Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In most instances, modulation of the π-conjugation length in polymer molecules is obtained through a linear (1D) extension of the polymer backbone. To date, very limited studies have been reported about the effect of the two-dimensional (2D) π-conjugation extension on the charge-transporting properties of polymer semiconductors. In this study, a 2D π-extended heteroacene, alkyl-substituted tetrathienoanthracene (TTB) moiety, is used to design and synthesize a class of novel polymer semiconductors for solution-processable organic field-effect transistor (OFET) applications for the first time. Three novel TTB-based alternating copolymers (PTTB-2T, PTTB-TT, and PTTB-BZ) are synthesized via Pd(0)-catalyzed Stille or Suzuki cross-coupling reactions, affording high weight-average molecular weights of 61.1–78.5 kDa. The thermal stabilities, optical properties, and energy levels, and charge transport properties of the three TTB-based alternating copolymers have been successfully tuned by copolymerization with bithiophene (2T), thienothiophene (TT), and benzothiadiazole (BZ) derivatives. The results indicate that, even with their highly extended π-framework, all the TTB-containing polymers show good solubility in most common solvents and fairly good environmental stability of their highest occupied molecular orbitals (HOMOs) ranging from −5.15 to −5.28 eV. Among the three TTB-based alternating copolymers, the PTTB-BZ thin film exhibits the best OFET performance with the highest hole mobility of 0.15 cm2 V−1 s−1 in ambient air. It can be attributed to the combinations of highly coplanar polymer backbones and strong D–A interactions between TTB donor units and BZ acceptor units, therefore leading to a compact solid-state packing, uniform fiber-like morphology, and a large polycrystalline grain associated with high hole mobility. These results demonstrate that our molecular design strategy for high-performance polymer semiconductors is highly promising.

Graphical abstract: Synthesis, characterization, and field-effect transistor properties of tetrathienoanthracene-based copolymers using a two-dimensional π-conjugation extension strategy: a potential building block for high-mobility polymer semiconductors

Page: ^ Top