Aiichiro
Nagaki
,
Yuta
Tsuchihashi
,
Suguru
Haraki
and
Jun-ichi
Yoshida
*
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. E-mail: yoshida@sbchem.kyoto-u.ac.jp
First published on 9th June 2015
Reductive lithiation of benzyl halides bearing aldehyde carbonyl groups followed by reaction with subsequently added electrophiles was successfully accomplished without affecting the carbonyl groups by taking advantage of short residence times in flow microreactors.
We first examined the generation of simple benzyllithiums by reductive lithiation13 of benzyl halides (Fig. 1). This reaction is problematic because of Wurtz-type coupling, i.e. the coupling of benzyllithiums with starting benzyl halides. It was reported that benzyllithium can be generated from benzyl chloride by using lithium naphthalenide (LiNp) in a mixed solvent (Et2O/THF/light petroleum = 4:
3
:
1) at −95 °C in a conventional batch reactor.9a However, the reaction in THF and/or at higher temperatures such as −78 °C leads to a dramatic decrease in the yield because of Wurtz-type coupling. We envisioned that extremely fast micromixing is effective to avoid undesired Wurtz-type coupling because it is known that the product selectivity of fast consecutive competitive reactions14 can be dramatically improved by extremely fast micromixing.15 Thus, we examined the reactions of benzyl halides with LiNp in a flow microreactor system, which consists of two T-shaped micromixers M1 (ϕ = 250 μm) and M2 (ϕ = 250 μm) and two microtube reactors R1 (ϕ = 1000 μm, length = 3.5 cm and R2 (ϕ = 1000 μm, length = 50 cm) (see the ESI† for details). For the reactions with very short residence times such as 1.3 ms, a built-in type system as shown in Fig. 2a (R1: ϕ = 250 μm, length = 1.0 cm) was used, whereas a conventional modular type system was used for the reactions with longer residence times (Fig. 2b).
Because it is well known that the mixing speed in a micromixer depends on the inner diameter and the flow rate,16 we examined the reactions by varying the inner diameter of M1 and the flow rates of the solution of benzyl halide and LiNp. The 1:
1 molar ratio of benzyl halide and LiNp was maintained in all experiments. Methanol was used as an electrophile and the reactions were carried out at 20 °C using a conventional modular type system (Fig. 2b). As summarized in Table 1, the yield of the desired protonated product, toluene, increased with a decrease in the inner diameter. The yield also increased with an increase in the flow rate. Satisfactory yields were obtained with M1 of 250 μm inner diameter and the total flow rate of 9.0 mL min−1 in the case of benzyl chloride. In the case of benzyl bromide, a higher flow rate was necessary to obtain satisfactory yields, presumably benzyl bromide is more reactive toward benzyllithium than benzyl chloride. Anyway, it is noteworthy that the flow microreactor system enables the generation of benzyllithium at 20 °C, although the reactions should be carried out at −95 °C in a conventional batch macro reactor. It is also advantageous that THF can be used instead of the mixed solvent. Furthermore, benzyl bromide can be used as a starting material, although such transformation is impossible in a conventional batch macro reactor. These remarkable features seem to be ascribed to the extremely fast micromixing of benzyl halide and LiNp at 1
:
1 molar ratio.
X | Flow rate (mL min−1) | Inner diameter of M1 (μm) | Yieldb (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Benzyl halide | LiNp | Total | Toluene | Bibenzyl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a R1: ϕ = 250 μm, L = 3.5 cm, 20 °C. b Determined by GC using an internal standard. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cl | 6.0 | 3.0 | 9.0 | 500 | 70 | 13 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.0 | 3.0 | 9.0 | 250 | 89 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3.0 | 1.5 | 4.5 | 250 | 81 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Br | 6.0 | 3.0 | 9.0 | 800 | 15 | 29 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.0 | 3.0 | 9.0 | 500 | 38 | 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.0 | 3.0 | 9.0 | 250 | 77 | 10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | 6.0 | 18 | 250 | 80 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3.0 | 1.5 | 4.5 | 250 | 49 | 24 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.5 | 0.75 | 2.25 | 250 | 39 | 30 |
Under the optimized conditions, the reactions of benzyllithium with other electrophiles, such as methyl iodide, aldehydes, ketones, trimethylsilyl chloride, and isocyanates, were examined. As shown in Table 2, the corresponding products were obtained in good yields. Notably, the lithiation of 2-(chloromethyl)thiophene followed by the reaction with an electrophile was successfully carried out without ring-opening, although conventional batch reactions often suffer from this side reaction.17 The productivity of the present method is high enough for laboratory synthesis. In the case of the reaction of benzyllithium with benzophenone, a 15 min operation gave 1.09 g of the desired product (see the ESI† for details).
Benzyl halides | Electrophile | Product | Yieldb (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a R1: ϕ = 250 μm, L = 3.5 cm, 20 °C. Benzyl chloride: total flow rate = 9 ml min−1. Benzyl bromide, 2-(chloromethyl)thiophene: flow rate of benzyl halide = 18 ml min−1. b Isolated yield. c Determined by GC using an internal standard. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
MeOH |
![]() |
89c | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mel |
![]() |
82c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(CH3)2CO |
![]() |
42c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ph2CO |
![]() |
93 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Me3SiCl |
![]() |
80c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
MeOH |
![]() |
80c | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mel |
![]() |
82c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
75 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ph2CO |
![]() |
71 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
MeOH |
![]() |
97c | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mel |
![]() |
72c |
With the successful generation of benzyllithiums by virtue of extremely fast micromixing in hand, we next examined the generation and reactions of benzyllithiums bearing carbonyl groups. In this case the high-resolution residence time control is critical because such benzyllithiums should be transferred extremely quickly to another location to be used in the reaction with electrophiles before they decompose. Temperature–residence time mapping serves as a powerful tool for optimizing the residence time. Fig. 3a shows the contour plots with scattered overlay of the yields of the protonated product for the lithiation of p-propanoylbenzyl chloride, which has a ketone carbonyl group, followed by trapping with methanol. The yield decreases with an increase in the residence time in R1. The yield also decreases with an increase in the temperature although the effect of the temperature is not large. The optimal yield (80%) was obtained with the residence time of 1.3 ms at −78 °C.
The effects of the residence time and the temperature are more significant in the lithiation of p-formylbenzyl chloride, which has an aldehyde carbonyl group (Fig. 3b). As can be seen obviously by comparing Fig. 3a and b, p-formylbenzyllithium is significantly less stable than p-propanoylbenzyllithium. With the residence time of 1.3 ms at −78 °C, however, p-formylbenzyllithium can be generated and used in the subsequent reaction with methanol to give the protonated product in a reasonable yield (68%). This means that the aldehyde carbonyl group can survive in the organolithium reaction.
Under the optimized conditions several benzyllithiums bearing ketone and aldehyde carbonyl groups were generated and reacted with several electrophiles including phenylisocyanate, benzaldehyde, TMSOTf, and MeOTf. The results are summarized in Table 3. Such transformations are very difficult or practically impossible by using conventional batch macro reactors.
Benzyl halides | Electrophile | Product | Yieldb (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a R1: ϕ = 250 μm, L = 1.0 cm, −78 °C.
b Isolated yield.
c Determined by GC.
d Diastereomeric ratio = 88![]() ![]() ![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhNCO |
![]() |
78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
88 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhNCO |
![]() |
60 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
64 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Me3SiOTf |
![]() |
68 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
67 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
89 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhNCO |
![]() |
77 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PhCHO |
![]() |
83 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
85 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MeOTf |
![]() |
41c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
55 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Me3SiOTf |
![]() |
58 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
59d | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
76e | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
PhCHO |
![]() |
77 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
72 |
As an application of the present method, we accomplished the synthesis of a π-conjugated system as shown in Fig. 4. The reaction of benzaldehyde with (5-formylthiophen-2-yl)methyllithium followed by elimination with bis[α,α-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur (Martin sulfurane) gave aldehyde 1 in 61% isolated yield. The aldehyde carbonyl group in 1 was used for subsequent reaction with benzyllithium. The subsequent dehydration gave compound 2 (78% isolated yield), in which one thiophene ring and two benzene rings are connected by carbon–carbon double bonds.18
In conclusion, flash chemistry using flow microreactor systems enables the generation and reactions of benzyllithiums bearing aldehyde carbonyl groups. Extremely fast micromixing is responsible for the generation of benzyllithiums avoiding Wurtz-type coupling, and high-resolution residence time control is responsible for survival of aldehyde carbonyl groups. The present findings open a new aspect of protecting-group-free19 organolithium chemistry.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ob00958h |
This journal is © The Royal Society of Chemistry 2015 |