Copper catalysed C–N bond formation via a sequential acylation and deacylation process: a novel strategy for the synthesis of benzanilides

Saurabh Kumar, Rajeshwer Vanjari, Tirumaleswararao Guntreddi and Krishna Nand Singh*
Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi-221005, India. E-mail: knsingh@bhu.ac.in; knsinghbhu@yahoo.co.in

Received 24th November 2014 , Accepted 6th January 2015

First published on 6th January 2015


Abstract

An efficient and mild oxidative amidation of aldehydes by means of acetanilides as amine components has been developed for the first time using copper catalysis. The approach is versatile and proceeds through sequential acylation and deacylation steps to afford benzanilides.


Introduction

Transition metal-catalyzed selective C–H bond activation attracts a great deal of current attention in organic synthesis.1 The development of novel, atom-efficient, and catalytic methods for the preparation of amides under mild conditions is one of the most exciting themes in organic synthesis.2 Amide motifs are present in many natural products, pharmaceuticals, polymers, and biological systems. Amides are also valuable intermediates for the preparation of a variety of useful organic compounds.3 Traditional methods for the synthesis of amides involve the reaction of activated carboxylic acid derivatives and amines, although these methods suffer from disadvantages such as the lability of the acid derivatives and tedious procedures.4 Consequently, a number of alternative amide preparation strategies have been pursued, such as Beckmann rearrangement,5 amino carbonylations,6 cross coupling reactions of formamides with alkyl/aryl halides,7 from alkynes,8 and transamidation.9 In this perspective, the direct oxidative amidation of the aldehyde group with amines is of immense importance and has been achieved using transition metal catalysts such as Pd,10 Cu,11 Zn,12 Fe,13 Ru,14 and also under metal-free conditions.15 Recently our group has developed the amidation of toluene derivatives using a C–H activation strategy.16 Yet, the development of fresh protocols for the preparation of amides by direct C–H bond activation is a demanding and challenging task. To the best of our knowledge, amidation of aldehydes with acetanilides as amine partner has not been explored so far. In view of the above and as a part of our research interest on amide bond formation,16,17a–c and other themes,17d–i we report herein a copper catalysed synthesis of benzanilides via sequential acylation and deacylation strategy involving the reaction of acetanilides as amine partner with aldehydes. A comparison of the pertinent previous and present strategies is illustrated in Fig. 1.
image file: c4ra15140b-f1.tif
Fig. 1 An illustration of the previous and present reports.

Results and discussion

The studies were commenced using acetanilide and benzaldehyde as model reactants employing NBS (catalytic) and TBHP (70% aq.) in acetonitrile at 100 °C. Surprisingly, benzanilide was obtained in 55% yield instead of the expected formation of imides (Table 1, entry 1).
Table 1 Optimization of reaction conditionsa

image file: c4ra15140b-u1.tif

Entry Catalyst Oxidant Solvent Temperature (°C) Yieldb (%)
a Reaction conditions: acetanilide (0.5 mmol), benzaldehyde (1 mmol), oxidant (2 equiv.), catalyst (10 mol%), solvent (1 mL), 24 h.b Isolated yield.c 4 equiv.
1 NBS TBHP CH3CN 100 55
2 NBS TBHP DCE 100 70
3 NBS TBHP Toluene 100 0
4 NBS TBHP DMSO 100 0
5 NBS K2S2O8 DCE 100 0
6 CuI TBHP DCE 100 20
7 CuBr TBHP DCE 100 30
8 CuCl2·2H2O TBHP DCE 100 75
9 CuCl2·2H2O TBHP DCE 80 69
10 CuCl2·2H2O TBHP DCE 120 75
11 CuCl2·2H2O TBHP CCl4 100 74
12 CuCl2·2H2O TBHP CH3CN 100 30
13 CuCl2·2H2O TBHPc DCE 100 75


Having observed this interesting finding, the reaction conditions were further optimized by varying different parameters such as catalyst, oxidant, solvent and temperature. The findings are summarized in Table 1.

Employing NBS with TBHP in DCE gave rise to 70% product yield (entry 2). Changing solvents to toluene or DMSO, however, resulted in no product formation (entries 3 & 4). Further effort to change oxidant to K2S2O8 also remained futile (entry 5). Replacing NBS by CuI and CuBr ended with considerably low product yields (entries 6 & 7). Employing CuCl2·2H2O as catalyst with TBHP in DCE, however, resulted in a marked increase in the yield (75%, entry 8). The trial of other solvents such as CCl4 and acetonitrile afforded 74% and 30% of the product respectively (entries 11 & 12). Lowering the temperature to 80 °C lowered the product yield (entry 9), whereas an increase in the temperature to 120 °C brought about no enhancement (entry 10). Increasing the stoichiometry of TBHP to 4 equiv. also could not improve the yield (entry 13).

Under the optimized set of conditions (entry 10), the scope and versatility of the reaction was examined using diversely substituted acetanilides 1 and aldehydes 2 to achieve the corresponding benzanilides 3. The outcome is given in Table 2. Acetanilides substituted with electron withdrawing (EWG) as well as electron donating groups (EDG) such as Me, Cl, CF3, Br, and NO2 were well tolerated during the course of reaction, giving rise to the corresponding benzanilides in good yields. Interestingly, the reaction could also tolerate acyl substituent and remained intact in the product. The reaction of heteroaromatic as well as alicyclic acetanilides such as N-(pyridin-2-yl)acetamide and N-cyclohexylacetamide was also successful. Aromatic aldehydes bearing different electronic and steric substituents such as Cl, Me, Br, OMe and NO2 underwent the reaction smoothly. The reaction of aliphatic aldehydes such as heptanal and cinnamaldehyde, and heteroaromatic aldehyde such as thiophene-2-carboxaldehyde was also efficacious, although furfural (3w) and indole-3-carboxaldehyde (3x) showed no product formation due to their decomposition by TBHP.

Table 2 Scope and versatility of the reactiona

image file: c4ra15140b-u2.tif

a Reaction conditions: 1 (0.5 mmol), 2 (1 mmol), TBHP (2 equiv.), CuCl2·2H2O (10 mol%), DCE (1 mL), 100 °C, 24 h.b 120 °C.
image file: c4ra15140b-u3.tif


Based on the product formation and existing literature,18c a possible mechanism is outlined in Fig. 2. The reaction is assumed to involve oxidative addition of acetanilide to aldehyde to form the imide, which is subsequently hydrolysed to the corresponding benzanilide. The selective hydrolysis of COCH3 over COPh may be rationalized in terms of their relative stabilities. To validate the radical pathway, a control experiment using the radical scavenger BHT was carried out which completely inhibited the reaction. When the reaction was conducted in the absence of acetanilide using stoichiometric amount of Cu(II) chloride, the formation of acid chloride intermediate was not observed at all.


image file: c4ra15140b-f2.tif
Fig. 2 Proposed mechanism.

Conclusion

In conclusion, we have developed a new and efficient oxidative amidation strategy for the synthesis of benzanilides using acetanilides and aldehydes as coupling partners. The method is versatile, and offers good functional group tolerance.

Experimental

General information

All the reagents were purchased from Sigma-Aldrich, Merck, Alfa Aesar, and Sd-Fine and were used as received. All the reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light. The product purification was done using silica gel column chromatography. 1H- and 13C-NMR spectra were recorded on a JEOL FT-NMR spectrometer at 300 and 75.45 MHz respectively using CDCl3 or DMSO-d6 solution. Chemical shifts are given in ppm and are measured relative to tetramethylsilane (TMS) as an internal standard.

General procedure for the synthesis of products 3a–u

To a solution of acetanilide (0.5 mmol), aldehyde (1 mmol) and TBHP (2 equiv.) in DCE (1 mL), was added CuCl2·2H2O (10 mol%). The mixture was then heated under stirring at 100 °C for 24 h in an oil bath. After completion of the reaction, the contents were cooled to room temperature. To this was added an excess of water followed by extraction with ethyl acetate (3 × 10 mL). The combined organic phase was dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure to afford the crude product, which was finally purified by column chromatography using ethyl acetate–n-hexane as an eluent.
N-Phenylbenzamide (3a)19. White solid; 1H-NMR (CDCl3, 300 MHz): δ 7.97 (bs, 1H), 7.86 (d, J = 7.2 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.52–7.25 (m, 6H), 7.14 (t, J = 7.5 Hz, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.7, 137.7, 134.8, 131.6, 128.9, 128.5, 126.8, 124.3, 120.1.
N-(p-Tolyl)benzamide (3b)20. White solid; 1H-NMR (CDCl3, 300 MHz): δ 7.96 (bs, 1H), 7.85 (d, J = 6.9 Hz, 2H), 7.52–7.40 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 2.32 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 166.0, 135.6, 135.3, 134.4, 131.9, 129.7, 128.9, 127.2, 120.6, 20.9.
N-(4-Chlorophenyl)benzamide (3c)20. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.87 (d, J = 7.2 Hz, 2H), 7.62–7.47 (m, 5H), 7.35–7.32 (m, 2H), 7.26 (s, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.5, 137.9, 137.6, 132.3, 129.4, 129.1, 127.2, 127.0, 121.6.
N-(3-(Trifluoromethyl)phenyl)benzamide (3d)21. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.13 (d, J = 7.5 Hz, 1H), 7.87–7.95 (m, 2H), 7.51–7.42 (m, 5H), 7.3 (d, J = 8.4 Hz, 2H); 13C-NMR (CDCl3, 75 MHz): δ 171.5, 138.7, 134.0, 132.4, 130.4, 129.9, 129.1, 128.9, 128.8, 128.7, 127.3, 127.1, 123.4, 121.3.
N-(Pyridin-2-yl)benzamide (3e)22. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.56 (bs, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.14–7.95 (m, 3H), 7.77–7.72 (m, 1H), 7.57–7.44 (m, 3H), 7.05–7.01 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 166.4, 152.0, 147.6, 138.9, 134.5, 132.3, 128.9, 127.6, 120.0, 114.8.
4-Chloro-N-(pyridin-2-yl)benzamide (3f)22. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.73 (bs, 1H), 8.36 (d, J = 8.1 Hz, 1H), 8.03–7.92 (m, 2H), 7.79–7.70 (m, 2H), 7.47 (d, J = 8.1 Hz, 1H), 7.38–7.28 (m, 1H), 7.01 (t, J = 6.3 Hz, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.5, 152.3, 148.3, 139.1, 136.8, 135.5, 132.6, 130.5, 128.4, 126.0, 120.6, 115.2.
N-(4-Acetylphenyl)-4-chlorobenzamide (3g). Light yellow solid; 1H-NMR (DMSO, 300 MHz): δ 10.57 (bs, 1H), 7.98–7.89 (m, 5H), 7.60–7.51 (m, 3H), 2.51 (s, 3H); 13C-NMR (DMSO, 75 MHz): δ 196.8, 165.0, 143.5, 133.4, 132.3, 131.3, 129.9, 129.4, 128.9, 128.7, 119.6, 26.4; HRMS (ESI−): (M − H)+ calcd for C15H12ClNO2: 272.0484; found: 272.0476.
N-(4-Nitrophenyl)benzamide (3h)23. Yellow solid; 1H-NMR (CDCl3 + DMSO, 300 MHz): δ 10.28 (bs, 1H), 8.22 (d, J = 9.0 Hz, 2H), 8.07–7.97 (m, 4H), 7.60–7.47 (m, 3H); 13C-NMR (CDCl3 + DMSO, 75 MHz): δ 166.9, 145.3, 142.9, 134.6, 131.9, 128.3, 127.9, 124.5, 119.7.
2-Bromo-N-(3-chlorophenyl)benzamide (3i). Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.82–7.76 (m, 2H), 7.63–7.60 (m, 2H), 7.47–7.26 (m, 4H), 7.15–7.13 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.8, 138.8, 137.6, 135.0, 133.8, 132.1, 130.3, 130.1, 128.0, 125.1, 120.4, 119.4, 118.2; HRMS (ESI+): (M + H)+ calcd for C13H9ClNO: 309.9629; found: 309.9608.
N-Cyclohexylbenzamide (3j)24. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.78 (d, J = 7.2 Hz, 2H), 7.44–7.33 (m, 3H), 6.48 (bs, 1H), 3.96 (bs, 1H), 2.00–1.96 (m, 2H), 1.73–1.59 (m, 3H), 1.42–1.12 (m, 5H); 13C-NMR (CDCl3, 75 MHz): δ 167.0, 135.1, 131.2, 128.4, 127.0, 48.8, 33.0, 25.4, 24.9.
4-Methyl-N-phenylbenzamide (3k)25. White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.11 (bs, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H), 7.33–7.08 (m, 5H), 2.37 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 166.2, 142.5, 138.3, 132.3, 130.4, 129.2, 127.3, 124.6, 120.5, 21.5.
4-Chloro-N-phenylbenzamide (3l)19. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.43 (bs, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.74–7.67 (m, 2H), 7.44–7.31 (m, 4H), 7.14–7.10 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.1, 138.5, 137.5, 133.6, 129.1, 128.7, 128.5, 124.2, 120.7.
3-Bromo-N-phenylbenzamide (3m)26. White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.12 (s, 1H), 7.95 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.61 (m, 3H), 7.35–7.25 (m, 3H), 7.16–7.12 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 164.4, 137.4, 136.7, 134.5, 131.8, 130.1, 128.8, 125.4, 124.7, 122.6, 120.3.
N-(2-Bromophenyl)benzamide (3n)23. White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.28–8.25 (d, J = 7.8 Hz, 1H), 8.11–8.08 (d, J = 7.5 Hz, 1H), 7.70 (s, 1H), 7.57–7.41 (m, 3H), 7.35–7.25 (m, 2H), 7.04–6.93 (m, 2H); 13C-NMR (CDCl3, 75 MHz): δ 164.03, 137.61, 137.15, 133.84, 131.76, 131.13, 130.24, 129.25, 127.66, 125.19, 120.47.
4-Methoxy-N-phenylbenzamide (3o)19. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.78 (d, J = 8.7 Hz, 3H), 7.57 (d, J = 7.8 Hz, 2H), 7.31–7.26 (m, 2H), 7.09–7.04 (m, 1H), 6.90 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 166.0, 163.2, 138.8, 129.7, 129.6, 127.8, 125.0, 120.8, 116.7, 114.6, 56.0.
2,4-Dichloro-N-phenylbenzamide (3p)27. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.30 (bs, 1H), 7.60–7.50 (m, 3H), 7.35–7.13 (m, 5H); 13C-NMR (CDCl3, 75 MHz): δ 164.0, 137.6, 137.2, 133.8, 131.8, 131.1, 130.2, 129.3, 127.7, 125.2, 120.5.
N-Phenylthiophene-2-carboxamide (3q)28. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.91 (bs, 1H), 7.64–7.59 (m, 3H), 7.52–7.50 (m, 1H), 7.35–7.30 (m, 2H), 7.15–7.06 (m, 2H); 13C-NMR (CDCl3, 75 MHz): δ 160.3, 139.5, 137.8, 131.0, 129.3, 128.7, 128.0, 124.8, 120.5.
N-Phenylcinnamamide (3r)19. Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.76 (bs, 1H), 7.73–7.67 (m, 3H), 7.43–7.21 (m, 7H), 7.09–7.04 (m, 1H), 6.73 (d, J = 15.6 Hz, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.0, 142.2, 138.5, 134.8, 129.9, 129.1, 128.9, 128.7, 128.4, 128.1, 124.7, 124.5, 121.4, 120.6, 120.3.
N-Phenylheptanamide (3s)29. Yellow liquid; 1H-NMR (CDCl3, 300 MHz): δ 7.61 (bs, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.11–7.06 (m, 1H), 2.37–2.32 (m, 2H), 1.73–1.58 (m, 2H), 1.30 (s, 6H), 0.88–0.86 (3H); 13C-NMR (CDCl3, 75 MHz): δ 180.1, 138.2, 129.1, 124.4, 120.2, 34.2, 31.5, 28.8, 24.7, 22.5, 14.0.
3-Chloro-N-(m-tolyl)benzamide (3t). Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.97–7.70 (m, 3H), 7.50–7.38 (m, 4H), 7.35–6.96 (m, 2H), 2.34 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 164.7, 139.3, 137.7, 137.1, 135.1, 134.4, 132.0, 130.2, 129.1, 125.9, 125.3, 121.2, 117.7, 21.5; HRMS (ESI+): (M + H)+ calcd for C14H12ClNO: 246.0680; found: 246.0681.
4-Nitro-N-phenylbenzamide (3u)19. Yellow solid; 1H-NMR (DMSO, 300 MHz): δ 10.53 (bs, 1H), 8.36 (d, J = 8.7 Hz, 2H), 8.18 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H); 13C-NMR (DMSO, 75 MHz): δ 164.1, 149.3, 140.8, 138.9, 129.4, 128.9, 124.3, 123.7, 120.6.
N-(4-Cyanophenyl)benzamide (3v)30. White solid; 1H-NMR (CDCl3, 400 MHz): δ 8.10 (bs, 1H), 7.91, 7.89, 7.88, 7.84, 7.83, 7.82, 7.81 (m, 4H), 7.69, 7.68, 7.67, 7.66, 7.64, 7.63, 7.63, 7.62, 7.62, 7.61, 7.60, 7.60, 7.59, 7.55, 7.55, 7.53, 7.52, 7.51, 7.51 (m, 5H). 13C NMR (101 MHz, CDCl3): δ 165.65, 141.83, 133.96, 133.19, 132.34, 128.83, 126.93, 119.74, 118.60, 107.29, 77.16, 76.84, 76.53.

Acknowledgements

We are thankful to the Department of Science and Technology, Government of India, New Delhi, for providing financial assistance (Grant no. SR/S1/OC-78/2012). S. K. R. V. and T. G. are thankful to the CSIR for research fellowships.

Notes and references

  1. (a) O. Daugulis, H.-Q. Do and D. Shabashov, Acc. Chem. Res., 2009, 42, 1074 CrossRef CAS PubMed; (b) V. Ritleng, C. Sirlin and M. Pfeffer, Chem. Rev., 2002, 102, 1731 CrossRef CAS PubMed; (c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147 CrossRef CAS PubMed; (d) F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906 RSC.
  2. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer Jr, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 41 RSC.
  3. (a) J. M. Humphrey and A. R. Chamberlin, Chem. Rev., 1997, 97, 2243 CrossRef CAS PubMed; (b) T. Cupido, J. Tulla-Puche, J. Spengler and F. Albericio, Curr. Opin. Drug Discovery Dev., 2007, 10, 768 CAS; (c) R. C. Larock, Comprehensive Organic Transformation, VCH, New York, 1999 Search PubMed; (d) H. Lundberg, F. Tinnis, N. Selander and H. Adolfsson, Chem. Soc. Rev., 2014, 43, 2714 RSC; (e) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405 RSC.
  4. (a) C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827 CrossRef CAS PubMed; (b) R. C. Larock, Comprehensive Organic Transformations, Wiley-VCH, Weinheim, 1999 Search PubMed.
  5. (a) J. K. Augustine, R. Kumar, A. B. Ashis and B. Mandal, Tetrahedron Lett., 2011, 52, 1074 CrossRef CAS PubMed; (b) C. Ramalingan and Y.-T. Park, J. Org. Chem., 2007, 72, 4536 CrossRef CAS PubMed; (c) L. Ronchin, A. Vavasori and M. Bortoluzzi, Catal. Commun., 2008, 10, 251 CrossRef CAS PubMed; (d) C. M. Vanos and T. H. Lambert, Chem. Sci., 2010, 1, 705 RSC; (e) F. Aricò, G. Quartarone, E. Rancan, L. Ronchin, P. Tundo and A. Vavasori, Catal. Commun., 2014, 49, 47 CrossRef PubMed; (f) R. Kore and R. Srivastava, J. Mol. Catal. A: Chem., 2013, 376, 90 CrossRef CAS PubMed; (g) Y. Furuya, K. Ishihara and H. Yamamoto, J. Am. Chem. Soc., 2005, 127, 11240 CrossRef CAS PubMed; (h) M. Hashimoto, Y. Obora, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2008, 73, 2894 CrossRef CAS PubMed; (i) L. D. Luca, G. Giacomelli and A. Porcheddu, J. Org. Chem., 2002, 67, 6272 CrossRef PubMed.
  6. (a) P. Appukkuttan, L. Axelsson, E. Van der Eycken and M. Larhed, Tetrahedron Lett., 2008, 49, 5625 CrossRef CAS PubMed; (b) S. T. Gadge and B. M. Bhanage, RSC Adv., 2014, 4, 10367 RSC; (c) S. Roy, S. Roy and G. W. Gribble, Tetrahedron, 2012, 68, 9867 CrossRef CAS PubMed; (d) F. Tinnis, O. Verho, K. P. J. Gustafson, C.-W. Tai, J.-E. Backvall and H. Adolfsson, Chem.–Eur. J., 2014, 20, 5885 CrossRef CAS PubMed; (e) P. Nordeman, L. R. Odell and M. Larhed, J. Org. Chem., 2012, 77, 11393 CrossRef CAS PubMed; (f) A. Brennführer, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2009, 48, 4114 CrossRef PubMed; (g) P. G. Alsabeh, M. Stradiotto, H. Neumann and M. Beller, Adv. Synth. Catal., 2012, 354, 3065 CrossRef CAS; (h) J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T. E. Barder and S. L. Buchwald, J. Org. Chem., 2008, 73, 7102 CrossRef CAS PubMed; (i) X.-F. Wu, H. Neumann and M. Beller, Chem. Rev., 2013, 113, 1 CrossRef CAS PubMed; (j) S. D. Friis, T. Skrydstrup and S. L. Buchwald, Org. Lett., 2014, 16, 4296 CrossRef CAS PubMed; (k) A. Skogh, R. Fransson, C. Sköld, M. Larhed and A. Sandström, J. Org. Chem., 2013, 78, 12251 CrossRef CAS PubMed; (l) N. Iranpoor, H. Firouzabadi, S. Motevalli and M. Talebi, Tetrahedron, 2013, 69, 418 CrossRef CAS PubMed.
  7. (a) A. Schnyder, M. Beller, G. Mehltretter, T. Nsenda, M. Studer and A. F. Indolese, J. Org. Chem., 2001, 66, 4311 CrossRef CAS PubMed; (b) Y. Wan, M. Alterman, M. Larhed and A. Hallberg, J. Org. Chem., 2002, 67, 6232 CrossRef CAS PubMed; (c) J. Ju, M. Jeong, J. Moon, H. M. Jung and S. Lee, Org. Lett., 2007, 9, 4615 CrossRef CAS PubMed; (d) K. Hosoi, K. Nozaki and T. Hiyama, Org. Lett., 2007, 4, 284 Search PubMed; (e) D. N. Sawant, Y. S. Wagh, K. D. Bhatte and B. Bhanage, J. Org. Chem., 2011, 76, 5489 CrossRef CAS PubMed; (f) K. Hosoi, K. Nozaki and T. Hiyama, Org. Lett., 2002, 4, 2849 CrossRef CAS PubMed.
  8. (a) S. H. Cho, E. J. Yoo, I. Bae and S. Chang, J. Am. Chem. Soc., 2005, 127, 16046 CrossRef CAS PubMed; (b) Y. Uenoyama, T. Fukuyama, O. Nobuta, H. Matsubara and I. Ryu, Angew. Chem., Int. Ed., 2005, 44, 1075 CrossRef CAS PubMed; (c) Y. Li, H. Alper and Z. Yu, Org. Lett., 2006, 8, 5199 CrossRef CAS PubMed; (d) M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154 CrossRef CAS PubMed; (e) J. H. Park, S. Y. Kim, S. M. Kim and Y. K. Chung, Org. Lett., 2007, 9, 2465 CrossRef CAS PubMed; (f) W.-K. Chan, C.-M. Ho, M.-K. Wong and C.-M. Che, J. Am. Chem. Soc., 2006, 128, 14796 CrossRef CAS PubMed.
  9. (a) N. A. Stephenson, J. Zhu, S. H. Gellman and S. S. Stahl, J. Am. Chem. Soc., 2009, 131, 10003 CrossRef CAS PubMed; (b) J. M. Hoerter, K. M. Otte, S. H. Gellman, Q. Cui and S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 647 CrossRef CAS PubMed; (c) M. Zhang, S. Imm, S. Bähn, L. Neubert, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2012, 51, 3905 CrossRef CAS PubMed; (d) C. L. Allen, B. N. Atkinson and J. M. J. Williams, Angew. Chem., Int. Ed., 2012, 51, 1383 CrossRef CAS PubMed; (e) T. B. Nguyen, J. Sorres, M. Q. Tran, L. Ermolenko and A. Al-Mourabit, Org. Lett., 2012, 14, 3202 CrossRef CAS PubMed; (f) P. Starkov and T. D. Sheppard, Org. Biomol. Chem., 2011, 9, 1320 RSC; (g) B. N. Atkinson, A. R. Chhatwal, H. V. Lomax, J. W. Walton and J. M. J. Williams, Chem. Commun., 2012, 48, 11626 RSC; (h) S. N. Rao, D. C. Mohan and S. Adimurthy, Org. Lett., 2013, 15, 1496 CrossRef CAS PubMed.
  10. (a) Y. Suto, N. Yamagiwa and Y. Torisawa, Tetrahedron Lett., 2008, 49, 5732 CrossRef CAS PubMed; (b) Y. Tamaru, Y. Yamada and Z. Yoshida, Synthesis, 1983, 474 CrossRef CAS PubMed.
  11. (a) W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 13064 CrossRef CAS PubMed; (b) M. Zhu, K.-I. Fujita and R. Yamaguchi, J. Org. Chem., 2012, 77, 9102 CrossRef CAS PubMed; (c) R. Cadoni, A. Porcheddu, G. Giacomelli and L. D. Luca, Org. Lett., 2012, 14, 5014 CrossRef CAS PubMed; (d) S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, D. T. Tuan, C. L. L. Chai and A. Chen, J. Org. Chem., 2012, 77, 8007 CrossRef CAS PubMed.
  12. M. Zhang and X.-F. Wu, Tetrahedron Lett., 2013, 54, 1059 CrossRef CAS PubMed.
  13. (a) Y. Li, F. Jia and Z. Li, Chem.–Eur. J., 2013, 19, 82 CrossRef CAS PubMed; (b) S. C. Ghosh, J. S. Y. Ngiam, C. L. L. Chai, A. M. Seayad, T. T. Dang and A. Chen, Adv. Synth. Catal., 2012, 354, 1407 CrossRef CAS; (c) A. Porcheddu and L. D. Luca, Adv. Synth. Catal., 2012, 354, 2949 CrossRef CAS.
  14. J. W. W. Chang and P. W. H. Chan, Angew. Chem., Int. Ed., 2008, 47, 1138 CrossRef CAS PubMed.
  15. (a) X. Liu and K. F. Jensen, Green Chem., 2012, 14, 1471 RSC; (b) S. D. Sarkar and A. Studer, Org. Lett., 2010, 12, 1992 CrossRef PubMed; (c) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 2007, 129, 13798 CrossRef CAS PubMed; (d) K. E. Kovi and C. Wolf, Org. Lett., 2007, 9, 3429 CrossRef PubMed; (e) L. Yu and M. W. L. Wang, Tetrahedron, 2014, 70, 5391 CrossRef CAS PubMed; (f) J. Zhao, P. Li and C. X. F. Li, Chem. Commun., 2014, 50, 4751 RSC; (g) M. Ji, S. Lim and H.-Y. Jang, RSC Adv., 2014, 4, 28225 RSC; (h) B. Tan, N. Toda and C. F. Barbas, Angew. Chem., Int. Ed., 2012, 51, 12538 CrossRef CAS PubMed; (i) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu and X. Wan, Angew. Chem., Int. Ed., 2012, 51, 3231 CrossRef CAS PubMed.
  16. R. Vanjari, T. Guntreddi and K. N. Singh, Org. Lett., 2013, 15, 4908 CrossRef CAS PubMed.
  17. (a) R. Vanjari, B. K. Allam and K. N. Singh, RSC Adv., 2013, 3, 1691 RSC; (b) R. Vanjari, B. K. Allam and K. N. Singh, Tetrahedron Lett., 2013, 54, 2553 CrossRef CAS PubMed; (c) R. Vanjari, T. Guntreddi and K. N. Singh, Green Chem., 2014, 16, 351 RSC; (d) R. Vanjari, T. Guntreddi, S. Kumar and K. N. Singh, Chem. Commun., 2015, 51, 366 RSC; (e) T. Guntreddi, R. Vanjari and K. N. Singh, Org. Lett., 2014, 16, 3624 CrossRef CAS PubMed; (f) T. Guntreddi, R. Vanjari and K. N. Singh, Tetrahedron, 2014, 70, 3887 CrossRef CAS PubMed; (g) N. Singh, R. Singh, D. S. Raghuvanshi and K. N. Singh, Org. Lett., 2013, 15, 5874 CrossRef CAS PubMed; (h) R. Singh, D. S. Raghuvanshi and K. N. Singh, Org. Lett., 2013, 15, 4202 CrossRef CAS PubMed; (i) D. S. Raghuvanshi, A. K. Gupta and K. N. Singh, Org. Lett., 2012, 14, 4326 CrossRef CAS PubMed.
  18. (a) X. Jia, S. Zhang, W. Wang, F. Luo and J. Cheng, Org. Lett., 2009, 11, 3120 CrossRef CAS PubMed; (b) Y. Wu, B. Li, F. Mao, X. Li and F. Y. Kwong, Org. Lett., 2011, 13, 3258 CrossRef CAS PubMed; (c) J. Wang, C. Liu, J. Yuan and A. Lei, Chem. Commun., 2014, 50, 4736 RSC.
  19. Q.-L. Luo, L. Lv, Y. Li, J.-P. Tan, W. Nan and Q. Hui, Eur. J. Org. Chem., 2011, 6916 CrossRef CAS.
  20. Y. Kuninobu, T. Uesugi, A. Kawata and K. Takai, Angew. Chem., Int. Ed., 2011, 123, 10590 CrossRef.
  21. R. E. Tundel, K. W. Anderson and S. L. Buchwald, J. Org. Chem., 2006, 71, 430 CrossRef CAS PubMed.
  22. S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron, 2013, 69, 6431 CrossRef CAS PubMed.
  23. K. Bahrami, M. M. Khodaei and A. Farrokhi, Tetrahedron, 2009, 65, 7658 CrossRef CAS PubMed.
  24. W. Ren and M. Yamane, J. Org. Chem., 2010, 75, 8410 CrossRef CAS PubMed.
  25. Y. Wang, D. Zhu, L. Tang, S. Wang and Z. Wang, Angew. Chem., Int. Ed., 2011, 50, 8917 CrossRef CAS PubMed.
  26. T. Miura, Y. Takahashi and M. Murakami, Chem. Commun., 2007, 3577 RSC.
  27. D. D. Young, C. M. Connelly, C. Grohmann and A. Deiters, J. Am. Chem. Soc., 2010, 132, 7976 CrossRef CAS PubMed.
  28. W. Fang, Q. Deng, M. Xu and T. Tu, Org. Lett., 2013, 15, 3678 CrossRef CAS PubMed.
  29. S. I. Lee, S. U. Son and Y. K. Chung, Chem. Commun., 2002, 1310 RSC.
  30. X. Wu and L. Hu, J. Org. Chem., 2007, 72, 765 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: copies of 1H- and 13C-NMR. See DOI: 10.1039/c4ra15140b

This journal is © The Royal Society of Chemistry 2015