Metal-free synthesis of imidazopyridine from nitroalkene and 2-aminopyridine in the presence of a catalytic amount of iodine and aqueous hydrogen peroxide

Yuma Tachikawaa, Yoshitomo Nagasawaa, Sohei Furuhashia, Lei Cuia, Eiji Yamaguchia, Norihiro Tadaa, Tsuyoshi Miurab and Akichika Itoh*a
aGifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan. E-mail: itoha@gifu-pu.ac.jp; Fax: +81-058-230-8108; Tel: +81-058-230-8108
bTokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. E-mail: tmiura@toyaku.ac.jp; Fax: +81-042-676-4479; Tel: +81-042-676-4479

Received 21st November 2014 , Accepted 23rd December 2014

First published on 5th January 2015


Abstract

We have developed a metal-free synthetic method for 3-nitroimidazo[1,2-a]pyridines from nitroalkenes and 2-aminopyridines using catalytic amounts of iodine and aqueous hydrogen peroxide as a terminal oxidant.


Imidazo[1,2-a]pyridines are of great importance for their remarkable biological properties, and they are found in many pharmaceutical compounds, including zolpidem, saripidem, zolimidine, and olprinone.1 Thus, there are various synthetic reactions that include the use of 2-aminopyridine combined with phenacyl halide,2 propynal,3 aldehyde and alkyne,4 aldehyde and isonitrile,5 Morita–Baylis–Hillman acetate of nitroalkene,6 and 1,3-oxoester.7 In addition, intramolecular amination has also been used for the construction of imidazopyridines.8 Recently, nitroalkenes have been adopted as a reaction partner of 2-aminopyridine. When FeCl3[thin space (1/6-em)]9 or FeCl2[thin space (1/6-em)]10 were used as catalysts, denitrated imidazopyridines were obtained. On the other hand, CuBr11 and NaICl2[thin space (1/6-em)]12 yielded 3-nitroimidazo[1,2-a]pyridines under oxidative reaction conditions. Furthermore, three-component reactions using nitromethane and aldehyde rather than nitroalkene have also been reported.13 Although these reactions are highly practical because 3-nitroimidazo[1,2-a]pyridine can be converted to various imidazopyridine derivatives,14 such reactions require a transition metal catalyst or a reagent which is not available commercially. Therefore, the development of a facile catalytic metal-free reaction is required from the viewpoint of green chemistry.

We have developed various aerobic photooxidative reactions with iodine sources using molecular oxygen.15 During the course of our study, we developed an oxidative C–C bond formation between tertiary amines and carbon nucleophiles using a combination of catalytic amounts of iodine and hydrogen peroxide as a terminal oxidant.16 We then examined the metal-free synthetic reaction of 3-nitroimidazo[1,2-a]pyridines from nitroalkene and 2-aminopyridine using an iodine source combined with hydrogen peroxide. Here, we report the details of this reaction (Scheme 1).


image file: c4ra14970j-s1.tif
Scheme 1 Synthesis of 3-nitroimidazo[1,2-a]pyridine in the presence of catalytic iodine and aqueous hydrogen peroxide.

Table 1 shows the results of the optimization of reaction conditions for the synthesis of imidazopyridines using trans-β-nitrostyrene and 2-aminopyridine as a test substrate. Among the solvents and iodine sources examined, dimethyl sulfoxide (DMSO) and I2, which are more atom efficient and inexpensive than N-iodosuccinimide, were found to be the most suitable for the reaction (entries 1–13). Note that 3a was obtained in good yield (entry 14) by increasing the amount of 2-aminopyridine to 1.2 equiv. Conversely, changing the reaction temperature and amounts of hydrogen peroxide resulted in lower yields of 3a (entries 15–18).

Table 1 Study of reaction conditionsa

image file: c4ra14970j-u1.tif

Entry Solvent Iodine source Yieldb (%)
a Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), iodine source, and 35% aq H2O2 (4 equiv.) in solvent (3 mL) were stirred at 70° for 20 h.b 1H NMR yields. Number in parentheses is isolated yield.c The reaction was carried out with 2a (1.2 equiv.).d The reaction was carried out at 60 °C.e The reaction was carried out at 80 °C.f The reaction was carried out with 35% aq H2O2 (3 equiv.).g The reaction was carried out with 35% aq H2O2 (5 equiv.).
1 Toluene I2 9
2 EtOAc I2 20
3 2-PrOH I2 21
4 MeCN I2 26
5 DMF I2 63
6 DMSO I2 71
7 DMSO NIS 71
8 DMSO 55% aq HI 66
9 DMSO KI 66
10 DMSO Cal2 57
11 DMSO Nal 45
12 DMSO Lil 29
13 DMSO TBAI 11
14c DMSO I2 87 (75)
15c,d DMSO I2 38
16c,e DMSO I2 38
17c,f DMSO I2 46
18c,g DMSO I2 56


Table 2 presents the scope and limitations of the reactions between nitroalkenes (1) and 2-aminopyridines (2) under the optimized reaction conditions.17 The corresponding imidazopyridines were obtained in good to high yield regardless of an electron-donating or -withdrawing group at the para- and meta-positions of the aromatic nucleus of nitroalkenes (3b–f, and 3l). On the other hand, ortho-substituted nitroalkene 1g gave low yield due to steric hindrance. 3,[thin space (1/6-em)]4, or 5 substituted 2-aminopyridines, including methyl, chloro, and ester groups, were good substrates in this reaction (3h–l).

Table 2 Scope and limitationsa

image file: c4ra14970j-u2.tif

a Isolated yields.b Reaction was conducted with aminopyridine (1.5 equiv.).
image file: c4ra14970j-u3.tif


We performed several control experiments to resolve the reaction mechanism (Table 3). The fact that imidazopyridine was not obtained or was obtained in only low yields without iodine or hydrogen peroxide shows the necessity of these ingredients. Note that DMSO was not an oxidant in the reaction (entries 1–3). Furthermore, when we used 1 equiv. of iodine in the absence of hydrogen peroxide, 3a was obtained in only 14% yield (entry 4). The iodination of several compounds, including electron-rich aromatics, olefins, and ketones, with molecular iodine is accelerated by hydrogen peroxide,18 and hypoiodous acid (HOI) has been considered to be an active species.19 Therefore, we speculate that HOI is also involved in this reaction. Even under dark conditions, the reaction proceeded with good yields, which suggests that light is not essential for the reaction (entry 5). Since HIO3, which is produced by disproportionate of HOI, is not good reagent, this disproportionation isn't thought to be important in this reaction (entry 6).

Table 3 Study of reaction mechanism

image file: c4ra14970j-u4.tif

Entry Change from standard conditions Yielda (%)
a 1H NMR yields.
1 I2 (0 equiv.), H2O2 (0 equiv.) 0
2 I2 (0 equiv.) 0
3 H2O2 (0 equiv.) 7
4 I2 (1 equiv.), H2O2 (0 equiv.) 14
5 In the dark 78
6 HIO3 (4 equiv.), I2 (0 equiv.), H2O2 (0 equiv.) 22


Scheme 2 shows a plausible path for this intermolecular oxidative cyclization, which we postulate after considering all of the results presented above. The path includes the following three steps. First, HOI is generated from iodine and hydrogen peroxide. Next, Michael addition of the 2-aminopyridine (2) to nitroalkene 1 followed by iodination at the α-position of the nitro group produces adduct 5.20 Finally, intramolecular nucleophilic substitution and subsequent oxidation of 6 with HOI gives imidazopyridine 3.21 On the other hand, in situ generated HI is reoxidized to HOI in the presence of hydrogen peroxide.


image file: c4ra14970j-s2.tif
Scheme 2 Plausible reaction mechanism.

Conclusions

In conclusion, we have found a metal-free synthetic method for 3-nitroimidazo[1,2-a]pyridines from nitroalkene and 2-aminopyridine in the presence of catalytic iodine and aqueous hydrogen peroxide. This reaction is interesting in keeping with the notion of green chemistry because of the use of catalytic amounts of molecular iodine and hydrogen peroxide as the terminal oxidant.

Notes and references

  1. (a) S. M. Hanson, E. V. Morlock, K. A. Satyshur and C. Czajkowski, J. Med. Chem., 2008, 51, 7243 CrossRef CAS PubMed; (b) L. Almirante, L. Polo, A. Mugnaini, E. Provinciali, P. Rugarli, A. Biancotti, A. Gamba and W. Murmann, J. Med. Chem., 1965, 8, 305 CrossRef CAS; (c) T. S. Harrison and G. M. Keating, CNS Drugs, 2005, 19, 65 CrossRef CAS PubMed; (d) A. R. Katritzky, Y. J. Xu and H. Tu, J. Org. Chem., 2003, 68, 4935 CrossRef CAS PubMed; (e) E. C. Gueiffier and A. Gueiffier, Mini-Rev. Med. Chem., 2007, 7, 888 CrossRef.
  2. (a) A. J. Stasyuk, M. Banasiewicz, M. K. Cyrański and D. T. Gryko, J. Org. Chem., 2012, 77, 5552 CrossRef CAS PubMed; (b) A. Herath, R. Dahl and N. D. P. Cosford, Org. Lett., 2010, 12, 412 CrossRef CAS PubMed; (c) K. S. Gudmundsson and B. A. Johns, Org. Lett., 2003, 5, 1369 CrossRef CAS PubMed; (d) R. J. Sundberg, D. J. Dahlhausen, G. Manikumar, B. Mavunkel and A. Biswas, J. Heterocycl. Chem., 1988, 25, 129 CrossRef CAS.
  3. H. Cao, X. Liu, L. Zhao, J. Cen, J. Lin, Q. Zhu and M. Fu, Org. Lett., 2014, 16, 146 CrossRef CAS PubMed.
  4. (a) I. R. Siddiqui, P. R. Raila, A. Srivastava and S. Shamim, Tetrahedron Lett., 2014, 55, 1159 CrossRef CAS PubMed; (b) S. Mishra and R. Ghosh, Synthesis, 2011, 3463 CAS.
  5. (a) H. Sun, H. Zhou, O. Khorev, R. Jiang, T. Yu, X. Wang, Y. Du, Y. Ma, T. Meng and J. Shen, J. Org. Chem., 2012, 77, 10745 CrossRef CAS PubMed; (b) H. Bienayme and K. Bouzid, Angew. Chem., Int. Ed., 1998, 37, 2234 CrossRef CAS; (c) A. L. Rousseau, P. Matlaba and C. J. Parkinson, Tetrahedron Lett., 2007, 48, 4079 CrossRef CAS PubMed; (d) A. Domling, Chem. Rev., 2006, 106, 17 CrossRef PubMed; (e) J. Zhu, Eur. J. Org. Chem., 2003, 1133 CrossRef CAS.
  6. D. K. Nair, S. M. Mobin and I. N. N. Namboothiri, Org. Lett., 2012, 14, 4580 CrossRef CAS PubMed.
  7. (a) X. Wang, L. Ma and W. Yu, Synthesis, 2011, 15, 2445 Search PubMed; (b) L. Ma, X. Wang, W. Yu and B. Han, Chem. Commun., 2011, 47, 11333 RSC.
  8. (a) D. C. Mohan, S. N. Rao and S. Adimurthy, J. Org. Chem., 2013, 78, 1266 CrossRef PubMed; (b) S. Husinec, R. Markovic, M. Petkovic, V. Nasufovic and V. Savic, Org. Lett., 2011, 13, 2286 CrossRef CAS PubMed; (c) H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5678 CrossRef CAS PubMed.
  9. S. Santra, A. K. Bagdi, A. Mttee and A. Httra, Adv. Synth. Catal., 2013, 355, 1065 CrossRef CAS.
  10. H. Yan, S. Yang, X. Gao, K. Zhou, C. Ma, R. Yan and G. Huang, Synlett, 2012, 23, 2961 CrossRef CAS PubMed.
  11. R. Yan, H. Yan, C. Ma, Z. Ren, X. Gao, G. Huang and Y. Liang, J. Org. Chem., 2012, 77, 2024 CrossRef CAS PubMed.
  12. P. B. Jagadhane and V. N. Telvekar, Synthesis, 2014, 25, 2636 CAS.
  13. H. Yan, R. Yan, S. Yang, X. Gao, Y. Wang, G. Huang and Y. Liang, Chem.–Asian J., 2012, 7, 2028 CrossRef CAS PubMed.
  14. (a) M. Bazin, S. Marhadour, A. Tonnerre and P. Marchand, Tetrahedron Lett., 2013, 54, 5378 CrossRef CAS PubMed; (b) L. Arias, H. Salgado-Zamora, H. Cerantes, E. Campos, A. Reyes and E. C. Taylor, J. Heterocycl. Chem., 2006, 43, 565 CrossRef CAS; (c) H. S. Zamora, B. Rizo, E. Campos, R. Jiménez and A. Reyes, J. Heterocycl. Chem., 2004, 41, 91 CrossRef CAS.
  15. (a) A. Kariya, T. Yamaguchi, T. Nobuta, N. Tada, T. Miura and A. Itoh, RSC Adv., 2014, 4, 13191–13194 RSC; (b) T. Nobuta, A. Fujiya, T. Yamaguchi, N. Tada, T. Miura and A. Itoh, RSC Adv., 2013, 3, 10189–10192 RSC; (c) T. Nobuta, A. Fujiya, N. Tada, T. Miura and A. Itoh, Synlett, 2012, 23, 2975–2979 CrossRef CAS PubMed; (d) N. Tada, T. Ishigami, L. Cui, K. Ban, T. Miura and A. Itoh, Tetrahedron Lett., 2013, 54, 256–258 CrossRef CAS PubMed; (e) N. Tada, M. Shomura, L. Cui, T. Nobuta, T. Miura and A. Itoh, Synlett, 2011, 2896–2900 CAS; (f) T. Nobuta, S. Hirashima, N. Tada, T. Miura and A. Itoh, Org. Lett., 2011, 13, 2576 CrossRef CAS PubMed; (g) N. Kanai, H. Nakayama, N. Tada and A. Itoh, Org. Lett., 2010, 12, 1948 CrossRef CAS PubMed; (h) T. Nobuta, S. Hirashima, N. Tada, T. Miura and A. Itoh, Synlett, 2010, 2335 CAS; (i) H. Nakayama and A. Itoh, Tetrahedron Lett., 2007, 48, 1131 CrossRef CAS PubMed; (j) H. Nakayama and A. Itoh, Chem. Pharm. Bull., 2006, 54, 1620 CrossRef CAS.
  16. T. Nobuta, A. Fujiya, A. Kariya, N. Tada, T. Miura and A. Itoh, Org. Lett., 2013, 15, 574 CrossRef CAS PubMed.
  17. Typical procedure (Table 1, entry 14): a solution of trans-β-nitrostyrene (1a) (44.7 mg, 0.3 mmol), 2-aminopyridine (2a) (33.9 mg, 1.2 equiv.), iodine (7.6 mg, 0.1 equiv.), and 35% aq H2O2 (106 μL, 1.2 mmol) in DMSO (3 mL) in a pyrex test tube was stirred under air at 70 °C for 20 h. The reaction mixture was washed with aq Na2S2O3 and H2O, and extracted with EtOAc. Organic layer was dried over MgSO4, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (hexane[thin space (1/6-em)]:[thin space (1/6-em)]EtOAc = 2[thin space (1/6-em)]:[thin space (1/6-em)]1) provided 3-nitro-2-phenylimidazo[1,2-a]pyridine (3a) (54 mg, 75%).
  18. (a) J. Pavlinac, M. Zupan and S. Stavber, Org. Biomol. Chem., 2007, 5, 699 RSC; (b) J. Pavlinac, M. Zupan and S. Stavber, J. Org. Chem., 2006, 71, 1027 CrossRef CAS PubMed; (c) J. Pavlinac, M. Zupan and S. Stavber, Synthesis, 2006, 2603 CAS; (d) M. Jereb, M. Zupan and S. Stavber, Chem. Commun., 2004, 2614 RSC; (e) K. Omura, J. Org. Chem., 1996, 61, 2006 CrossRef CAS; (f) H. Ohta, T. Motoyama, T. Ura, Y. Ishii and M. Ogawa, J. Org. Chem., 1989, 54, 1668 CrossRef CAS.
  19. (a) I. Lengyel, I. R. Epstein and K. Kustin, Inorg. Chem., 1993, 32, 5880 CrossRef CAS; (b) I. Barnes, K. H. Bedker and J. Starcke, Chem. Phys. Lett., 1992, 196, 578 CrossRef CAS; (c) J. Paquette and B. L. Ford, Can. J. Chem., 1985, 63, 2444 CrossRef CAS; (d) M. Uyanik, H. Hayashi and K. Ishihara, Science, 2014, 345, 291 CrossRef CAS PubMed.
  20. For iodoamination, see: (a) K. Miyamoto, O. Morikawa and H. Konishi, Bull. Chem. Soc. Jpn., 2005, 78, 886 CrossRef; (b) O. Kitagawa and T. Taguchi, Synlett, 1999, 1191 CrossRef CAS PubMed; (c) Y. Cai, X. Liu, J. Li, W. Chen, W. Wang, L. Lin and X. Feng, Chem.–Eur. J, 2011, 17, 14916 CrossRef CAS PubMed.
  21. For oxidative aromatization by iodine, see: (a) C. Zhu and Y. Wei, ChemSusChem, 2011, 4, 1082 CrossRef CAS PubMed; (b) B. Maleki and H. Veisi, Bull. Korean Chem. Soc., 2011, 32, 4366 CrossRef CAS; (c) J. S. Yadav, B. V. S. Reddy, G. Sabitha and G. S. K. K. Reddy, Synthesis, 2000, 1532 CrossRef CAS PubMed; (d) M. Filipan-Litvic, M. Litvic and V. Vinkovic, Tetrahedron, 2008, 64, 5649 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra14970j

This journal is © The Royal Society of Chemistry 2015