, 1H), 3.41 (t, J = 8.2 Hz, 2H), 1.10 (m, 1H), 0.57 (q, J = 4.9 Hz 2H), 0.31 (q, J = 4.8 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 169.5, 134.7, 133.6, 130.4, 130.1, 128.3, 127.0, 126.4, 125.4, 124.8, 124.7, 44.8, 10.8, 3.5; HRMS (ESI): m/z calcd for C15H16NO [M + H]+: 226.1227; found: 226.1231.
Naphthalen-1-yl(piperidin-1-yl)methanone (1i)22c. Yellow color gel (86%); IR (NaCl) ν(cm−1) 3055, 2918, 2854, 1634, 1592, 1508, 1466, 1432, 1361, 1300, 1281, 1267, 1249, 1154, 1114, 1067, 1044, 1018, 994, 847, 799, 780; 1H NMR (400 MHz, CDCl3) δ 7.85 (t, J = 6.9 Hz, 3H), 7.51 (dd, J = 11.3, 4.2 Hz, 2H), 7.47 (dd, J = 8.1, 4.8 Hz, 1H), 7.41 (d, J = 6.9 Hz, 1H), 3.82 (t, J = 8.5 Hz, 4H), 3.49 (t, J = 8.7 Hz, 4H); 13C NMR (125 MHz, CDCl3) δ 169.3, 133.6, 133.4, 129.5, 129.3, 128.5, 127.1, 126.5, 125.2, 124.6, 123.9, 66.9, 47.5; HRMS (ESI): m/z calcd for C15H16NO2 [M + H]+: 242.1176; found: 242.1176.
N-(Pyridin-2-yl)-1-naphthamide (1j)22d. Colourless solid (80%); mp. 103–105 °C; IR (NaCl) ν(cm−1) 3438, 2924, 1680, 1609, 1580, 1488, 1455, 1432, 1422, 1318, 1292, 1226, 1184, 1113, 1041, 1028, 928, 749; 1H NMR (400 MHz, CDCl3) δ 9.35 (s, 1H), 8.41 (d, J = 6.9 Hz, 1H), 8.32 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.67 (dd, J = 16.6, 7.5 Hz, 2H), 7.48 (m, 2H), 7.40 (t, J = 7.6 Hz, 1H), 6.86 (t, J = 8.1 Hz, 1H); HRMS (ESI): m/z calcd for C16H13N2O [M + H]+: 249.1023; found: 249.1018.
N-(4-Bromopyridin-2-yl)-1-naphthamide (1k). Colourless solid (80%); mp. 164–165 °C; IR (NaCl) ν(cm−1) 3439, 2924, 1706, 1673, 1592, 1574, 1509, 1459, 1396, 1367, 1345, 1320, 1293, 1271, 1233, 1193, 1123, 1092, 783; 1H NMR (400 MHz, CDCl3) δ 8.61 (s, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.94 (dd, J = 8.4, 2.4 Hz, 1H), 7.75 (d, J = 7.1 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.42 (m, 3H), 7.10 (t, J = 7.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 172.5, 151.9, 150.8, 141.0, 133.2, 133.1, 131.7, 129.9, 128.1, 127.5, 127.2, 126.5, 124.9, 124.0, 123.8, 119.5; HRMS (ESI): m/z calcd for C16H12BrN2O [M + H]+: 327.0128; found: 327.0127.
N-(2-Chloropyridin-3-yl)-1-naphthamide (1l). Colourless solid (75%); mp. 139–141 °C; IR (NaCl) ν(cm−1) 3408, 2926, 2854, 1678, 1615, 1580, 1510, 1453, 1400, 1383, 1297, 1245, 1194, 1137, 1080, 1053, 1019, 869, 779; 1H NMR (400 MHz, CDCl3) δ 9.72 (s, 1H), 8.44 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 6.7 Hz, 1H), 7.71 (m, 2H), 7.45 (m, 3H), 6.90 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 168.5, 146.0, 143.8, 134.7, 133.4, 133.3, 132.0, 131.1, 129.3, 128.4, 128.0, 127.4, 126.8, 126.2, 125.8, 124.2; HRMS (ESI): m/z calcd for C16H12ClN2O [M + H]+: 283.0633; found: 283.0639.
N-(Pyrimidin-2-yl)-1-naphthamide (1m). Colourless oil (75%); IR (NaCl) ν(cm−1) 3323, 2931, 1703, 1631, 1591, 1509, 1476, 1460, 1434, 1381, 1364, 1237, 1216, 1172, 1127, 1098, 1017, 863, 801, 781, 746; 1H NMR (400 MHz, CDCl3) δ 8.99 (d, J = 8.6 Hz, 1H), 8.29 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.85 (dd, J = 8.8, 3.4 Hz, 2H), 7.60 (d, J = 7.3 Hz, 1H), 7.50 (m, 3H), 7.41 (dd, J = 7.0, 1.1 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 170.5, 135.0, 133.9, 133.4, 129.6, 128.8, 128.3, 127.8, 126.9, 126.3, 125.1, 124.7, 124.5, 123.2; HRMS (ESI): m/z calcd for C15H12N3O [M + H]+: 250.0975; found: 250.0969.
N-Phenylpivalamide (2a)23a. Colourless solid (95%); mp. 134–136 °C; IR (NaCl) ν(cm−1) 3435, 2921, 2851, 1653, 1613, 1598, 1460, 1431, 1018, 745, 669, 566; 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.7 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 1.32 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 176.6, 138.0, 128.9, 124.2, 119.9, 39.6, 27.6. HRMS (ESI): m/z calcd for C11H16NO [M + H]+: 178.1227; found: 178.1227.
N-(p-Tolyl)pivalamide (2b)23a. Colourless solid (93%); mp. 116–118 °C; IR (NaCl) ν(cm−1) 3429, 2921, 2849, 1644, 1583, 1515, 1484, 1467, 1303, 1240, 1157, 1112, 1019, 769, 753, 721; 1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 2.31 (s, 3H), 1.31 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 176.4, 135.4, 133.7, 129.4, 120.0, 39.5, 27.6, 20.8. HRMS (ESI): m/z calcd for C12H18NO [M + H]+: 192.1383; found: 192.1387.
N-(4-Methoxyphenyl)pivalamide (2c)23a. Colourless solid (94%); mp. 115–116 °C; IR (NaCl) ν(cm−1) 3441, 2921, 2851, 1670, 1619, 1594, 1544, 1404, 1237, 1018, 779, 669; 1H NMR (400 MHz, CDCl3) δ 7.42 (d, J = 8.9 Hz, 2H), 7.27 (s, 1H), 6.85 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 1.30 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 176.5, 156.3, 131.1, 121.9, 114.0, 55.5, 39.4, 27.6. HRMS (ESI): m/z calcd for C12H18NO2 [M + H]+: 208.1332; found: 208.1328.
N-(2,6-Dimethylphenyl)pivalamide (2d)23b. Colourless solid (82%); mp. 203–204 °C; IR (NaCl) ν(cm−1) 3271, 2928, 2871, 1650, 1592, 1514, 1478, 1439, 1400, 1367, 1297, 1222, 1177, 1091, 1036, 937, 913, 809, 764, 722; 1H NMR (400 MHz, CDCl3) δ 7.08 (m, 3H), 6.89 (s, 1H), 2.20 (s, 6H), 1.36 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 176.5, 135.4, 133.9, 128.1, 127.1, 39.2, 27.8, 18.2. HRMS (ESI): m/z calcd for C13H20NO [M + H]+: 206.1540; found: 206.1546.
Methyl 2-methoxy-4-pivalamidobenzoate (2e). Colourless solid (85%); mp. 128–129 °C; IR (NaCl) ν(cm−1) 3358, 2958, 287, 1707, 1672, 1608, 1590, 1523, 1479, 1451, 1434, 1398, 1291, 1250, 1209, 1180, 1144, 1090, 1034, 961, 916, 856, 824, 778; 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 1.7 Hz, 1H), 7.60 (s, 1H), 6.83 (dd, J = 8.5, 1.8 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 1.33 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 177.4, 166.1, 160.5, 143.5, 132.6, 114.3, 110.6, 103.2, 55.8, 51.8, 39.9, 27.4. HRMS (ESI): m/z calcd for C14H20NO4 [M + H]+: 266.1387; found: 266.1395.
N-(2-Iodophenyl)pivalamide (2f)23c. Colourless solid (80%); mp. 70–72 °C; IR (NaCl) ν(cm−1) 3274, 2925, 2859, 1654, 1583, 1503, 1469, 1457, 1437, 1366, 1238, 1221, 1175, 1017, 928, 739, 753; 1H NMR (500 MHz, CDCl3) δ 8.29 (dd, J = 8.3, 1.4 Hz, 1H), 7.81 (s, 1H), 7.77 (dd, J = 8.0, 1.3 Hz, 1H), 7.34 (m, 1H), 6.83 (td, J = 7.8, 1.5 Hz, 1H), 1.37 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 176.8, 138.6, 138.2, 129.2, 125.7, 121.7, 90.1, 40.1, 27.7. HRMS (ESI): m/z calcd for C11H15INO [M + H]+: 304.0193; found: 304.0197.
N-(Pyridin-2-yl)pivalamide (2g)23d. Colourless solid (80%); mp. 68–70 °C; IR (NaCl) ν(cm−1) 3333, 2931, 2872, 1690, 1593, 1578, 1513, 1478, 1457, 1430, 1399, 1367, 1302, 1225, 1149, 1096, 1051, 1026, 992, 922, 778; 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 8.1 Hz, 2H), 8.04 (s, 1H), 7.71 (dd, J = 12.1, 5.2 Hz, 1H), 7.03 (dd, J = 6.9, 5.4 Hz, 1H), 1.33 (s, 9H). HRMS (ESI): m/z calcd for C10H15N2O [M + H]+: 179.1179; found: 179.1179.
N-(5-Bromopyridin-2-yl)pivalamide (2h)23e. Colourless solid (75%); mp. 61–63 °C; IR (NaCl) ν(cm−1) 3437, 2964, 2931, 2871, 1693, 1584, 1567, 1503, 1398, 1369, 1295, 1224, 1154, 1127, 1093, 1019, 1002, 925, 834, 743, 666; 1H NMR (500 MHz, CDCl3) δ 8.29 (s, 1H), 8.19 (d, J = 7.8 Hz, 1H), 8.17 (s, 1H), 7.79 (t, J = 7.3 Hz, 1H), 1.31 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 177.2, 150.3, 148.4, 140.8, 115.2, 114.4, 39.8, 27.4. HRMS (ESI): m/z calcd for C10H14BrN2O [M + H]+: 257.0284; found: 257.0287.
N-(2-Chloropyridin-3-yl)pivalamide (2i)23f. Colourless oil (74%); IR (NaCl) ν(cm−1) 3435, 2955, 2923, 2853, 1741, 1594, 1506, 1457, 1385, 1301, 1260, 1205, 1153, 1120, 1073, 1019, 858, 799, 669; 1H NMR (500 MHz, CDCl3) δ 8.76 (d, J = 6.7 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.01 (s, 1H), 7.27 (d, J = 8.2 Hz, 1H), 1.36 (s, 9H). HRMS (ESI): m/z calcd for C10H14ClN2O [M + H]+: 213.0789; found: 213.0783.
N-(Thiazol-2-yl)pivalamide (2j)23g. Colourless solid (80%); mp. 136–138 °C; IR (NaCl) ν(cm−1) 3380, 2922, 2854, 1651, 1598, 1536, 1419, 1402, 1320, 1291, 1247, 1109, 1018, 949, 873; 1H NMR (400 MHz, CDCl3) δ 9.30 (s, 1H), 7.45 (d, J = 3.6 Hz, 1H), 6.98 (d, J = 3.5 Hz, 1H), 1.33 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 176.4, 159.0, 137.2, 113.7, 39.1, 27.2. HRMS (ESI): m/z calcd for C8H13N2OS [M + H]+: 185.0743; found: 185.0736.
N-Phenylformamide (3a)24a. Beige solid (98%); mp. 48–51 °C IR (NaCl) ν(cm−1) 3439, 2955, 2920, 2849, 1730, 1610, 1540, 1439, 1397, 1383, 1276, 1133, 1121, 1089, 953, 879, 773, 678; 1H NMR (400 MHz, CDCl3) δ 8.96 (s, 1H), 8.69 (d, J = 11.3 Hz, 1H), 8.33 (s, 1H), 8.18 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.32 (m, 4H), 7.18 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.1 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 163.3, 159.9, 137.1, 136.8, 129.7, 129.0, 125.3, 124.8, 120.2, 118.8.
Methyl 4-formamidobenzoate (3b)11a. Colourless solid (95%); mp. 119–122 °C; IR (NaCl) ν(cm−1) 3264, 2924, 2853, 1714, 1612, 1539, 1436, 1409, 1307, 1282, 1218, 1191, 1177, 1145, 1115, 1016, 846, 765; 1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H), 8.44 (s, 1H), 8.03 (t, J = 8.5 Hz, 4H), 7.65 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 3.91 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 166.7, 166.4, 162.4, 159.6, 141.2, 141.1, 131.5, 130.8, 126.4, 125.9, 119.2, 117.2, 52.2, 52.1.
Methyl 4-formamido-2-methoxybenzoate (3c). Colourless solid (95%); mp. 130–132 °C; IR (NaCl) ν(cm−1) 3283, 2923, 2852, 1698, 1607, 1595, 1532, 1511, 1453, 1435, 1412, 1326, 1255, 1223, 1188, 1148, 1089, 842, 775; 1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.64 (s, 1H), 7.55 (s, 1H), 6.87 (dd, J = 8.4, 1.6 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 166.1, 161.9, 159.4, 142.2, 132.8, 115.2, 103.5, 56.0, 51.9; HRMS (ESI): m/z calcd for C10H12NO4 [M + H]+: 210.0761; found: 210.0765.
N-(2-Hydroxy-5-methylphenyl)formamide (3d)24a. Colourless solid (90%); mp. 120–121 °C; IR (NaCl) ν(cm−1) 3435, 2955, 2923, 2852, 1741, 1657, 1596, 1455, 1378, 1243, 1156, 1019, 771, 668; 1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 6.75 (s, 1H), 6.65 (d, J = 7.8 Hz, 1H), 2.23 (s, 3H); 13C NMR (125 MHz, acetone-d6) δ 160.6, 147.8, 135.8, 122.0, 121.9, 121.1, 118.0, 20.9.
N-(2-Iodophenyl)formamide (3e)24b. Colourless solid (90%); mp. 110–112 °C; IR (NaCl) ν(cm−1) 3439, 2955, 2923, 2852, 1739, 1618, 1460, 1383, 1153, 1117, 1019, 773, 669; 1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.30 (d, J = 8.2 Hz, 1H), 7.83 (dd, J = 21.4, 8.0 Hz, 1H), 7.45 (s, 1H), 7.36 (t, J = 7.7 Hz, 1H), 6.91 (dt, J = 24.4, 7.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 160.0, 157.0, 138.1, 137.2, 127.8, 127.6, 125.2, 124.6, 120.4, 117.3, 88.8, 87.4.
N-(Pyridin-3-yl)formamide (3f)24c. Colourless solid (86%); mp. 94–96 °C; IR (NaCl) ν(cm−1) 3234, 2922, 2852, 1692, 1588, 1544, 1484, 1426, 1412, 1329, 1286, 1241, 1192, 1154, 1125, 1020, 864, 803, 781; 1H NMR (400 MHz, CDCl3) δ 8.71 (s, 1H), 8.47 (s, 2H), 8.25 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H). 13C NMR (125 MHz, CDCl3) δ 162.2, 159.6, 146.4, 140.7, 127.5, 126.1.
N-(2-Chloropyridin-3-yl)formamide (3g). Colourless solid (80%); mp. 145–147 °C; IR (NaCl) ν(cm−1) 3440, 2927, 2837, 1698, 1599, 1582, 1488, 1429, 1410, 1330, 1290, 1264, 1229, 1212, 1064, 1036, 994, 868, 781, 752, 688; 1H NMR (400 MHz, CDCl3) δ 8.77 (d, J = 8.1 Hz, 1H), 8.56 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.77 (s, 1H), 7.29 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 172.2, 159.6, 148.9, 129.7, 121.4, 119.2; HRMS (ESI): m/z calcd for C6H6ClN2O [M + H]+: 157.0163; found: 157.0164.
N-(5-Bromopyridin-2-yl)formamide (3h). Colourless solid (78%); mp. 141–143 °C; IR (NaCl) ν(cm−1) 3440, 2922, 2852, 1690, 1593, 1579, 1535, 1463, 1404, 1375, 1306, 1220, 1171, 1094, 1014, 825; 1H NMR (400 MHz, CDCl3) δ 9.47 (s, 1H), 9.30 (d, J = 10.5 Hz, 1H), 8.87 (s, 1H), 8.51 (s, 1H), 8.36 (s, 2H), 8.18 (d, J = 8.8 Hz, 1H), 7.84 (dd, J = 8.8, 2.2 Hz, 1H), 7.78 (dd, J = 8.6, 2.1 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 162.8, 159.2, 149.5, 149.5, 149.3, 148.5, 141.2, 141.1, 116.1, 115.1, 111.9; HRMS (ESI): m/z calcd for C6H6BrN2O [M + H]+: 202.9637; found: 202.9642.
N-(Thiazol-2-yl)formamide (3i). Colourless solid (80%); mp. 159–161 °C; IR (NaCl) ν(cm−1) 3440, 2921, 2852, 1693, 1681, 1597, 1436, 1386, 1352, 1319, 1288, 1169, 1140, 1049, 1018, 854, 834, 748, 726, 672; 1H NMR (400 MHz, CDCl3) δ 8.63 (s, 1H), 7.48 (d, J = 3.6 Hz, 1H), 7.06 (d, J = 3.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 163.7, 161.7, 142.4, 118.2; HRMS (ESI): m/z calcd for C4H5N2OS [M + H]+: 129.0117; found: 129.0123.
N-Phenethylformamide (3j)11a. Colourless oil (96%); IR (NaCl) ν(cm−1) 3285, 3061, 3029, 2931, 2864, 1666, 1604, 1532, 1497, 1454, 1384, 1237, 1198, 1156, 1085, 1031, 779, 748, 700; 1H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H), 7.30 (d, J = 5.8 Hz, 2H), 7.22 (dd, J = 15.3, 7.7 Hz, 3H), 5.98 (s, 1H), 3.54 (t, J = 6.0 Hz, 2H), 2.83 (t, J = 5.6 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 164.8, 161.6, 138.6, 137.7, 128.9, 128.8, 128.7, 128.6, 126.8, 126.6, 43.3, 39.2, 37.6, 35.4.
Methyl 2-formamido-3-(1H-indol-3-yl)propanoate (3k)24d. Pale yellow solid (85%); mp. 114–117 °C; [α]20D = +55 (0.5 CHCl3); IR (NaCl) ν(cm−1) 3346, 2952, 2854, 1739, 1667, 1618, 1512, 1457, 1437, 1382, 1342, 1213, 1180, 1096, 1018, 746; 1H NMR (400 MHz, CDCl3) δ 8.32 (s, 1H), 8.13 (s, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.18 (dd, J = 13.1, 5.8 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 1.6 Hz, 1H), 5.01 (dd, J = 11.9, 6.5 Hz, 1H), 3.71 (s, 3H), 3.34 (dd, J = 5.1, 2.3 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 172.0, 161.1, 136.1, 127.5, 123.1, 122.2, 119.6, 118.4, 111.4, 109.3, 52.5, 51.6, 27.5.
Piperidine-1-carbaldehyde (3l)11a. Colourless oil (87%); IR (NaCl) ν(cm−1) 3298, 2930, 2819, 1720, 1638, 1610, 1538, 1502, 1496, 1428, 1385, 1318, 1257, 1189, 1125, 1083, 1030, 994, 892; 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 3.47 (m, 4H), 1.59 (m, 6H).
Morpholine-4-carbaldehyde(3m)24a. Colourless oil (88%); IR (NaCl) ν(cm−1) 3320, 2920, 2821, 1710, 1640, 1590, 1520, 1472, 1390, 1327, 1254, 1208, 1176, 1109, 1049, 973; 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 3.70 (m, 2H), 3.67 (m, 2H), 3.58 (m, 2H), 3.40 (m, 2H).
N-(p-Tolyl)acetamide (3n)24e. Colourless solid (98%); mp. 148–151 °C; IR (NaCl) ν(cm−1) 3361, 2916, 2849, 1702, 1685, 1610, 1597, 1526, 1443, 1408, 1368, 1314, 1289, 1253, 1175, 1118, 1000, 856, 768; 1H NMR (400 MHz, CDCl3) δ 7.43 (br, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 7.5 Hz, 2H), 2.30 (s, 3H), 2.14 (s, 3H).
N-(4-Methoxyphenyl)acetamide(3o)24e. Colourless solid (97%); mp. 128–129 °C; IR (NaCl) ν(cm−1) 3242, 2934, 2836, 1647, 1605, 1562, 1513, 1456, 1441, 1369, 1319, 1285, 1246, 1176, 1113, 1030, 970, 838, 773; 1H NMR (400 MHz, CDCl3) δ 7.49 (br, 1H), 7.38 (d, J = 9.0 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.77 (s, 3H), 2.13 (s, 3H).
N-(4-Fluorophenyl)acetamide (3p)24f. Colourless solid (95%); mp. 152–154 °C; IR (NaCl) ν(cm−1) 3267, 2923, 1660, 1613, 1565, 1540, 1507, 1400, 1316, 1237, 1208, 1017, 834; 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.45 (m, 2H), 6.99 (t, J = 8.7 Hz, 2H), 2.16 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 168.3, 160.6, 133.9, 121.8, 115.6, 24.3.
N-(4-(Trifluoromethoxy)phenyl)acetamide (3q). Colourless solid (86%); mp. 114–115 °C; IR (NaCl) ν(cm−1) 3435, 2920, 2851, 1672, 1609, 1541, 1512, 1457, 1407, 1377, 1284, 1208, 1162, 1019, 852; 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 9.0 Hz, 2H), 7.48 (s, 1H), 7.16 (d, J = 8.5 Hz, 2H), 2.18 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 168.9, 145.2, 136.5, 128.6, 121.4, 119.4, 24.3; HRMS (ESI): m/z calcd for C9H9F3NO2 [M + H]+: 220.0579; found: 220.0582.
N-(4-Nitrophenyl)acetamide (3r)24f. Colourless solid (85%); mp. 210–212 °C; IR (NaCl) ν(cm−1) 3345, 2921, 2851, 1684, 1617, 1598, 1568, 1507, 1404, 1345, 1304, 1269, 1115, 1018, 849, 750, 668, 513; 1H NMR (400 MHz, DMSO-d6) δ 10.31 (s, 1H), 8.14 (dd, J = 9.2, 1.9 Hz, 2H), 7.83 (dd, J = 9.2, 2.1 Hz, 2H), 2.17 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ 169.1, 145.0, 142.0, 124.2, 118.4, 24.0.
N-(Pyridin-2-yl)acetamide (3s)24g. Colourless solid (80%); mp. 70–72 °C; IR (NaCl) ν(cm−1) 3244, 2924, 2850, 1690, 1640, 1601, 1584, 1551, 1482, 1424, 1366, 1328, 1288, 1244, 1195, 1133, 1108, 1036, 1020, 918, 855, 838, 818, 706; 1H NMR (400 MHz, CDCl3) δ 8.74 (s, 1H), 8.58 (d, J = 2.3 Hz, 1H), 8.31 (d, J = 3.8 Hz, 1H), 8.19 (d, J = 8.3 Hz, 1H), 7.27 (dd, J = 8.2, 4.9 Hz, 1H), 2.20 (s, 3H).
N-(4-Bromopyridin-2-yl)acetamide (3t). Colourless solid (75%); mp. 122–123 °C; IR (NaCl) ν(cm−1) 3241, 2923, 2852, 1681, 1588, 1574, 1540, 1456, 1378, 1304, 1093, 1018, 973, 830, 764; 1H NMR (400 MHz, acetone-d6) δ 8.51 (s, 1H), 8.34 (d, J = 2.2 Hz, 1H), 8.20 (d, J = 8.9 Hz, 1H), 7.94 (d, J = 2.5 Hz, 1H), 2.20 (s, 3H). 13C NMR (125 MHz, acetone-d6) δ 172.5, 170.9, 149.7, 149.3, 141.2, 115.8, 21.5.; HRMS (ESI): m/z calcd for C7H8BrN2O [M + H]+: 216.9799; found: 216.9798.
N-(Pyridin-3-yl)acetamide (3u)24h. Colourless solid (78%); mp. 129–131 °C; IR (NaCl) ν(cm−1) 3256, 2955, 2924, 2853, 1682, 1597, 1578, 1531, 1463, 1434, 1372, 1302, 1239, 1150, 1082, 1017, 965, 740; 1H NMR (400 MHz, CDCl3) δ 9.36 (s, 1H), 8.26 (m, 2H), 7.73 (m, 1H), 7.05 (m, 1H), 2.21 (s, 3H).
N-(2-(Diethylamino)ethyl)-4-nitrobenzamide (6)25. Transamide product 6 was prepared by following general procedure. Viscous yellow oil; (82%); IR (NaCl) ν(cm−1) 3416, 2970, 2929, 1658, 1650, 1600, 1556, 1537, 1488, 1470, 1381, 1346, 1301, 1262, 1177, 1087, 1067, 1014, 870; 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.5 Hz, 2H), 8.01 (d, J = 8.6 Hz, 2H), 3.62 (dd, J = 10.4, 5.0 Hz, 2H), 2.84 (t, J = 5.5 Hz, 2H), 2.74 (q, J = 7.1 Hz, 4H), 1.13 (t, J = 7.1 Hz, 6H); HRMS (ESI): m/z calcd for C13H20N3O3 [M + H]+: 266.1499; found: 266.1501.
Procainamide (7)25. To a suspension of 6 (1.88 mmol) in ethanol (10 mL) was added reduced iron powder (3.77 mmol). The resulting suspension was reflux for 2 h with TLC analysis monitoring for completion of the reaction. The reaction mixture was filtered through celite to remove the iron residue which was washed with ethyl acetate (3 × 10 mL). The filtrate was partitioned with (2 M) KOH solution and the basic layer was further extracted with ethyl acetate (3 × 25 mL). The combined organic extracts were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude residue was then subjected to flash silica gel column chromatography to obtain the pure desired product. Orange oil (95%); IR (NaCl) ν(cm−1) 3443, 2917, 2849, 1679, 1633, 1587, 1509, 1497, 1467, 1390, 1327, 1298, 1189, 1109, 1074, 949, 847; 1H NMR (400 MHz, acetone-d6) δ 8.38 (s, 1H), 7.70 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 8.5 Hz, 2H), 3.82 (d, J = 4.6 Hz, 2H), 3.50 (dd, J = 9.3, 4.5 Hz, 2H), 3.44 (m, 4H), 1.40 (t, J = 7.2 Hz, 6H). 13C NMR (100 MHz, acetone-d6) δ 171.3, 153.6, 130.2, 120.7, 114.0, 56.0, 49.1, 37.5, 9.5; HRMS (ESI): m/z calcd for C13H22N3O [M + H]+: 236.1758; found: 236.1784.

Acknowledgements

Sk. R., N.R. and A. S. R. thanks CSIR-New Delhi and UGC for their research fellowship respectively. This research work financially supported by CSIR-New Delhi (BSC0108). IIIM communication no IIIM/1730/2014.

Notes and references

  1. (a) A. Greenberg, C. M. Breneman and J. F. Liebman, The amide linkage: structural significance in chemistry, biochemistry and materials science, Wiley-Interscience, New York, 2000 Search PubMed; (b) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, Org. Biomol. Chem., 2006, 4, 2337 RSC.
  2. For reviews see: (a) C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827 CrossRef CAS PubMed; (b) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606 RSC; (c) A. El-Faham and F. Albericio, Chem. Rev., 2011, 111, 6557 CrossRef CAS PubMed; (d) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405 RSC; (e) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471 CrossRef CAS PubMed.
  3. From carboxylic acids, selected recent examples see: (a) N. Gernigon, R. M. Al-Zoubi and D. G. Hall, J. Org. Chem., 2012, 77, 8386 CrossRef CAS PubMed; (b) M. Kitamura, F. Kawasaki, K. Ogawa, S. Nakanishi, H. Tanaka, K. Yamada and M. Kunishima, J. Org. Chem., 2014, 79, 3709 CrossRef CAS PubMed; (c) C. L. e-Aboussafy, B. P. Jones, K. E. Price, M. A. Hardink, R. W. Mclaughlin, B. M. Lillie, J. M. Hawkins and R. Vaidyanathan, Org. Lett., 2010, 12, 324 CrossRef PubMed.
  4. From carboxylic acid derivatives, selected recent examples see; (a) B. R. Kim, H.-G. Lee, S.-B. Kang, G. H. Sung, J.-J. Kim, J. K. Park, S.-G. Lee and Y.-J. Yoon, Synthesis, 2012, 42 CAS; (b) J. M. Munoz, J. Alcazar, A. D. Hoz, A. diaz-Ortiz and S. A. De Diego, Green Chem., 2012, 14, 1335 RSC; (c) W. Wu, Z. Zhang and L. S. Liebeskind, J. Am. Chem. Soc., 2011, 133, 14256 CrossRef CAS PubMed.
  5. For review on transamidation see: R. M. lanigan and T. D. Sheppard, Eur. J. Org. Chem., 2013, 7453 CrossRef CAS.
  6. (a) N. A. Stephenson, J. Zhu, S. H. Gellman and S. S. Stahl, J. Am. Chem. Soc., 2009, 131, 10003 CrossRef CAS PubMed; (b) J. M. Hoerter, K. M. Otte, S. H. Gellman, Q. Cui and S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 647 CrossRef CAS PubMed; (c) J. M. Hoerter, K. M. Otte, S. H. Gellman and S. S. Stahl, J. Am. Chem. Soc., 2006, 128, 5177 CrossRef CAS PubMed; (d) D. A. Kissounko, J. M. Hoerter, I. A. Guzei, Q. Cui, S. H. Gellman and S. S. Stahl, J. Am. Chem. Soc., 2007, 129, 1776 CrossRef CAS PubMed.
  7. (a) A. J. A. Watson, A. C. Maxwell and J. M. J. Williams, Org. Lett., 2009, 11, 2667 CrossRef CAS PubMed; (b) B. N. Atkinson, A. R. Chhatwal, H. V. Lomax, J. W. Walton and J. M. J. Williams, Chem. Commun., 2012, 48, 11626 RSC.
  8. T. A. Dineen, M. A. Zajac and A. G. Myers, J. Am. Chem. Soc., 2006, 128, 16406 CrossRef CAS PubMed.
  9. M. Zhang, S. Imm, S. Bahn, L. Neubert, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2012, 51, 3905 CrossRef CAS PubMed.
  10. (a) M. Tamura, T. Tonomura, K.-i. Shimizu and A. Satsuma, Green Chem., 2012, 14, 717 RSC; (b) L. Becerra-Figueroa, A. Ojeda-Porras and D. Gamba-Sanchez, J. Org. Chem., 2014, 79, 4544 CrossRef CAS PubMed; (c) D. P. Singh, B. K. Allam, K. N. Singh and V. P. Singh, RSC Adv., 2014, 4, 1155 RSC; (d) S. N. Rao, D. C. Mohan and S. Adimurthy, Green Chem., 2014, 16, 4122 RSC; (e) S. P. Pathare, A. K. H. Jain and K. G. Akamanchi, RSC Adv., 2013, 3, 7697 RSC.
  11. (a) T. B. Nguyen, J. Sorres, M. Q. Tran, L. Ermolenko and A. Al-Mourabit, Org. Lett., 2012, 14, 3202 CrossRef CAS PubMed; (b) P. Starkov and T. D. Sheppard, Org. Biomol. Chem., 2011, 9, 1320 RSC; (c) R. M. Lanigan, P. Starkov and T. D. Sheppard, J. Org. Chem., 2013, 78, 4512 CrossRef CAS PubMed.
  12. C. L. Allen, B. N. Atkinson and J. M. J. Williams, Angew. Chem., Int. Ed., 2012, 51, 1383 CrossRef CAS PubMed.
  13. (a) S. N. Rao, D. C. Mohan and S. Adimurthy, Org. Lett., 2013, 15, 1496 CrossRef CAS PubMed; (b) X. Yang, L. Fan and Y. Xue, RSC Adv., 2014, 4, 30108 RSC.
  14. A. Galat and G. Elion, J. Am. Chem. Soc., 1943, 65, 1566 CrossRef CAS.
  15. (a) D. Kumar, M. Sonawane, B. Pujala, V. K. Jain, S. Bhagat and A. K. Chakraborti, Green Chem., 2013, 15, 2872 RSC; (b) S. Pathak, K. Debnath and A. Pramanik, Beilstein J. Org. Chem., 2013, 9, 2344 CrossRef PubMed; (c) A. K. Chakraborti, B. Singh, S. V. Chankeshwara and A. R. Patel, J. Org. Chem., 2009, 74, 5967 CrossRef CAS PubMed.
  16. (a) P. Salehi, M. Dabiri, M. A. Zolfigol and M. A. B. Fard, Tetrahedron Lett., 2003, 44, 2889 CrossRef CAS; (b) P. Salehi, M. Dabiri, M. A. Zolfigol and M. Baghbanzadeh, Tetrahedron Lett., 2005, 46, 7051 CrossRef CAS PubMed.
  17. http://www.drugs.com/top200html, Pharmaceutical Sales, 2010.
  18. (a) J. Zhou, B. Li, F. Hu and B.-F. Si, Org. Lett., 2013, 15, 3460 CrossRef CAS PubMed; (b) S. Cai, C. Chen, Z. Sun and C. Xi, Chem. Commun., 2013, 49, 4552 RSC.
  19. K. C. Coffman, H. H. Nguyen, P.-W. Phuan, B. M. Hudson, G. J. Yu, A. L. Bagdasarian, D. Montgomery, M. W. Lodewyk, B. Yang, C. L. Yoo, A. S. Verkman, D. J. Tantillo and M. J. Kurth, J. Med. Chem., 2014, 57, 6729 CrossRef CAS PubMed.
  20. T. W. Green and P. G. M. Wuts, Protective groups in organic synthesis, Wiley, New York, 3rd edn, 1999, p. 150 Search PubMed.
  21. J. W. Noneman and M. D. Jones, in Drug treatment of cardiac arrhythmias, ed. L. A. Gould, Futura Publishing Co., Inc., Mount Kisco, New York, 1983, pp. 193–223 Search PubMed.
  22. (a) M. B. M. Reddy, V. P. Jayashankara and M. A. Pasha, Green Chem. Lett. Rev., 2013, 6, 107 CrossRef CAS; (b) S. Kim, H. Ko, S. Kim and T. Lee, J. Comb. Chem., 2002, 4, 549 CrossRef CAS; (c) T. T. Dang, Y. Zhu, S. C. Ghosh, A. Chen, C. L. L. Chai and A. M. Seayad, Chem. Commun., 2012, 48, 1805 RSC; (d) S. Ko, H. Han and S. Chang, Org. Lett., 2003, 5, 2687 CrossRef CAS PubMed.
  23. (a) N. Hazarika and G. Baishya, Eur. J. Org. Chem., 2014, 26, 5686 CrossRef; (b) H. Suzuki, J. Tsuji, Y. Hiroi, N. Sato and A. Osuka, Chem. Lett., 1983, 12, 449 CrossRef; (c) C. Gimbert and A. Vallribera, Org. Lett., 2009, 11, 269 CrossRef CAS PubMed; (d) M. L. H. Mantel, A. T. Lindhardt, D. Lupp and T. Skrydstrup, Chem.–Eur. J., 2010, 16, 5437 CrossRef CAS PubMed; (e) J. Zhou, B. Li, F. Hu and B. F. Shi, Org. Lett., 2013, 15, 3460 CrossRef CAS PubMed; (f) L. Estel, F. Linard, F. Marsais, A. Godard and G. Queguiner, J. Heterocycl. Chem., 1989, 26, 105 CrossRef CAS; (g) B. Sachiavi, A. Ahond, A. Al-Mourabit, C. Poupat, A. Chiaroni, C. Gaspard and P. Potier, Tetrahedron, 2002, 58, 4201 CrossRef.
  24. (a) M. H. Sarvari and H. Sharghi, J. Org. Chem., 2006, 71, 6652 CrossRef PubMed; (b) T. Kesharwani, A. K. Verma, D. Emrich, J. A. Ward and R. C. Larock, Org. Lett., 2009, 11, 2591 CrossRef CAS PubMed; (c) B. P. Fors, P. Krattiger, E. Strieter and S. L. Buchwald, Org. Lett., 2008, 10, 3505 CrossRef CAS PubMed; (d) M. Suchy, A. A. H. Elmehriki and R. H. E. Hudson, Org. Lett., 2011, 13, 3952 CrossRef CAS PubMed; (e) R. Vanjari, B. Kumar Allam and K. N. Singh, RSC. Adv., 2013, 3, 1691 RSC; (f) X. sun, M. Wang, P. Li, X. Zhang and L. Wang, Green Chem., 2013, 15, 3289 RSC; (g) C. Abate, S. Ferorelli, M. Niso, C. Lovicario, V. Infantino, P. Convertini, R. Perrone and F. Berardi, ChemMedChem, 2012, 7, 1847 CrossRef CAS PubMed; (h) J. A. A. W. Elemans, E. J. A. Bijsterveld, A. E. Rowan and R. J. M. Nolte, Eur. J. Org. Chem., 2007, 751 CrossRef CAS.
  25. S. K. Shannon, M. J. Peacock, S. A. Kates and G. Barany, J. Comb. Chem., 2003, 6, 860 CrossRef PubMed.

Footnote

Electronic Supplementary Information (ESI) available: Experimental details and spectroscopic data for all compounds. See DOI: 10.1039/c4ra16571c

This journal is © The Royal Society of Chemistry 2015