 Open Access Article
 Open Access Article
      
        
          
            Ryosuke 
            Takechi
          
        
       and 
      
        
          
            Takahiro 
            Nishimura
          
        
      *
      
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. E-mail: tnishi@kuchem.kyoto-u.ac.jp
    
First published on 18th March 2015
Rhodium/chiral diene complex-catalyzed asymmetric addition of arylboronic acids to cyclic ketimines having an ester group proceeded to give the corresponding α-amino acid derivatives in high yields with high enantioselectivity. The cyclic amino acid derivative was transformed into a linear α,α-diaryl-substituted α-N-methylamino acid ester.
![[double bond, length as m-dash]](https://www.rsc.org/images/entities/char_e001.gif) N bond is selectively differentiated without an influence of the isomerization.6,7 For example, the rhodium-catalyzed asymmetric arylation of diaryl-substituted cyclic ketimines has been reported by us in 20126a and Xu in 2013.7a Asymmetric alkenylation and allylation were also reported by Lam and co-workers.8 Recently, Pd-catalyzed asymmetric addition of arylboronic acids to the same types of cyclic N-sulfonyl ketimines was reported.9,10
N bond is selectively differentiated without an influence of the isomerization.6,7 For example, the rhodium-catalyzed asymmetric arylation of diaryl-substituted cyclic ketimines has been reported by us in 20126a and Xu in 2013.7a Asymmetric alkenylation and allylation were also reported by Lam and co-workers.8 Recently, Pd-catalyzed asymmetric addition of arylboronic acids to the same types of cyclic N-sulfonyl ketimines was reported.9,10
      α,α-Disubstituted α-amino acids have been focused on as non-proteinogenic amino acids in medicinal chemistry, and the stereoselective synthesis giving α,α-dialkyl and α,α-alkyl-aryl substituted α-amino acid derivatives has been developed.11 We were interested in the development of general synthetic methods for chiral α,α-diaryl-substituted amino acid derivatives in an enantioselective manner. Although it was reported that rhodium can catalyze the asymmetric addition of arylboronic acids to five-membered cyclic N-sulfonyl ketimines substituted with an ester group to give α,α-diaryl-substituted amino acid derivatives,7a the transformation of the cyclic structure to the linear α-amino acid derivatives has not been achieved probably due to the difficulty of cleavage of the cyclic structure. Our approach leading to chiral α,α-diaryl-α-amino acid derivatives is the asymmetric arylation of cyclic ketimines giving benzosulfamidates and the subsequent breaking the cyclic structure (Scheme 1). Here we report that the rhodium/chiral diene complex can catalyze the asymmetric addition of arylboronic acids to cyclic aromatic ketimines having an ester group to give the corresponding α-amino acid derivatives in high yields with high enantioselectivity.12 The cyclic amino acid derivative was successfully transformed into a linear α,α-diaryl-α-N-methylamino acid ester by reductive cleavage of a carbon–oxygen bond constituting the cyclic structure.
![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 15 efficiently catalyzed the present reaction to give a 92% yield of 3aa, but the enantioselectivity was modest (61% ee; entry 7). The reaction in the presence of [Rh(OH)((S,S)-Bn-tfb*)]2 using 2 equiv. of phenylboronic acid (2a) proceeded as well to give 3aa in 99% yield with 96% ee within 3 h (entry 8).
15 efficiently catalyzed the present reaction to give a 92% yield of 3aa, but the enantioselectivity was modest (61% ee; entry 7). The reaction in the presence of [Rh(OH)((S,S)-Bn-tfb*)]2 using 2 equiv. of phenylboronic acid (2a) proceeded as well to give 3aa in 99% yield with 96% ee within 3 h (entry 8).|  | (1) | 
| Entry | Rh catalyst | Yieldb (%) | eec (%) | 
|---|---|---|---|
| a Reaction conditions: 1a (0.10 mmol), PhB(OH)2 (0.30 mmol), and Rh catalyst (3 mol% of Rh) in 1,4-dioxane (0.4 mL) at 60 °C for 12 h. b Isolated yields. c Determined by chiral HPLC analysis. d 5 mol% of Rh was used. e K3PO4 (1 equiv.). f Performed with 2 equiv. of PhB(OH)2 (2a, 0.20 mmol) for 3 h. | |||
| 1 | [Rh(OH)(cod)]2 ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) d | 99 | — | 
| 2 | [RhCl(cod)]2/K3PO4 ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) d,e | 67 | — | 
| 3 | [Rh(OH)((S,S)-Fc-tfb*)]2 | 34 | 93 | 
| 4 | [Rh(OH)((R,R)-Ph-tfb*)]2 | 73 | 96 | 
| 5 | [Rh(OH)((S,S)-Bn-tfb*)]2 | 99 | 96 | 
| 6 | [RhCl((R)-L1)]2/K3PO4 ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) d | 20 | 96 | 
| 7 | [Rh(OH)((S)-binap)]2 | 92 | 61 | 
| 8f | [Rh(OH)((S,S)-Bn-tfb*)]2 | 99 | 96 | 
The addition of p-tolylboronic acid (2b) to ketimine 1 having ethyl (1a), benzyl (1b), and tert-butyl ester (1c) proceeded to give the corresponding sulfamidates 3ab–3cb in high yields with high enantioselectivity (92–94% ee, eqn (1)). In the reaction of tert-butyl ester 1c, the use of K3PO4 improved the yield of 3cb to avoid the formation of a small amount of an arylated carboxylic acid observed in the absence of the base. We selected the tert-butyl esters as suitable substrates, which are tolerant to a basic condition and are readily transformed into carboxylic acids.
The results obtained for the reaction of ketimine 1 having a tert-butyl ester group with a variety of arylboronic acids 2 are summarized in Table 2. Aryl groups having electron-donating and -withdrawing substituents (2a–2j) were successfully introduced into ketimine 1c with 86–96% ee (entries 1–10). The addition of p-tolylboronic acid (2b) to ketimines 1d–1h possessing methyl, methoxy, and methylenedioxy proceeded to give the corresponding sulfamidates 3db–3hb with high enantioselectivity (93–97% ee, entries 11–15). A slight decrease of the enantioselectivity was observed in the addition to ketimines 1i and 1j substituted with electron-withdrawing groups (F, Cl) at the 6-position (entries 16 and 17).16
| Entry | X | Ar | Yieldb (%) | eec (%) | 
|---|---|---|---|---|
| a Reaction conditions: 1 (0.20 mmol), ArB(OH)2 (0.40 mmol), [Rh(OH)((S,S)-Bn-tfb*)]2 (3 mol% of Rh) and K3PO4 (1 equiv.) in 1,4-dioxane (0.8 mL) at 60 °C. Reaction time: 3 h (entries 1 and 2), 6 h (entries 6, 11–17), 12 h (entries 3–5, 7–10). b Isolated yields. c Determined by chiral HPLC analysis. d Performed with 4 equiv. of 2b and 2 equiv. of K3PO4. | ||||
| 1 | H (1c) | Ph (2a) | 98 (3ca) | 96 | 
| 2 | H (1c) | 4-MeC6H4 (2b) | 99 (3cb) | 94 | 
| 3 | H (1c) | 4-MeOC6H4 (2c) | 96 (3cc) | 86 | 
| 4 | H (1c) | 3,4-(OCH2O)C6H3 (2d) | 93 (3cd) | 94 | 
| 5 | H (1c) | 3,4,5-(MeO)3C6H2 (2e) | 94 (3ce) | 86 | 
| 6 | H (1c) | 4-FC6H4 (2f) | 95 (3cf) | 94 | 
| 7 | H (1c) | 4-ClC6H4 (2g) | 95 (3cg) | 95 | 
| 8 | H (1c) | 4-BrC6H4 (2h) | 97 (3ch) | 94 | 
| 9 | H (1c) | 4-CF3C6H4 (2i) | 96 (3ci) | 94 | 
| 10 | H (1c) | 2-Naphthyl (2j) | 96 (3cj) | 95 | 
| 11 | 8-Me (1d) | 4-MeC6H4 (2b) | 94 (3db) | 94 | 
| 12 | 7-Me (1e) | 4-MeC6H4 (2b) | 93 (3eb) | 96 | 
| 13 | 6-Me (1f) | 4-MeC6H4 (2b) | 95 (3fb) | 93 | 
| 14 | 6-MeO (1g) | 4-MeC6H4 (2b) | 99 (3gb) | 93 | 
| 15d | 5,6-(OCH2O) (1h) | 4-MeC6H4 (2b) | 84 (3hb) | 97 | 
| 16 | 6-F (1i) | 4-MeC6H4 (2b) | 95 (3ib) | 83 | 
| 17 | 6-Cl (1j) | 4-MeC6H4 (2b) | 99 (3jb) | 84 | 
The reductive cleavage of the O–S bond of benzosulfamidates by LiAlH4 has been reported, where 2-(aminomethyl)phenols are formed.6a,9b On the other hand, nickel-catalyzed cross-coupling of benzosulfamidates with phenylboronic acid was reported to give ortho-phenylated product involving the cleavage of the C–O bond.8a,17 A nickel catalysis using alkylmagnesium reagents was also reported by Du Bois and co-workers,18 but the catalytic systems are not applicable to the benzosulfamidates having tetra-substituted α-carbon of the amino group. After screening and modifying the reported catalytic conditions18 to cleave a C–O bond of the benzosulfamidate formed in the present arylation, it was found that the reductive cleavage of the C–O bond proceeds using diethylzinc as a reducing reagent to give a linear α,α-diaryl-α-amino acid derivative (eqn (2)). Thus, introduction of a methyl group on the nitrogen atom of 3cb (94% ee) followed by reductive cleavage of the C–O bond by use of diethylzinc in the presence of NiCl2(dippe) in N,N-dimethylacetamide (DMA) at 100 °C for 24 h gave α,α-diaryl-α-N-methylamino acid ester 4 in 70% yield in two steps without loss of the enantiomeric purity.
|  | (2) | 
1,4-Dioxane was purified by passing through a neutral alumina column under N2. Rhodium complexes, [RhCl(cod)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 19 (CAS: 12092-47-6), [Rh(OH)(cod)]2
19 (CAS: 12092-47-6), [Rh(OH)(cod)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20 (CAS: 73468-85-6), [Rh(OH)((S)-binap)]2
20 (CAS: 73468-85-6), [Rh(OH)((S)-binap)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 15 (CAS: 805323-12-0 for (R)-complex), [Rh(OH)((S,S)-Bn-tfb*)]2
15 (CAS: 805323-12-0 for (R)-complex), [Rh(OH)((S,S)-Bn-tfb*)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 13b (CAS: 1204591-09-2), [Rh(OH)((R,R)-Ph-tfb*)]2
13b (CAS: 1204591-09-2), [Rh(OH)((R,R)-Ph-tfb*)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 21 (CAS: 1235989-05-5), and [Rh(OH)((S,S)-Fc-tfb*)]2
21 (CAS: 1235989-05-5), and [Rh(OH)((S,S)-Fc-tfb*)]2![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 22 (CAS: 1204591-10-5) were prepared according to the reported procedures.
22 (CAS: 1204591-10-5) were prepared according to the reported procedures.
A diene ligand L16a (CAS: 1365284-85-0) were prepared according to the reported procedures. Ketimines were prepared as shown in the ESI.† All other chemicals were purchased from commercial suppliers and used as received.
![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 3aa. The ee of 3aa was determined by chiral HPLC (Daicel Chiralpak AD-H).
1) to give 3aa. The ee of 3aa was determined by chiral HPLC (Daicel Chiralpak AD-H).
      
      
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 3. The ee of 3 was determined by chiral HPLC.
1) to give 3. The ee of 3 was determined by chiral HPLC.
      
      
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 3.
1) to give 3.
      
      
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 3.
1) to give 3.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 14.9 min (R), t2 = 18.9 min (S)); [α]20D −45 (c 0.82, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.28 (t, J = 7.1 Hz, 3H), 4.32–4.41 (m, 2H), 6.45 (s, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.21–7.26 (m, 3H), 7.34–7.38 (m, 3H), 7.43 (td, J = 8.1, 1.4 Hz, 1H), 7.51 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 13.8, 64.1, 76.8, 118.9, 119.7, 124.9, 127.5, 128.5, 128.9, 130.5, 130.8, 139.3, 151.1, 170.0. HRMS (ESI) calcd for C16H15NNaO5S (M + Na)+ 356.0563, found 356.0564.
20, flow 0.5 mL min−1, 254 nm, t1 = 14.9 min (R), t2 = 18.9 min (S)); [α]20D −45 (c 0.82, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.28 (t, J = 7.1 Hz, 3H), 4.32–4.41 (m, 2H), 6.45 (s, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.21–7.26 (m, 3H), 7.34–7.38 (m, 3H), 7.43 (td, J = 8.1, 1.4 Hz, 1H), 7.51 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 13.8, 64.1, 76.8, 118.9, 119.7, 124.9, 127.5, 128.5, 128.9, 130.5, 130.8, 139.3, 151.1, 170.0. HRMS (ESI) calcd for C16H15NNaO5S (M + Na)+ 356.0563, found 356.0564.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 16.5 min (R), t2 = 21.7 min (S)); [α]20D −40 (c 0.69, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.28 (t, J = 6.8 Hz, 3H), 2.35 (s, 3H), 4.32–4.41 (m, 2H), 6.41 (s, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.22 (td, J = 8.1, 1.4 Hz, 1H), 7.42 (td, J = 8.1, 2.0 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 13.8, 21.1, 64.0, 71.0, 119.2, 119.6, 124.8, 127.5, 129.2, 130.5, 130.7, 134.0, 136.5, 138.9, 151.0, 170.1. HRMS (ESI) calcd for C17H17NNaO5S (M + Na)+ 370.0720, found 370.0714.
20, flow 0.5 mL min−1, 254 nm, t1 = 16.5 min (R), t2 = 21.7 min (S)); [α]20D −40 (c 0.69, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.28 (t, J = 6.8 Hz, 3H), 2.35 (s, 3H), 4.32–4.41 (m, 2H), 6.41 (s, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.22 (td, J = 8.1, 1.4 Hz, 1H), 7.42 (td, J = 8.1, 2.0 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 13.8, 21.1, 64.0, 71.0, 119.2, 119.6, 124.8, 127.5, 129.2, 130.5, 130.7, 134.0, 136.5, 138.9, 151.0, 170.1. HRMS (ESI) calcd for C17H17NNaO5S (M + Na)+ 370.0720, found 370.0714.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 21.0 min (R), t2 = 27.7 min (S)); [α]20D −41 (c 0.88, CHCl3) for 92% ee (S). 1H NMR (CDCl3) δ 2.34 (s, 3H), 5.29 (d, J = 12.2 Hz, 1H), 5.32 (d, J = 12.2 Hz, 1H), 6.35 (s, 1H), 7.06 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.13 (t, J = 7.3 Hz, 2H), 7.23–7.27 (m, 2H), 7.31–7.36 (m, 3H), 7.38–7.43 (m, 2H); 13C NMR (CDCl3) δ 21.1, 69.4, 71.1, 119.2, 119.5, 124.8, 127.4, 128.57, 128.63, 128.9, 129.2, 130.67, 130.69, 134.0, 136.3, 139.0, 150.9, 169.9. HRMS (ESI) calcd for C22H19NNaO5S (M + Na)+ 432.0876, found 432.0867.
20, flow 0.5 mL min−1, 254 nm, t1 = 21.0 min (R), t2 = 27.7 min (S)); [α]20D −41 (c 0.88, CHCl3) for 92% ee (S). 1H NMR (CDCl3) δ 2.34 (s, 3H), 5.29 (d, J = 12.2 Hz, 1H), 5.32 (d, J = 12.2 Hz, 1H), 6.35 (s, 1H), 7.06 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.13 (t, J = 7.3 Hz, 2H), 7.23–7.27 (m, 2H), 7.31–7.36 (m, 3H), 7.38–7.43 (m, 2H); 13C NMR (CDCl3) δ 21.1, 69.4, 71.1, 119.2, 119.5, 124.8, 127.4, 128.57, 128.63, 128.9, 129.2, 130.67, 130.69, 134.0, 136.3, 139.0, 150.9, 169.9. HRMS (ESI) calcd for C22H19NNaO5S (M + Na)+ 432.0876, found 432.0867.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 14.0 min (S), t2 = 22.4 min (R)); [α]20D −30 (c 0.61, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 2.35 (s, 3H), 6.41 (s, 1H), 7.10–7.16 (m, 5H), 7.21 (td, J = 7.5, 1.4 Hz, 1H), 7.41 (td, J = 7.8, 2.1 Hz, 1H), 7.49 (dd, J = 7.5, 2.1 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 71.1, 85.7, 119.5, 124.6, 127.4, 129.1, 130.5, 130.6, 137.0, 138.5, 151.0, 168.8. HRMS (ESI) calcd for C19H21NNaO5S (M + Na)+ 398.1033, found 398.1024.
20, flow 0.5 mL min−1, 254 nm, t1 = 14.0 min (S), t2 = 22.4 min (R)); [α]20D −30 (c 0.61, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 2.35 (s, 3H), 6.41 (s, 1H), 7.10–7.16 (m, 5H), 7.21 (td, J = 7.5, 1.4 Hz, 1H), 7.41 (td, J = 7.8, 2.1 Hz, 1H), 7.49 (dd, J = 7.5, 2.1 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 71.1, 85.7, 119.5, 124.6, 127.4, 129.1, 130.5, 130.6, 137.0, 138.5, 151.0, 168.8. HRMS (ESI) calcd for C19H21NNaO5S (M + Na)+ 398.1033, found 398.1024.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 13.9 min (S), t2 = 21.7 min (R)); [α]20D −29 (c 1.13, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 6.45 (s, 1H), 7.13 (dd, J = 8.9 Hz, 1H), 7.02–7.29 (m, 3H), 7.32–7.39 (m, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 71.2, 85.8, 119.2, 119.6, 124.6, 127.5, 128.4, 128.6, 130.5, 130.6, 139.9, 151.1, 168.7. HRMS (ESI) calcd for C18H19NNaO5S (M + Na)+ 384.0876, found 384.0870.
20, flow 0.5 mL min−1, 254 nm, t1 = 13.9 min (S), t2 = 21.7 min (R)); [α]20D −29 (c 1.13, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 6.45 (s, 1H), 7.13 (dd, J = 8.9 Hz, 1H), 7.02–7.29 (m, 3H), 7.32–7.39 (m, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 71.2, 85.8, 119.2, 119.6, 124.6, 127.5, 128.4, 128.6, 130.5, 130.6, 139.9, 151.1, 168.7. HRMS (ESI) calcd for C18H19NNaO5S (M + Na)+ 384.0876, found 384.0870.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 16.0 min (S), t2 = 24.1 min (S)); [α]20D −26 (c 1.06, CHCl3) for 86% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 3.80 (s, 3H), 6.41 (s, 1H), 6.85 (d, J = 8.9 Hz, 2H), 7.12 (dd, J = 8.1, 1.4 Hz, 1H), 7.15 (d, J = 8.9 Hz, 2H), 7.21 (td, J = 8.1, 1.4 Hz, 1H), 7.41 (td, J = 8.1, 1.4 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 55.2, 71.0, 85.7, 113.7, 119.57, 119.63, 124.6, 128.8, 130.5, 130.6, 132.0, 151.0, 159.6, 168.8. HRMS (ESI) calcd for C19H21NNaO6S (M + Na)+ 414.0982, found 414.0979.
20, flow 0.5 mL min−1, 254 nm, t1 = 16.0 min (S), t2 = 24.1 min (S)); [α]20D −26 (c 1.06, CHCl3) for 86% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 3.80 (s, 3H), 6.41 (s, 1H), 6.85 (d, J = 8.9 Hz, 2H), 7.12 (dd, J = 8.1, 1.4 Hz, 1H), 7.15 (d, J = 8.9 Hz, 2H), 7.21 (td, J = 8.1, 1.4 Hz, 1H), 7.41 (td, J = 8.1, 1.4 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 55.2, 71.0, 85.7, 113.7, 119.57, 119.63, 124.6, 128.8, 130.5, 130.6, 132.0, 151.0, 159.6, 168.8. HRMS (ESI) calcd for C19H21NNaO6S (M + Na)+ 414.0982, found 414.0979.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 20.1 min (S), t2 = 28.4 min (R)); [α]20D −33 (c 0.94, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 5.97 (d, J = 1.4 Hz, 1H), 5.98 (d, J = 1.4 Hz, 1H), 6.42 (s, 1H), 6.68–6.75 (m, 3H), 7.11 (dd, J = 8.1, 1.4 Hz, 1H), 7.22 (td, J = 7.5, 1.4 Hz, 1H), 7.42 (td, J = 7.8, 1.4 Hz, 1H), 7.53 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 71.0, 85.9, 101.5, 107.8, 108.1, 119.2, 119.6, 121.4, 124.7, 130.3, 130.7, 133.7, 147.80, 147.83, 151.0, 168.6. HRMS (ESI) calcd for C19H19NNaO7S (M + Na)+ 428.0774, found 428.0768.
20, flow 0.5 mL min−1, 254 nm, t1 = 20.1 min (S), t2 = 28.4 min (R)); [α]20D −33 (c 0.94, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 5.97 (d, J = 1.4 Hz, 1H), 5.98 (d, J = 1.4 Hz, 1H), 6.42 (s, 1H), 6.68–6.75 (m, 3H), 7.11 (dd, J = 8.1, 1.4 Hz, 1H), 7.22 (td, J = 7.5, 1.4 Hz, 1H), 7.42 (td, J = 7.8, 1.4 Hz, 1H), 7.53 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 71.0, 85.9, 101.5, 107.8, 108.1, 119.2, 119.6, 121.4, 124.7, 130.3, 130.7, 133.7, 147.80, 147.83, 151.0, 168.6. HRMS (ESI) calcd for C19H19NNaO7S (M + Na)+ 428.0774, found 428.0768.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 28.6 min (R)); [α]20D −9 (c 0.94, CHCl3) for 85% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 3.75 (s, 6H), 3.85 (s, 3H), 6.40 (s, 1H), 6.48 (s, 2H), 7.12 (dd, J = 8.1, 1.4 Hz, 1H), 7.21 (td, J = 8.1, 1.4 Hz, 1H), 7.41 (td, J = 7.8, 1.4 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 56.1, 60.8, 71.3, 85.7, 119.5, 119.6, 124.6, 130.7, 130.8, 135.2, 138.2, 150.8, 153.0, 168.5. HRMS (ESI) calcd for C21H25NNaO8S (M + Na)+ 474.1193, found 474.1187.
20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 28.6 min (R)); [α]20D −9 (c 0.94, CHCl3) for 85% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 3.75 (s, 6H), 3.85 (s, 3H), 6.40 (s, 1H), 6.48 (s, 2H), 7.12 (dd, J = 8.1, 1.4 Hz, 1H), 7.21 (td, J = 8.1, 1.4 Hz, 1H), 7.41 (td, J = 7.8, 1.4 Hz, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 56.1, 60.8, 71.3, 85.7, 119.5, 119.6, 124.6, 130.7, 130.8, 135.2, 138.2, 150.8, 153.0, 168.5. HRMS (ESI) calcd for C21H25NNaO8S (M + Na)+ 474.1193, found 474.1187.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 11.9 min (S), t2 = 17.1 min (R)); [α]20D −53 (c 1.09, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 6.50 (s, 1H), 7.02 (t, J = 8.5 Hz, 2H), 7.14 (dd, J = 8.1, 1.4 Hz, 1H), 7.19–7.26 (m, 3H), 7.44 (dt, J = 7.8, 1.4 Hz, 1H), 7.53 (dd, J = 8.1, 2.1 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.6, 86.2, 105.0, 115.3 (d, JF–C = 21 Hz), 118.7, 119.9, 124.8, 129.5 (d, JF–C = 9 Hz), 129.9, 130.9, 135.7, 151.2, 162.5 (d, JF–C = 247 Hz), 168.5. HRMS (ESI) calcd for C18H18FNNaO5S (M + Na)+ 402.0782, found 402.0776.
20, flow 0.5 mL min−1, 254 nm, t1 = 11.9 min (S), t2 = 17.1 min (R)); [α]20D −53 (c 1.09, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 6.50 (s, 1H), 7.02 (t, J = 8.5 Hz, 2H), 7.14 (dd, J = 8.1, 1.4 Hz, 1H), 7.19–7.26 (m, 3H), 7.44 (dt, J = 7.8, 1.4 Hz, 1H), 7.53 (dd, J = 8.1, 2.1 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.6, 86.2, 105.0, 115.3 (d, JF–C = 21 Hz), 118.7, 119.9, 124.8, 129.5 (d, JF–C = 9 Hz), 129.9, 130.9, 135.7, 151.2, 162.5 (d, JF–C = 247 Hz), 168.5. HRMS (ESI) calcd for C18H18FNNaO5S (M + Na)+ 402.0782, found 402.0776.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 11.3 min (S), t2 = 14.6 min (R)); [α]20D −48 (c 1.18, CHCl3) for 95% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.53 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 8.6 Hz, 2H), 7.25 (td, J = 7.8, 1.4 Hz, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.45 (dd, J = 7.8, 1.4 Hz, 1H), 7.54 (dd, J = 7.8, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.6, 86.3, 118.3, 119.9, 124.8, 128.5, 128.9, 129.9, 131.0, 134.6, 138.4, 151.2, 168.3. HRMS (ESI) calcd for C18H18ClNNaO5S (M + Na)+ 418.0486, found 418.0481.
20, flow 0.5 mL min−1, 254 nm, t1 = 11.3 min (S), t2 = 14.6 min (R)); [α]20D −48 (c 1.18, CHCl3) for 95% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.53 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 8.6 Hz, 2H), 7.25 (td, J = 7.8, 1.4 Hz, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.45 (dd, J = 7.8, 1.4 Hz, 1H), 7.54 (dd, J = 7.8, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.6, 86.3, 118.3, 119.9, 124.8, 128.5, 128.9, 129.9, 131.0, 134.6, 138.4, 151.2, 168.3. HRMS (ESI) calcd for C18H18ClNNaO5S (M + Na)+ 418.0486, found 418.0481.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 13.9 min (S), t2 = 18.1 min (R)); [α]20D −38 (c 0.70, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.51 (s, 1H), 7.10 (d, J = 8.9 Hz, 2H), 7.17 (dd, J = 8.1, 1.4 Hz, 1H), 7.25 (td, J = 8.1, 1.4 Hz, 1H), 7.45 (td, J = 8.1, 1.4 Hz, 1H), 7.47 (d, J = 8.9 Hz, 2H), 7.53 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.7, 86.4, 118.3, 119.9, 122.9, 124.8, 129.2, 129.8, 131.0, 131.5, 138.9, 151.2, 168.2. HRMS (ESI) calcd for C18H18BrNNaO5S (M + Na)+ 461.9981, found 461.9980.
20, flow 0.5 mL min−1, 254 nm, t1 = 13.9 min (S), t2 = 18.1 min (R)); [α]20D −38 (c 0.70, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.51 (s, 1H), 7.10 (d, J = 8.9 Hz, 2H), 7.17 (dd, J = 8.1, 1.4 Hz, 1H), 7.25 (td, J = 8.1, 1.4 Hz, 1H), 7.45 (td, J = 8.1, 1.4 Hz, 1H), 7.47 (d, J = 8.9 Hz, 2H), 7.53 (dd, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 27.6, 70.7, 86.4, 118.3, 119.9, 122.9, 124.8, 129.2, 129.8, 131.0, 131.5, 138.9, 151.2, 168.2. HRMS (ESI) calcd for C18H18BrNNaO5S (M + Na)+ 461.9981, found 461.9980.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 9.8 min (S), t2 = 11.4 min (R)); [α]20D −60 (c 0.65, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.58 (s, 1H), 7.16 (dd, J = 8.2, 1.4 Hz, 1H), 7.28 (td, J = 8.2, 1.4 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.48 (td, J = 8.1, 1.4 Hz, 1H), 7.56 (dd, J = 8.1, 1.4 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 27.6, 70.7, 86.7, 117.9, 120.1, 123.8 (q, JF–C = 273 Hz), 124.9, 125.3 (q, JF–C = 3 Hz), 128.0, 129.7, 130.7 (q, JF–C = 31 Hz), 131.2, 143.6, 151.4, 168.0. HRMS (ESI) calcd for C19H18F3NNaO5S (M + Na)+ 452.0750, found 452.0744.
20, flow 0.5 mL min−1, 254 nm, t1 = 9.8 min (S), t2 = 11.4 min (R)); [α]20D −60 (c 0.65, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.45 (s, 9H), 6.58 (s, 1H), 7.16 (dd, J = 8.2, 1.4 Hz, 1H), 7.28 (td, J = 8.2, 1.4 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.48 (td, J = 8.1, 1.4 Hz, 1H), 7.56 (dd, J = 8.1, 1.4 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 27.6, 70.7, 86.7, 117.9, 120.1, 123.8 (q, JF–C = 273 Hz), 124.9, 125.3 (q, JF–C = 3 Hz), 128.0, 129.7, 130.7 (q, JF–C = 31 Hz), 131.2, 143.6, 151.4, 168.0. HRMS (ESI) calcd for C19H18F3NNaO5S (M + Na)+ 452.0750, found 452.0744.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 16.4 min (S), t2 = 22.6 min (R)); [α]20D −26 (c 1.05, CHCl3) for 95% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 6.54 (s, 1H), 7.18 (dd, J = 8.2, 1.4 Hz, 1H), 7.26 (td, J = 7.8, 1.4 Hz, 1H), 7.38 (dd, J = 8.9, 2.0 Hz, 1H), 7.44–7.54 (m, 3H), 7.59 (dd, J = 8.1, 1.4 Hz, 1H), 7.63 (d, J = 1.4 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.84 (t, J = 8.9 Hz, 2H); 13C NMR (CDCl3) δ 27.6, 71.4, 86.0, 118.9, 119.8, 124.7, 124.8, 126.5, 126.9, 127.1, 127.6, 128.5, 128.6, 130.5, 130.8, 132.6, 133.0, 137.0, 151.2, 168.7. HRMS (ESI) calcd for C22H21NNaO5S (M + Na)+ 434.1033, found 434.1025.
20, flow 0.5 mL min−1, 254 nm, t1 = 16.4 min (S), t2 = 22.6 min (R)); [α]20D −26 (c 1.05, CHCl3) for 95% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 6.54 (s, 1H), 7.18 (dd, J = 8.2, 1.4 Hz, 1H), 7.26 (td, J = 7.8, 1.4 Hz, 1H), 7.38 (dd, J = 8.9, 2.0 Hz, 1H), 7.44–7.54 (m, 3H), 7.59 (dd, J = 8.1, 1.4 Hz, 1H), 7.63 (d, J = 1.4 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.84 (t, J = 8.9 Hz, 2H); 13C NMR (CDCl3) δ 27.6, 71.4, 86.0, 118.9, 119.8, 124.7, 124.8, 126.5, 126.9, 127.1, 127.6, 128.5, 128.6, 130.5, 130.8, 132.6, 133.0, 137.0, 151.2, 168.7. HRMS (ESI) calcd for C22H21NNaO5S (M + Na)+ 434.1033, found 434.1025.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 12.5 min (S), t2 = 20.2 min (R)); [α]20D −12 (c 0.57, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 2.31 (s, 3H), 2.34 (s, 3H), 6.39 (s, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H), 7.26 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3) δ 15.8, 21.1, 27.6, 71.2, 85.5, 119.5, 123.9, 127.5, 127.9, 128.8, 129.0, 131.9, 137.1, 138.4, 149.5, 168.9. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1186.
20, flow 0.5 mL min−1, 254 nm, t1 = 12.5 min (S), t2 = 20.2 min (R)); [α]20D −12 (c 0.57, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 2.31 (s, 3H), 2.34 (s, 3H), 6.39 (s, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H), 7.26 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3) δ 15.8, 21.1, 27.6, 71.2, 85.5, 119.5, 123.9, 127.5, 127.9, 128.8, 129.0, 131.9, 137.1, 138.4, 149.5, 168.9. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1186.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 20.4 min (R)); [α]20D −15 (c 0.70, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 2.34 (s, 3H), 2.38 (s, 3H), 6.39 (s, 1H), 6.92 (s, 1H), 7.01 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.9 Hz, 2H), 7.13 (d, J = 8.9 Hz, 2H), 7.36 (d, J = 8.2 Hz, 1H); 13C NMR (CDCl3) δ 21.0, 21.1, 27.6, 70.9, 85.5, 116.3, 119.7, 125.6, 127.4, 129.1, 130.2, 137.2, 138.4, 141.3, 150.9, 168.9. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1182.
20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 20.4 min (R)); [α]20D −15 (c 0.70, CHCl3) for 96% ee (S). 1H NMR (CDCl3) δ 1.46 (s, 9H), 2.34 (s, 3H), 2.38 (s, 3H), 6.39 (s, 1H), 6.92 (s, 1H), 7.01 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.9 Hz, 2H), 7.13 (d, J = 8.9 Hz, 2H), 7.36 (d, J = 8.2 Hz, 1H); 13C NMR (CDCl3) δ 21.0, 21.1, 27.6, 70.9, 85.5, 116.3, 119.7, 125.6, 127.4, 129.1, 130.2, 137.2, 138.4, 141.3, 150.9, 168.9. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1182.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 20.5 min (R)); [α]20D −20 (c 1.03, CHCl3) for 93% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 2.32 (s, 3H), 2.35 (s, 3H), 6.39 (s, 1H), 7.00 (d, J = 8.9 Hz, 1H), 7.13 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.9, 1.4 Hz, 1H), 7.28 (d, J = 1.4 Hz, 1H); 13C NMR (CDCl3) δ 20.9, 21.1, 27.6, 71.1, 85.5, 119.0, 119.1, 127.4, 129.1, 130.7, 131.2, 134.3, 137.0, 138.5, 148.9, 168.8. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1185.
20, flow 0.5 mL min−1, 254 nm, t1 = 13.7 min (S), t2 = 20.5 min (R)); [α]20D −20 (c 1.03, CHCl3) for 93% ee (S). 1H NMR (CDCl3) δ 1.47 (s, 9H), 2.32 (s, 3H), 2.35 (s, 3H), 6.39 (s, 1H), 7.00 (d, J = 8.9 Hz, 1H), 7.13 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.9, 1.4 Hz, 1H), 7.28 (d, J = 1.4 Hz, 1H); 13C NMR (CDCl3) δ 20.9, 21.1, 27.6, 71.1, 85.5, 119.0, 119.1, 127.4, 129.1, 130.7, 131.2, 134.3, 137.0, 138.5, 148.9, 168.8. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1185.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 18.5 min (S), t2 = 34.7 min (R)); [α]20D −47 (c 1.10, CHCl3) for 93% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.34 (s, 3H), 3.75 (s, 3H), 6.35 (s, 1H), 6.95 (dd, J = 8.8, 2.7 Hz, 1H), 7.02 (d, J = 2.7 Hz, 1H), 7.05 (d, J = 2.7 Hz, 1H), 7.12 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 21.1, 27.7, 55.7, 71.1, 85.6, 115.0, 116.3, 120.1, 120.3, 127.4, 129.1, 136.9, 138.5, 144.9, 155.9, 168.7. HRMS (ESI) calcd for C20H23NNaO6S (M + Na)+ 428.1138, found 428.1135.
20, flow 0.5 mL min−1, 254 nm, t1 = 18.5 min (S), t2 = 34.7 min (R)); [α]20D −47 (c 1.10, CHCl3) for 93% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.34 (s, 3H), 3.75 (s, 3H), 6.35 (s, 1H), 6.95 (dd, J = 8.8, 2.7 Hz, 1H), 7.02 (d, J = 2.7 Hz, 1H), 7.05 (d, J = 2.7 Hz, 1H), 7.12 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 21.1, 27.7, 55.7, 71.1, 85.6, 115.0, 116.3, 120.1, 120.3, 127.4, 129.1, 136.9, 138.5, 144.9, 155.9, 168.7. HRMS (ESI) calcd for C20H23NNaO6S (M + Na)+ 428.1138, found 428.1135.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 17.4 min (S), t2 = 49.1 min (R)); [α]20D +34 (c 1.04, CHCl3) for 97% ee (S). 1H NMR (CDCl3) δ 1.51 (s, 9H), 2.35 (s, 3H), 5.74 (d, J = 1.4 Hz, 1H), 5.85 (d, J = 1.4 Hz, 1H), 5.86 (s, 1H), 6.62 (d, J = 8.6 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H); 13C NMR (CDCl3) δ 21.1, 27.7, 70.1, 84.9, 101.8, 106.8, 109.0, 111.2, 127.3, 129.1, 134.7, 138.9, 145.0, 145.2, 146.1, 167.8. HRMS (ESI) calcd for C20H21NNaO7S (M + Na)+ 442.0931, found 442.0940.
20, flow 0.5 mL min−1, 254 nm, t1 = 17.4 min (S), t2 = 49.1 min (R)); [α]20D +34 (c 1.04, CHCl3) for 97% ee (S). 1H NMR (CDCl3) δ 1.51 (s, 9H), 2.35 (s, 3H), 5.74 (d, J = 1.4 Hz, 1H), 5.85 (d, J = 1.4 Hz, 1H), 5.86 (s, 1H), 6.62 (d, J = 8.6 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H); 13C NMR (CDCl3) δ 21.1, 27.7, 70.1, 84.9, 101.8, 106.8, 109.0, 111.2, 127.3, 129.1, 134.7, 138.9, 145.0, 145.2, 146.1, 167.8. HRMS (ESI) calcd for C20H21NNaO7S (M + Na)+ 442.0931, found 442.0940.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 15.4 min (S), t2 = 26.1 min (R)); [α]20D −8 (c 0.80, CHCl3) for 88% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.36 (s, 3H), 6.37 (s, 1H), 7.05–7.15 (m, 4H), 7.16 (d, J = 8.2 Hz, 2H), 7.21 (dd, J = 8.2, 2.7 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 71.0, 86.1, 117.2 (d, JF–C = 27 Hz), 117.8 (d, JF–C = 23 Hz), 120.9 (d, JF–C = 9 Hz), 121.2 (d, JF–C = 7 Hz), 127.2, 129.3, 136.5, 138.9, 146.9, 158.6 (d, JF–C = 245 Hz), 168.3. HRMS (ESI) calcd for C19H20FNNaO5S (M + Na)+ 416.0938, found 416.0936.
20, flow 0.5 mL min−1, 254 nm, t1 = 15.4 min (S), t2 = 26.1 min (R)); [α]20D −8 (c 0.80, CHCl3) for 88% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.36 (s, 3H), 6.37 (s, 1H), 7.05–7.15 (m, 4H), 7.16 (d, J = 8.2 Hz, 2H), 7.21 (dd, J = 8.2, 2.7 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 71.0, 86.1, 117.2 (d, JF–C = 27 Hz), 117.8 (d, JF–C = 23 Hz), 120.9 (d, JF–C = 9 Hz), 121.2 (d, JF–C = 7 Hz), 127.2, 129.3, 136.5, 138.9, 146.9, 158.6 (d, JF–C = 245 Hz), 168.3. HRMS (ESI) calcd for C19H20FNNaO5S (M + Na)+ 416.0938, found 416.0936.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 14.1 min (S), t2 = 26.9 min (R)); [α]20D −19 (c 1.03, CHCl3) for 84% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.36 (s, 3H), 6.39 (s, 1H), 7.06 (d, J = 8.9 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.38 (dd, J = 8.9, 2.7 Hz, 1H), 7.49 (d, J = 2.7 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 70.9, 86.2, 120.8, 121.1, 127.2, 129.4, 129.9, 130.56, 130.60, 136.4, 138.9, 149.5, 168.2. HRMS (ESI) calcd for C19H20ClNNaO5S (M + Na)+ 432.0643, found 432.0641.
20, flow 0.5 mL min−1, 254 nm, t1 = 14.1 min (S), t2 = 26.9 min (R)); [α]20D −19 (c 1.03, CHCl3) for 84% ee (S). 1H NMR (CDCl3) δ 1.48 (s, 9H), 2.36 (s, 3H), 6.39 (s, 1H), 7.06 (d, J = 8.9 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.38 (dd, J = 8.9, 2.7 Hz, 1H), 7.49 (d, J = 2.7 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.6, 70.9, 86.2, 120.8, 121.1, 127.2, 129.4, 129.9, 130.56, 130.60, 136.4, 138.9, 149.5, 168.2. HRMS (ESI) calcd for C19H20ClNNaO5S (M + Na)+ 432.0643, found 432.0641.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 3cb′ (467 mg, 1.19 mmol, 99% yield). The ee was measured by HPLC (Chiralpak AD-H, hexane–2-propanol = 80
1) to give 3cb′ (467 mg, 1.19 mmol, 99% yield). The ee was measured by HPLC (Chiralpak AD-H, hexane–2-propanol = 80![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 20, flow 0.5 mL min−1, 254 nm, t1 = 10.7 min (R), t2 = 11.5 min (S)); [α]20D +117 (c 1.01, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.56 (s, 9H), 2.36 (s, 3H), 2.91 (s, 3H), 6.93 (dd, J = 8.1, 1.4 Hz, 1H), 7.02 (dd, J = 8.1, 1.4 Hz, 1H), 7.03 (td, J = 8.1, 1.4 Hz, 1H), 7.15 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.27 (td, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.9, 34.0, 75.7, 84.3, 117.9, 124.1, 124.4, 128.5, 129.5, 129.6, 133.3, 136.0, 139.1, 148.9, 168.8. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1180.
20, flow 0.5 mL min−1, 254 nm, t1 = 10.7 min (R), t2 = 11.5 min (S)); [α]20D +117 (c 1.01, CHCl3) for 94% ee (S). 1H NMR (CDCl3) δ 1.56 (s, 9H), 2.36 (s, 3H), 2.91 (s, 3H), 6.93 (dd, J = 8.1, 1.4 Hz, 1H), 7.02 (dd, J = 8.1, 1.4 Hz, 1H), 7.03 (td, J = 8.1, 1.4 Hz, 1H), 7.15 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.27 (td, J = 8.1, 1.4 Hz, 1H); 13C NMR (CDCl3) δ 21.1, 27.9, 34.0, 75.7, 84.3, 117.9, 124.1, 124.4, 128.5, 129.5, 129.6, 133.3, 136.0, 139.1, 148.9, 168.8. HRMS (ESI) calcd for C20H23NNaO5S (M + Na)+ 412.1189, found 412.1180.
        ![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 1) to give 4 (21.8 mg, 0.070 mmol, 70% yield). The ee was measured by HPLC (Chiralpak AD-H × 2, hexane–2-propanol = 90
1) to give 4 (21.8 mg, 0.070 mmol, 70% yield). The ee was measured by HPLC (Chiralpak AD-H × 2, hexane–2-propanol = 90![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) :
:![[thin space (1/6-em)]](https://www.rsc.org/images/entities/char_2009.gif) 10, flow 0.5 mL min−1, 254 nm, t1 = 17.3 min (S), t2 = 18.1 min (R)); [α]20D −1 (c 1.02, CHCl3) for 94% ee (R). 1H NMR (CDCl3) δ 1.39 (s, 9H), 2.13 (s, 3H), 2.33 (s, 3H), 7.11 (d, J = 8.1 Hz, 2H), 7.22–7.26 (m, 1H), 7.28–7.32 (m, 4H), 8.14 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 21.0, 27.8, 30.6, 73.2, 81.8, 127.0, 127.6, 128.4, 128.5, 128.6, 136.6, 138.5, 141.6, 172.7. HRMS (ESI) calcd for C20H25NNaO2 (M + Na)+ 334.1778, found 334.1774.
10, flow 0.5 mL min−1, 254 nm, t1 = 17.3 min (S), t2 = 18.1 min (R)); [α]20D −1 (c 1.02, CHCl3) for 94% ee (R). 1H NMR (CDCl3) δ 1.39 (s, 9H), 2.13 (s, 3H), 2.33 (s, 3H), 7.11 (d, J = 8.1 Hz, 2H), 7.22–7.26 (m, 1H), 7.28–7.32 (m, 4H), 8.14 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3) δ 21.0, 27.8, 30.6, 73.2, 81.8, 127.0, 127.6, 128.4, 128.5, 128.6, 136.6, 138.5, 141.6, 172.7. HRMS (ESI) calcd for C20H25NNaO2 (M + Na)+ 334.1778, found 334.1774.
        | Footnote | 
| † Electronic supplementary information (ESI) available: Experimental procedures, compound characterization data, and X-ray crystallographic data of compound 3ch. CCDC 1044727. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob00431d | 
| This journal is © The Royal Society of Chemistry 2015 |