Tunable regioselective synthesis of pyrazolo[3,4-d]pyrimidine derivatives via aza-Wittig cyclization and dimroth-type rearrangement

Tao Wang*ab, Jun Xionga, Wenjuan Wanga, Rou Lia, Xiaoli Tanga and Fei Xiong*ab
aNational Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Nanchang 330022, Jiangxi, P. R. China. E-mail: wangtao@jxnu.edu.cn; xiongfei@jxnu.edu.cn
bCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China

Received 4th December 2014 , Accepted 11th February 2015

First published on 12th February 2015


Abstract

A novel tunable regioselective synthesis of pyrazolo[3,4-d]pyrimidine derivatives via aza-Wittig/Ag(I) or base-promoted tandem reaction has been developed. This approach provides a simple and efficient way to construct pyrazolo[3,4-d]-pyrimidine derivatives under mild conditions.


Introduction

Pyrazolo[3,4-d]-pyrimidine and their partially saturated derivatives represent an important class of heterocycles, which are basic constituents in a myriad of natural products, biologically active alkaloids and pharmaceuticals.1 In particular, functionalization at N-1, C-4 and C-6 positions of these ring systems is extremely important from a drug discovery viewpoint, these key heterocyclic units have been found broad use in synthetic drugs, and drug candidates (Fig. 1).2 As a result, numerous synthetic methods have been developed for the construction and modification of the multisubstituted pyrazolo[3,4-d]-pyrimidine structure.3 Although most of these methods suffer from low efficiency and selectivity, in addition, long reaction times, high temperatures and tedious workup procedure are often required in these reactions. Thus, the development of a straightforward and convenient route to multisubstituted pyrazolo[3,4-d]-pyrimidine derivatives under mild reaction conditions is highly attractive in synthetic methodology and pharmaceutical chemistry (Scheme 1).
image file: c4ra15777j-f1.tif
Fig. 1 Examples of significant pyrazolo[3,4-d]-pyrimidines.

image file: c4ra15777j-s1.tif
Scheme 1 Tunable regioselective synthesis of pyrazolo[3,4-d]pyrimidine derivatives.

Recently, the aza-Wittig tandem reactions of iminophosphoranes have received much attention for the synthesis of substituted N-containing heterocycles.4 Carbodiimides, which were efficiently formed in situ from aza-Wittig reaction of iminophosphoranes with isocyanates under mild neutral conditions, can be used directly as versatile synthetic intermediates. These active carbodiimides can be easily trapped by nucleophiles such as alcohols and amines to form carbamimidates and guanidines which react with ester or nitrile groups in an intramolecular manner to afford N-containing heterocycles. In past decades, a series of tandem processes had been designed based on this principle. Thus far, substituted diaminoimidazoles,4a dipyrimidinediones,4d isoquino-line,4e phen-anthridine,4f benzoxazole,4f oxadiazole,4g amino-oxindole4h and quinazolin4i had been prepared by using these tandem protocols. In addition, Dimroth-type rearrangement5 is an important isomerization process which is assigned to the translocation of hetero atom on heterocycles such as purine, pyrimidine bases of nucleosides and nucleotides.5d In many cases, Dimroth rearrangement is reversible, so controlling variable reaction condition can remarkably improve the desired product. Here we report a protocol to synthesized two series pyrazolo[3,4-d]pyrimidine derivatives via aza-Wittig tandem process followed by controllable Dimroth-type rearrangement.

Results and discussion

Based on our continued interest on the aza-Wittig tandem protocol to construct heterocycles, we envisioned that the pyrazolo[3,4-d]-pyrimidine frameworks could also be obtained by above protocol. To our delight, the cyclization of carbodiimides compounds 1 (generated from the reactions of iminophosphoranes 5 with isocyanates 6, Scheme 2) indeed proceed as we expected to afford pyrazolo[3,4-d]pyrimidine in the presence of alcohol and various Lewis acids, but not only that, simply changing Lewis acids to base in the reaction, a new product with the functionalization at N-1, C-4 and C-6 positions of pyrazolo[3,4-d]-pyrimidine structure was obtained in good selectivity (Scheme 2). This interesting tunable transformation to the pyrazolo[3,4-d]-pyrimidine heterocycles encouraged us to further examine the feasibility of this cyclization reaction.
image file: c4ra15777j-s2.tif
Scheme 2 Synthesis of 1.

Our initial efforts focused on the reaction of 5-((((4-chlorophenyl)imino)methylene)amino)-3-(methylthio)-1-phenyl-1H-pyrazole-4-carbonitrile 1a with various Lewis acids as the promoter. We found that in the presence of 10 mol% AgNO3 in methanol at room temperature in one hour was the best reaction conditions for this cyclization reaction to afford the product 3a (Table 1, entry 4). The reaction could also proceed in other Lewis acids, such as CuI, AgI, AgOAc, Cu(NO3)2 and FeCl3, albeit in reduced yields (Table 1, entries 1–3 and 5–6). A lesser amount of AgNO3 would reduce the reaction yield (Table 1, entries 7).

Table 1 Optimization of the reaction conditionsa

image file: c4ra15777j-u1.tif

Entry Additives Time (h) Yieldb (%)
3a 4a
a The reaction was carried out on the scale of mmol of 1a in the presence of additives in 3 mL CH3OH at 25 °C.b Isolated yield.c With additional 10 mol% AgNO3.
1 0.1 eq. Cul 1 58
2 0.1 eq. Agl 1 51
3 0.1 eq. AgOAc 1 56
4 0.1 eq. AgNO3 1 73
5 0.1 eq. Cu(NO3)2 1 5
6 0.1 eq. FeCl3 1 Trace
7 0.01 eq. AgNO3 1 11
8 0.1 eq. AgNO3 0.5 44
9 1.0 eq. Et3N 21 14
10 1.0 eq. DABCO 21 Trace
11 1.0 eq. Na2CO3 21 48
12 1.0 eq. CH3ONa 21 43
13 1.0 eq. NaOH 21 78
14 1.0 eq. NaOH 12 59
15 1.0 eq. NaOH 48 70
16 0.1 eq. NaOH 15 21
17 2.0 eq. NaOH 24 74
18c 1.0 eq. NaOH 21 72


It also turned out to be ineffective to shorten the reaction time to half an hour (Table 1, entries 8). Interestingly, we observed that the product 4a was formed with high selectivity when this reaction was carried out under alkaline reaction conditions. The reaction could proceed in either organic base or inorganic base. Generally, inorganic base offered better results than organic base (Table 1, entries 9–12). In the presence of 1.0 equiv. NaOH in methanol at room temperature was found to be the best reaction condition (Table 1, entries 13). A lesser amount of NaOH would reduce the reaction yield (Table 1, entries 16), but 2.0 equiv. of NaOH did not observably improve the yield (Table 1, entries 17). Albeit stronger base than NaOH, NaOCH3 is not a better promoter, formation of water may be important to the transformation process (Table 1, entry 12).5d No improvement of the yield was found while further extending the reaction time (Table 1, entry 15). In addition, the employment with additional AgNO3 did not improve the yield (Table 1, entry 18).

With the optimized conditions in hand, various carbodiimides compounds 1 were found to be the suitable reaction partners with methanol or ethanol to provide the corresponding products 3 or 4 in moderate to excellent yield (Tables 2 and 3). This transformation showed good functional group tolerance when used the AgNO3 as the catalyst to afford product 3. Either electron-withdrawing and electron-donating substituted groups or halogen groups at the aromatic ring could be introduced into the desired product under the standard reaction conditions without any difficulties (Table 2, 3a–3n). It was worth noting that the steric effect had no significant effect to the yields, regardless of the substitution pattern of the aryl ring (ortho, meta, or para) of the aryl isocyanates used in the reaction, the corresponding products (3d, 3h and 3i) were obtained in good yields. The reaction between iminophosphoranes and variety of isocyanates to afford product 4 in the presence of NaOH were also carried out to explore the scope of this transformation (Table 3). In most cases, the corresponding product 4 could be obtained in moderate to excellent yields. The steric and electronic properties of the substituents on the phenyl rings had little effect on the yield (Table 3, 4a–4r). Such as the methyl, methoxyl, ethoxyl, fluorine and chlorine at the aromatic ring of aryl isocyanates all reacted smoothly affording the desired products in good to excellent yields. In addition, the structures of compounds 3b and 4j were unambiguously assigned by X-ray crystallography analysis (Fig. 2).6

Table 2 Substrate scopea

image file: c4ra15777j-u2.tif

Product Ar R Yieldb [%]
a The reactions were carried out with 1 (0.5 mmol), AgNO3 (10 mol%), ROH (3 mL), 25 °C, 1 h.b Isolated yield.
3a p-Cl-Phenyl CH3 85
3b p-F-Phenyl CH3 83
3c Phenyl CH3 91
3d p-CH3-Phenyl CH3 64
3e 3,4-DiCl-Phenyl CH3 66
3f p-C2H5O-Phenyl CH3 98
3g p-CH3O-Phenyl CH3 90
3h o-CH3-Phenyl CH3 85
3i m-CH3-Phenyl CH3 73
3j m-CH3-Phenyl CH3CH2 83
3k o-CH3-Phenyl CH3CH2 94
3l p-C2H5O-Phenyl CH3CH2 89
3m p-CH3O-Phenyl CH3CH2 74
3n p-CH3-Phenyl CH3CH2 97


Table 3 Substrate scopea

image file: c4ra15777j-u3.tif

Product Ar R Yieldb%
a The reactions were carried out with 1 (0.5 mmol), NaOH (1.0 eq.), ROH (3 mL), 25 °C, 21 h.b Isolated yield.
4a p-Cl-Phenyl CH3 78
4b p-F-Phenyl CH3 75
4c Phenyl CH3 89
4d p-CH3-Phenyl CH3 60
4e 3,4-DiCl-Phenyl CH3 57
4f p-C2H5O-Phenyl CH3 56
4g p-CH3O-Phenyl CH3 56
4h m-CH3-Phenyl CH3 71
4i o-CH3-Phenyl CH3 64
4j p-F-Phenyl CH3CH2 59
4k p-Cl-Phenyl CH3CH2 78
4l 3,4-DiCl-Phenyl CH3CH2 81
4m p-CH3-Phenyl CH3CH2 69
4n o-CH3-Phenyl CH3CH2 65
4o Phenyl CH3CH2 65
4p p-C2H5O-Phenyl CH3CH2 85
4q p-CH3O-Phenyl CH3CH2 51
4r m-CH3-Phenyl CH3CH2 52



image file: c4ra15777j-f2.tif
Fig. 2 ORTEP diagram of 3b and 4j.

In order to understand the relationship between the two different products, the product 3a was treated with 1 equiv. NaOH for 24 hours (Scheme 3), we found that the product 3a could further equivalently converted to the product 4a. Based on experiment and literature,5 the proposed mechanism was outlined in Scheme 3. The transformation process probably underwent a Dimroth-type rearrangement, and aromatized to thermodynamic stable compound 4a in the presence of base and alcohol as solvent.5d,e


image file: c4ra15777j-s3.tif
Scheme 3 Dimroth-type rearrangement.

Conclusions

In summary, we have developed an efficient tunable regioselective synthesis of pyrazolo[3,4-d]pyrimidine derivatives via aza-Wittig/Ag(I) or base-promoted tandem reaction. The regioselectivity of this reaction can be easily controlled by using different reaction conditions. This methodology avoided the using of harsh reaction conditions and had been successfully used for the synthesis various different substituted pyrazolo[3,4-d]pyrimidine derivatives. Further mechanistic studies are still on going in our laboratory and will be reported in due course.

Experiments

General experimental methods

Unless otherwise stated, all commercial reagents and solvents were used without additional purification. FT-IR was recorded on Perkin Elmer-Spectrum One FTIR spectrometer; nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane (TMS) on the δ scale. 1H NMR spectra, 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d3. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). High resolution mass spectrometry (HRMS) spectra were obtained on a micro-TOF II Instrument.

General procedure for compound 3

To the solution of iminophos-phorane 1 (0.5 mmol) in dry CH2Cl2 (3 mL), ArNCO (0.6 mmol) was added under N2. The mixture was stirred at 25 °C for 12–24 h, then the solvent was removed under vacuum. The residue was dissolved into ROH (3 mL) and AgNO3 (0.05 mmol, 10 mol%) was added and the solution was stirred at 25 °C for 0.5–1 h. After the solvent was removed, product 3 was obtained by flash chromatography (PE[thin space (1/6-em)]:[thin space (1/6-em)]EtOAc = 2[thin space (1/6-em)]:[thin space (1/6-em)]1).
5-(4-Chlorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3a). White solid (yield 85%); mp: 198–199 °C; IR (KBr, ν/cm−1): 3127, 2954, 1664, 1598, 1518, 1490, 1456, 1381, 1352, 1319, 1280, 1240, 1202, 838, 718; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.68 (s, 3H), 3.93 (s, 3H), 7.18 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 7.6 Hz, 1H), 7.45–7.51 (m, 4H), 8.08 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.3, 56.1, 101.0, 121.0, 126.1, 128.9, 130.0, 130.2, 133.7, 135.0, 138.9, 145.0, 148.4, 153.9, 156.1. HRMS (ESI) calcd for C19H17N5OSCl [M + H]+: 398.0842, found: 398.0846.
5-(4-Fluorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3b). White solid (yield 83%); mp: 176–177 °C; IR (KBr, ν/cm−1): 3325, 3118, 2953, 1667, 1601, 1525, 1506, 1455, 1378, 1346, 1279, 1244, 1220, 1201, 829, 717; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.67 (s, 3H), 3.91 (s, 3H), 7.21 (d, J = 6.4 Hz, 4H), 7.28–7.29 (m, 1H), 7.46 (t, J = 8.0 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.2, 56.1, 101.0, 116.9 (d, J = 23 Hz), 120.9, 126.1, 128.9, 128.9, 130.6 (d, J = 9 Hz), 130.8 (d, J = 3 Hz), 138.9, 145.0, 148.5, 153.8, 156.2, 162.6 (d, J = 248 Hz). HRMS (ESI) calcd for C19H17N5OFS [M + H]+: 382.1138, found: 382.1135.
6-Methoxy-3-(methylthio)-1,5-diphenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3c). White solid (yield 91%); mp: 204–205 °C; IR (KBr, ν/cm−1): 2956, 1668, 1598, 1523, 1496, 1423, 1350, 1282, 1240, 760; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.68 (s, 3H), 3.92 (s, 3H), 7.24 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.45–7.50 (m, 3H), 7.55 (t, J = 7.6 Hz, 2H), 8.10 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.1, 56.0, 101.1, 120.9, 126.0, 128.9, 128.9, 129.1, 129.9, 135.0, 139.0, 145.2, 148.7, 156.3. HRMS (ESI) calcd for C19H18N5OS [M + H]+: 364.1232, found: 364.1240.
6-Methoxy-3-(methylthio)-1-phenyl-5-p-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3d). White solid (yield 64%); mp: 190–191 °C; (KBr, ν/cm−1): 2924, 2853, 1712, 1671, 1508, 1344, 858, 765; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.43 (s, 3H), 2.67 (s, 3H), 3.92 (s, 3H), 7.10 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 8.10 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.1, 21.2, 55.9, 101.1, 120.9, 125.9, 128.5, 128.8, 130.5, 132.1, 139.1, 139.1, 145.2, 148.8, 153.4, 156.4. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1385.
5-(3,4-Dichlorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3e). White solid (yield 66%); mp: 202–203 °C; IR (KBr, ν/cm−1): 2920, 1597, 1521, 1469, 1385, 1351, 1257, 1233, 860, 758; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.68 (s, 3H), 3.94 (s, 3H), 7.12 (dd, J = 2.0, 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.4, 56.3, 100.8, 121.0, 126.3, 128.4, 128.9, 131.0, 131.3, 133.4, 133.6, 134.8, 138.8, 144.9, 148.2, 154.2, 155.8. HRMS (ESI) calcd for C19H16N5OSCl2 [M + H]+: 432.0453, found: 432.0448.
5-(4-Ethoxyphenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3f). White solid (yield 98%); mp: 199–200 °C; IR (KBr, ν/cm−1): 3133, 1676, 1613, 1591, 1513, 1475, 1383, 1349, 1301, 1260, 862, 750; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.38–1.46 (m, 3H), 2.67 (s, 3H), 3.91 (s, 3H), 4.05–4.10 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 8.10 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.0, 14.7, 56.0, 63.7, 101.1, 115.6, 120.9, 125.9, 126.8, 128.8, 129.8, 139.0, 145.2, 148.8, 153.4, 156.5, 159.3. HRMS (ESI) calcd for C21H22N5O2S [M + H]+: 408.1494, found: 408.1490.
6-Methoxy-5-(4-methoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3g). White solid (yield 92%); mp: 182–183 °C; IR (KBr, ν/cm−1): 1672, 1614, 1598, 1510, 1457, 1381, 1343, 1307, 1263, 1230, 1189, 824, 759; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.67 (s, 3H), 3.85 (s, 3H), 3.91 (s, 3H), 5.34 (br, 1H), 7.03 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 7.25–7.30 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 8.10 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.1, 55.5, 56.1, 101.0, 115.2, 120.8, 126.0, 127.0, 128.9, 129.9, 139.0, 145.2, 148.8, 153.5, 156.5, 159.9. HRMS (ESI) calcd for C20H20N5O2S [M + H]+: 394.1338, found: 394.1337.
6-Methoxy-3-(methylthio)-1-phenyl-5-o-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3h). White solid (yield 85%); mp: 154–155 °C; IR (KBr, ν/cm−1): 3131, 1667, 1519, 1420, 1345, 1261, 761; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.95 (s, 3H), 2.60 (s, 3H), 3.84 (s, 3H), 5.04 (br, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.07–7.21 (m, 1H), 7.26 (m, 3H), 7.29–7.40 (m, 2H), 8.03 (d, J = 8.0 Hz 2H); 13C NMR (100 MHz, CDCl3): 14.1, 17.2, 56.1, 100.9, 120.9, 126.1, 127.5, 128.9, 129.5, 131.4, 133.6, 136.4, 139.0, 145.3, 149.0, 152.4, 156.1. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1395.
6-Methoxy-3-(methylthio)-1-phenyl-5-m-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3i). White solid (yield 73%); mp: 192–193 °C; IR (KBr, ν/cm−1): 2981, 2850, 1709, 1673, 1598, 1552, 1520, 1494, 1457, 1376, 1350, 1314, 1289, 1277, 821, 743; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.41 (s, 3H), 2.68 (s, 3H), 3.92 (s, 3H), 7.03 (d, J = 6.8 Hz, 2H), 7.28 (t, J = 9.2 Hz, 2H), 7.42–7.48 (m, 3H), 8.10 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.1, 21.3, 56.0, 101.1, 120.9, 125.8, 126.0, 128.8, 129.3, 129.6, 130.0, 134.7, 139.0, 140.0, 145.2, 148.8, 153.3, 156.3. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1382.
6-Ethoxy-3-(methylthio)-1-phenyl-5-m-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3j). White solid (yield 83%); mp: 148–149 °C; IR (KBr, ν/cm−1): 1559, 1552, 1516, 1404, 1378, 1335, 1258, 862, 753; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.22–1.25 (t, J = 7.2 Hz, 3H), 2.40 (s, 3H), 2.67 (s, 3H), 4.36–4.42 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 7.26 (t, J = 6.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.0, 14.1, 21.3, 65.2, 101.0, 120.9, 125.8, 125.9, 128.8, 129.3, 129.6, 129.9, 134.7, 139.0, 139.9, 145.2, 149.0, 153.4, 155.7. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1541.
6-Ethoxy-3-(methylthio)-1-phenyl-5-o-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3k). White solid (yield 93%); mp: 120–121 °C; IR (KBr, ν/cm−1): 2959, 1668, 1520, 1495, 1429, 1397, 1381, 1328, 1278, 1241, 762, 741; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.12–1.17 (m, 3H), 2.05 (s, 3H), 2.59 (s, 3H), 4.23–4.37 (m, 2H), 7.04 (d, J = 7.2 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.22–7.31 (m, 3H), 7.37 (t, J = 8.4 Hz, 2H), 8.01 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.0, 14.1, 17.2, 65.1, 101.0, 120.9, 125.9, 127.4, 128.8, 129.3, 131.3, 133.9, 136.4, 139.1, 145.2, 149.2, 152.4, 155.5. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1552.
6-Ethoxy-5-(4-ethoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3l). White solid (yield 89%); mp: 200–201 °C; IR (KBr, ν/cm−1): 1664, 1507, 1475, 1402, 1378, 1331, 1300, 1250, 820, 763; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.21–1.25 (t, J = 7.2 Hz, 3H), 1.43–1.46 (t, J = 7.2 Hz, 3H), 2.67 (s, 3H), 4.05–4.10 (m, 2H), 4.36–4.41 (m, 2H), 7.00 (d, J = 8.8 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 8.4 Hz, 2H), 8.09 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.9, 14.0, 14.7, 63.7, 65.1, 101.0, 115.5, 120.8, 125.9, 126.9, 128.8, 129.8, 139.1, 145.2, 149.0, 153.4, 155.9, 159.2. HRMS (ESI) calcd for C22H24N5O2S [M + H]+: 422.1651, found: 422.1647.
6-Ethoxy-5-(4-methoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3m). White solid (yield 74%); mp: 175–176 °C; IR (KBr, ν/cm−1): 1671, 1611, 1510, 1430, 1398, 1381, 1327, 1303, 1281, 1263, 864, 795; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.22–1.25 (t, J = 7.2 Hz, 3H), 2.67 (s, 3H), 3.86 (s, 3H), 4.36–4.41 (m, 2H), 7.02 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 8.0 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.0, 14.1, 55.4, 65.2, 101.0, 115.0, 120.8, 125.9, 127.2, 128.8, 129.8, 139.0, 145.2, 149.0, 153.5, 155.9, 159.7. HRMS (ESI) calcd for C21H22N5O2S [M + H]+: 408.1494, found: 408.1488.
6-Ethoxy-3-(methylthio)-1-phenyl-5-p-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-imine(3n). White solid (yield 96%); mp: 204–205 °C; IR (KBr, ν/cm−1): 1672, 1508, 1472, 1396, 1381, 1324, 1278, 1238, 793, 761; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.22–1.25 (t, J = 7.2 Hz, 3H), 2.43 (s, 3H), 2.67 (s, 3H), 4.38–4.40 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.27 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.9, 14.1, 21.3, 65.1, 101.0, 120.9, 125.9, 128.5, 128.8, 130.5, 132.2, 139.0, 139.1, 145.1, 149.0, 153.4, 155.8. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1538.

General procedure for compound 4

To the solution of iminophos-phorane 1 (0.5 mmol) in dry CH2Cl2 (3 mL), ArNCO (0.6 mmol) was added under N2. The mixture was stirred at 25 °C for 12–24 h, then the solvent was removed under vacuum. The residue was dissolved in ROH (4 mL) and NaOH (0.5 mmol, 1.0 equiv) was added and the mixture was stirred at 25 °C for 21 h. After the solvent was removed, product 4 was obtained by flash chromatography (PE[thin space (1/6-em)]:[thin space (1/6-em)]EtOAc = 2[thin space (1/6-em)]:[thin space (1/6-em)]1).
N-(4-Chlorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4a). White solid (yield 78%); mp 174–175 °C; IR (KBr, ν/cm−1): 3129, 2956, 2925, 1624, 1505, 1489, 1446, 1382, 1335, 1327, 1306, 1253, 828, 751; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.76 (s, 3H), 4.06 (s, 3H), 7.29 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 7.73 (d, J = 8.8 Hz, 2H), 8.0 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H), 13C NMR (100 MHz, CDCl3): 17.1, 55.1, 99.0, 120.5, 121.9, 126.0, 129.0, 129.0, 129.1, 136.5, 138.8, 139.5, 155.56, 156.0, 165.1. HRMS (ESI) calcd for C19H17N5OSCl [M + H]+: 398.0842, found: 398.0838.
N-(4-Fluorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4b). White solid (yield 75%); mp 177–179 °C; IR (KBr, ν/cm−1): 3130, 1629, 1591, 1505, 1468, 1410, 1384, 1336, 1307, 1255, 830, 751; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.74 (s, 3H), 4.03 (s, 3H), 7.08 (t, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.68–7.71 (m, 2H), 7.93 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 17.1, 55.0, 98.9, 115.7 (d, J = 22 Hz), 120.6, 122.8, 126.0, 128.5 (d, J = 13 Hz), 129.0, 132.1 (d, J = 10 Hz), 133.8, 138.9, 139.6, 155.8, 156.2, 159.4 (d, J = 243 Hz), 165.2. HRMS (ESI) calcd for C19H17N5OSF [M + H]+: 382.1138, found: 382.1135.
6-Methoxy-3-(methylthio)-N,1-diphenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4c). White solid (yield 89%); mp: 140–141 °C; IR (KBr, ν/cm−1): 3005, 2925, 2852, 1626, 1595, 1498, 1479, 1447, 1397, 1378, 1326, 1259, 1235, 752; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.75 (s, 3H), 4.06 (s, 3H), 7.15 (t, J = 7.2 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.48 (t, J = 8.4 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H), 8.05 (s, 1H), 8.21 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 17.1, 55.1, 99.0, 120.5, 120.7, 124.1, 125.9, 128.9, 129.0, 137.8, 138.5, 139.5, 155.7, 156.1, 165.2. HRMS (ESI) calcd for C19H18N5OS [M + H]+: 364.1232, found: 364.1228.
6-Methoxy-3-(methylthio)-1-phenyl-N-p-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4d). White solid, (yield 60%); mp 169–170 °C; IR (KBr, ν/cm−1): 3130, 2957, 1626, 1570, 1504, 1473, 1441, 1385, 1337, 1326, 1309, 1254, 862, 753; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.35 (s, 3H), 2.74 (s, 3H), 4.05 (s, 3H), 7.19 (d, J = 8.4 Hz, 2H), 7.27 (m, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.98 (s, 1H), 8.21 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 17.0, 20.8, 55.0, 99.0, 120.7, 121.0, 125.9, 128.9, 129.5, 133.9, 135.3, 139.0, 139.6, 155.9, 156.3, 165.3. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1395.
N-(3,4-Dichlorophenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4e). White solid (yield 57%); mp 202–203 °C; IR (KBr, ν/cm−1): 3125, 2919, 2850, 1623, 1590, 1504, 1475, 1450, 1380, 1329, 1308, 1262, 1248, 804, 753; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.68 (s, 3H), 3.99 (s, 3H), 7.19 (t, J = 12 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.50–7.51 (m, 1H), 7.92 (t, J = 8.0 Hz, 2H), 8.1 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 17.2, 55.2, 99.1, 120.0, 120.0, 122.3, 126.2, 127.3, 129.0, 130.5, 132.7, 137.4, 138.8, 139.4, 155.4, 156.0, 165.1. HRMS (ESI) calcd for C19H16N5OSCl2 [M + H]+: 432.0453, found: 432.0459.
N-(4-Ethoxyphenyl)-6-methoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4f). White solid (yield 56%); mp 149–150 °C; IR (KBr, ν/cm−1): 3124, 1628, 1598, 1579, 1505, 1468, 1454, 1380, 1340, 1329, 1307, 1248, 816, 755; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.42 (t, J = 7.2 Hz, 3H), 2.74 (s, 3H), 4.02–4.06 (m, 5H), 6.92 (d, J = 8.8 Hz, 2H), 7.27–7.28 (m, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.88 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H), 13C NMR (100 MHz, CDCl3): 14.8, 17.0, 54.9, 63.7, 98.9, 114.9, 120.6, 122.9, 125.9, 128.9, 130.7, 139.1, 139.7, 156.0, 156.0, 156.3, 165.4. HRMS (ESI) calcd for C21H22N5O2S [M + H]+: 408.1494, found: 408.1491.
6-Methoxy-N-(4-methoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4g). White solid (yield 56%); mp 165–166 °C; IR (KBr, ν/cm−1): 3129, 1617, 1595, 1506, 1480, 1451, 1378, 1242, 1324, 1302, 827; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.74 (s, 3H), 3.82 (s, 3H), 4.02 (s, 3H), 6.93 (d, J = 8.8 Hz, 2H), 7.27 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.88 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 17.0, 54.9, 55.5, 98.9, 114.3, 120.6, 123.0, 125.9, 128.9, 130.8, 139.0, 139.7, 156.0, 156.3, 156.6, 165.4 HRMS (ESI) calcd for C20H20N5O2S [M + H]+: 394.1338 found: 394.1335.
6-Methoxy-3-(methylthio)-1-phenyl-N-m-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4h). White solid (yield 71%); mp 126–127 °C; IR (KBr, ν/cm−1): 3129, 2956, 1631, 1570, 1507, 1492, 1480, 1455, 1380, 1337, 1306, 1254, 787, 758; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.39 (s, 3H), 2.75 (s, 3H), 4.06 (s, 3H), 6.96 (d, J = 7.6 Hz, 1H), 7.25–7.30 (m, 2H), 7.45–7.51 (m, 3H), 7.64 (d, J = 8.0 Hz, 1H), 8.02 (s, 1H), 8.21 (t, J = 7.6 Hz 2H); 13C NMR (100 MHz, CDCl3): 17.1, 21.5, 55.0, 99.1, 118.1, 121.4, 125.0, 126.0, 126.8, 128.9, 137.9, 138.9, 139.0, 139.6, 155.8, 156.3, 165.3. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1396.
6-Methoxy-3-(methylthio)-1-phenyl-N-o-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4i). White solid (yield 64%); mp 141–142 °C; IR (KBr, ν/cm−1): 1619, 1592, 1507, 1479, 1455, 1376, 1336, 1318, 1308, 1216, 757; 1H NMR (400 MHz, CDCl3): δ (ppm), 2.43 (s, 3H), 2.76 (s, 3H), 4.02 (s, 3H), 7.10–7.12 (m, 1H), 7.24–7.29 (m, 3H), 7.48 (t, J = 8.0 Hz, 2H), 7.89 (s, 1H), 8.21–8.27 (m, 3H); 13C NMR (100 MHz, CDCl3): 17.0, 18.3, 55.0, 99.3, 120.6, 122.9, 124.7, 126.0, 126.8, 128.8, 129.0, 130.6, 136.2, 139.0, 139.7, 156.1, 156.4, 165.3. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1393.
6-Ethoxy-N-(4-fluorophenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4j). White solid (yield 59%); mp 157–158 °C; IR (KBr, ν/cm−1): 3129, 1625, 1591, 1575, 1503, 1475, 1445, 1417, 1381, 1357, 1307, 1256, 1209, 862, 748; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.44–1.48 (m, 3H), 2.75 (s, 3H), 4.46–4.49 (m, 2H), 7.09 (t, J = 8.0 Hz, 2H), 7.28 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.68–7.71 (m, 2H), 7.94 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.5, 17.1, 63.7, 98.9, 115.7 (d, J = 22 Hz), 120.6, 122.8 (d, J = 8 Hz), 126.0, 128.9, 133.9, 139.0, 139.5, 155.8, 156.3, 159.6 (d, J = 242 Hz), 164.8. HRMS (ESI) calcd for C20H19N5FOS [M + H]+: 396.1294, found: 396.1288.
N-(4-Chlorophenyl)-6-ethoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4k). White solid (yield 78%); mp 169–170 °C; IR (KBr, ν/cm−1): 3132, 1624, 1602, 1503, 1490, 1475, 1456, 1444, 1414, 1381, 1357, 1311, 1290, 1255, 1240, 843, 747; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.47 (t, J = 8.0 Hz, 3H), 2.75 (s, 3H), 4.47–4.50 (m, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.99 (s, 1H), 8.19 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.4, 16.1, 62.8, 97.9, 119.5, 120.9, 124.9, 127.9, 127.9, 128.0, 135.5, 137.8, 138.4, 154.5, 155.1, 163.6. HRMS (ESI) calcd for C20H19N5OSCl [M + H]+: 412.0999, found: 412.1005.
N-(3,4-Dichlorophenyl)-6-ethoxy-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4l). White solid (yield 81%); mp: 157–158 °C; IR (KBr, ν/cm−1): 3127, 2957, 2917, 2849, 1633, 1599, 1504, 1473, 1453, 1416, 1382, 1325, 1310, 1260, 862, 754; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.49 (t, J = 8.0, 3H), 2.75 (s, 3H), 4.48–4.50 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.41–7.49 (m, 3H), 7.57 (dd, J = 2.0, 8.0 Hz, 1H), 7.99 (s, 1H), 8.03 (d, J = 2.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.5, 17.2, 64.0, 99.0, 119.8, 120.6, 122.2, 126.1, 127.1, 129.0, 130.5, 132.7, 137.2, 138.8, 139.4, 155.3, 156.2, 164.6. HRMS (ESI) calcd for C20H18N5OSCl2 [M + H]+: 446.0609, found: 446.0616.
6-Ethoxy-3-(methylthio)-1-phenyl-N-p-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4m). White solid (yield 69%); mp 141–142 °C; IR (KBr, ν/cm−1): 3130, 2976, 1623, 1599, 1503, 1473, 1453, 1375, 1361, 1332, 1325, 1305, 1291, 1249, 820, 765; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.46 (t, J = 8.0, 3H), 2.34 (s, 3H), 2.73 (s, 3H), 4.45–4.50 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.27 (m, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.96 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.4, 16.1, 19.8, 62.7, 97.9, 119.6, 119.8, 124.8, 127.9, 128.4, 132.8, 134.2, 137.9, 138.5, 154.7, 155.2, 163.8. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1539.
6-Ethoxy-3-(methylthio)-1-phenyl-N-o-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4n). White solid (yield 65%); mp 134–135 °C; IR (KBr, ν/cm−1): 2928, 1619, 1574, 1505, 1478, 1441, 1379, 1357, 1308, 1259, 1235, 754; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.44 (t, J = 7.2, 3H), 2.43 (s, 3H), 2.75 (s, 3H), 4.43–4.49 (m, 2H), 7.09 (t, J = 7.2 Hz, 1H), 7.24–7.30 (m, 3H), 7.47 (t, J = 8.4 Hz, 2H), 7.88 (s, 1H), 8.21 (t, J = 8.0 Hz, 2H), 8.26 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3): 14.5, 17.1, 18.3, 63.7, 99.3, 120.7, 122.9, 124.7, 125.9, 126.7, 128.8, 129.0, 130.6, 136.2, 139.0, 139.7, 156.1, 156.5, 164.9. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1552.
6-Ethoxy-3-(methylthio)-N,1-diphenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4o). White solid (yield 65%); mp 147–148 °C; IR (KBr, ν/cm−1): 3131, 1638, 1618, 1573, 1496, 1477, 1455, 1437, 1412, 1381, 1358, 13[thin space (1/6-em)]210, 1257, 752; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.48 (t, J = 8.0, 3H), 2.75 (s, 3H), 4.49–4.53 (m, 2H), 7.15 (t, J = 8.0 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 8.06 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.4, 16.1, 62.7, 97.9, 119.6, 119.7, 123.0, 124.8, 127.9, 128.0, 136.9, 137.9, 138.5, 154.6, 155.2, 163.7. HRMS (ESI) calcd for C20H20N5OS [M + H]+: 378.1389, found: 378.1382.
6-Eethoxy-N-(4-ethoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4p). White solid (yield 85%); mp 120–121 °C; IR (KBr, ν/cm−1): 3131, 2958, 1629, 1571, 1504, 1476, 1418, 1384, 1359, 1327, 1305, 1257, 1243, 817, 750; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.40–1.46 (m, 6H), 2.73 (s, 3H), 4.04–4.05 (m, 2H), 4.46–4.48 (m, 2H), 6.93 (t, J = 6.8 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.98 (s, 1H), 8.19 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 13.5, 13.8, 16.0, 62.6, 62.8, 97.9, 113.9, 119.7, 121.9, 124.9, 127.9, 129.8, 138.1, 138.6, 154.9, 155.0, 155.4, 163.9. HRMS (ESI) calcd for C22H24N5O2S [M + H]+: 422.1651, found: 422.1644.
6-Ethoxy-N-(4-methoxyphenyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4q). White solid (yield 51%); mp 133–134 °C; IR (KBr, ν/cm−1): 3132, 2931, 1622, 1506, 1446, 1382, 1356, 1327, 1314, 1260, 1246, 818, 755; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.44 (t, J = 6.8, 3H), 2.74 (s, 3H), 3.82 (s, 3H), 4.45–4.49 (m, 2H), 6.93 (d, J = 8.8 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.88 (s, 1H), 8.20 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 12.7, 15.2, 53.7, 61.8, 97.1, 112.5, 114.4, 118.9, 121.2, 124.1, 127.1, 129.1, 137.3, 137.8, 154.2, 154.8, 163.1. HRMS (ESI) calcd for C21H22N5O2S [M + H]+: 408.1494, found: 408.1487.
6-Ethoxy-3-(methylthio)-1-phenyl-N-m-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine(4r). White solid (yield 52%); mp 126–127 °C; IR (KBr, ν/cm−1): 2958, 2927, 2873, 1629, 1589, 1569, 1503, 1382, 1337, 1306, 1254, 789, 751; 1H NMR (400 MHz, CDCl3): δ (ppm), 1.63 (t, J = 6.4, 3H), 2.32 (s, 3H), 2.67 (s, 3H), 4.41–4.43 (m, 2H), 6.89 (d, J = 6.8 Hz, 1H), 7.20 (t, J = 7.2 Hz, 2H), 7.38–7.44 (m, 3H), 7.55 (d, J = 7.2 Hz, 1H), 7.95 (br, 1H), 8.12 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): 14.5, 17.2, 21.5, 63.8, 99.0, 118.0, 120.7, 121.4, 125.0, 126.0, 128.9, 129.0, 137.9, 138.9, 139.0, 139.6, 155.7, 156.3, 164.8. HRMS (ESI) calcd for C21H22N5OS [M + H]+: 392.1545, found: 392.1552.

Acknowledgements

This project is supported by the National Science Foundation of China (no. 21262018, 20862007), and Natural Science Foundation of Jiangxi Province (20133ACB20008).

Notes and references

  1. (a) J. A. Markwalder, M. R. Arnone, P. A. Benfield, M. Boisclair, C. R. Burton, C. H. Chang, S. S. Cox, P. M. Czerniak, C. L. Dean, D. Doleniak, R. Grafstrom, B. A. Harrison, R. F. Kaltenbach, D. A. Nugiel, K. A. Rossi, S. R. Sherk, L. M. Sisk, P. Stouten, G. L. Trainor, P. Worland and S. P. Seitz, J. Med. Chem., 2004, 47, 5894 CrossRef CAS PubMed ; (b) L. Squarcialupi, V. Colotta, D. Catarzi, F. Varano, G. Filacchioni, K. Varani, C. Corciulo, F. Vincenzi, P. A. Borea, C. Ghelardini, L. Di Cesare Mannelli, A. Ciancetta and S. Moro, J. Med. Chem., 2013, 56, 2256 CrossRef CAS PubMed .
  2. (a) D. M. Berger, N. Torres, M. Dutia, D. Powell, G. Ciszewski, A. Gopalsamy, J. I. Levin, K.-H. Kim, W. Xu, J. Wilhelm, Y. Hu, K. Collins, L. Feldberg, S. Kim, E. Frommer, D. Wojciechowicz and R. Mallon, Bioorg. Med. Chem. Lett., 2009, 19, 6519 CrossRef CAS PubMed ; (b) B. J.-Y. Le, A. Pasis, B. Tam, C. Boykin, D. Wang, D. J. Marcotte, G. Claassen, J.-H. Chong, J. Chao, J. Fan, K. Nguyen, L. Silvian, L. Ling, L. Zhang, M. Choi, M. Teng, N. Pathan, S. Zhao, T. Li and A. Taveras, Bioorg. Med. Chem. Lett., 2012, 22, 4033 CrossRef PubMed ; (c) S. M. Johnson, R. C. Murphy, J. A. Geiger, A. E. DeRocher, Z. Zhang, K. K. Ojo, E. T. Larson, B. G. Perera, E. J. Dale, P. He, M. C. Reid, A. M. Fox, N. R. Mueller, E. A. Merritt, E. Fan, M. Parsons, W. C. Van Voorhis and D. J. Maly, J. Med. Chem., 2012, 55, 2416 CrossRef CAS PubMed ; (d) P. Bonn, D. M. Brink, J. Faegerhag, U. Jurva, G. R. Robb, V. Schnecke, H. A. Svensson, M. J. Waring and C. Westerlund, Bioorg. Med. Chem. Lett., 2012, 22, 7302 CrossRef CAS PubMed ; (e) O. M. Ahmed, M. A. Mohamed, R. R. Ahmed and S. A. Ahmed, Eur. J. Med. Chem., 2009, 44, 3519 CrossRef CAS PubMed ; (f) K. S. Gudmundsson, B. A. Johns and J. Weatherhead, Bioorg. Med. Chem. Lett., 2009, 19, 5689 CrossRef CAS PubMed ; (g) A. Bendich, P. J. Russell and J. J. Fox, J. Am. Chem. Soc., 1954, 76, 6073 CrossRef CAS ; (h) J. Kaplan, J. C. Verheijen, N. Brooijmans, L. Toral-Barza, I. Hollander, K. Yu and A. Zask, Bioorg. Med. Chem. Lett., 2010, 20, 640 CrossRef CAS PubMed ; (i) A. Zask, J. Kaplan, J. C. Verheijen, D. J. Richard, K. Curran, N. Brooijmans, E. M. Bennett, L. Toral-Barza, I. Hollander, S. Ayral-Kaloustian and K. Yu, J. Med. Chem., 2009, 52, 7942 CrossRef CAS PubMed ; (j) E. H. M. K. Abd, M. D. Mihovilovic and H. B. El-Nassan, Eur. J. Med. Chem., 2012, 57, 323 CrossRef PubMed ; (k) M. Bakavoli, G. Bagherzadeh, M. Vaseghifar, A. Shiri, M. Pordel, M. Mashreghi, P. Pordeli and M. Araghi, Eur. J. Med. Chem., 2010, 45, 647 CrossRef CAS PubMed ; (l) S. Taliani, C. La Motta, L. Mugnaini, F. Simorini, S. Salerno, A. M. Marini, F. Da Settimo, S. Cosconati, B. Cosimelli, G. Greco, V. Limongelli, L. Marinelli, E. Novellino, O. Ciampi, S. Daniele, M. L. Trincavelli and C. Martini, J. Med. Chem., 2010, 53, 3954 CrossRef CAS PubMed .
  3. (a) V. K. Naganaboina, K. L. Chandra, J. Desper and S. Rayat, Org. Lett., 2011, 13, 3718 CrossRef CAS PubMed ; (b) O. E. Alawode, V. K. Naganaboina, T. Liyanage, J. Desper and S. Rayat, Org. Lett., 2014, 5, 1494 CrossRef PubMed .
  4. (a) O. A. Attanasi, S. Bartoccini, G. Favi, P. Filippone, F. R. Perrulli and S. J. Santeusanio, Org. Chem., 2012, 77, 9338 CrossRef CAS PubMed ; (b) R. Kumar, D. S. Ermolat'ev and E. V. Van der Eycken, J. Org. Chem., 2013, 11, 5737 CrossRef PubMed ; (c) Y. B. Nie, L. Wang and M. W. Ding, J. Org. Chem., 2012, 77, 696 CrossRef CAS PubMed ; (d) M. W. Ding, S. Z. Xu and J. F. Zhao, J. Org. Chem., 2004, 69, 8366 CrossRef CAS PubMed ; (e) Y. Y. Yang, W. G. Shou, Z. B. Chen, D. Hong and Y. G. Wang, J. Org. Chem., 2008, 73, 3928 CrossRef CAS PubMed ; (f) S. P. Marsden, A. E. McGonagle and B. McKeever-Abbas, Org. Lett., 2008, 10, 2589 CrossRef CAS PubMed ; (g) A. Ramazani and A. Rezaei, Org. Lett., 2010, 12, 2852 CrossRef CAS PubMed ; (h) W. Yan, D. Wang, J. Feng, P. Li, D. Zhao and R. Wang, Org. Lett., 2012, 10, 2512 CrossRef PubMed ; (i) F. Zeng and H. Alper, Org. Lett., 2010, 12, 1188 CrossRef CAS PubMed ; (j) H. Q. Wang, W. P. Zhou, Y. Y. Wang and C. R. Lin, J. Agric. Food Chem., 2008, 56, 7321 CrossRef CAS PubMed ; (k) H. Q. Wang, M. W. Ding and Z.-J. Liu, Heteroat. Chem., 2004, 15, 333 CrossRef CAS .
  5. (a) R. W. Fischer and M. Misun, Org. Process Res. Dev., 2001, 5, 581 CrossRef CAS ; (b) S. I. Mirallai, M. Manoli and P. A. Koutentis, J. Org. Chem., 2013, 78, 8655 CrossRef CAS PubMed ; (c) L. Sun, Y. Zhu, P. Lu and Y. Wang, Org. Lett., 2013, 15, 5894 CrossRef CAS PubMed ; (d) N. L. Snyder and T. P. Adams, Named Reactions in Heterocylic Chemistry II, ed. J. J. Li, John-Wiley & Sons, 2011, p. 554 Search PubMed ; (e) R. N. Lacey, J. Chem. Soc., 1954, 839–844 RSC .
  6. ESI..

Footnote

Electronic supplementary information (ESI) available: IR, 1H and 13C NMR of compound 3 and 4. CCDC 850784 and 850785. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra15777j

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.