Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi)†
Abstract
Metal–organic frameworks (MOFs) have been arousing a great interest owing to their unique physicochemical properties. In this work, Zr-benzenedicarboxylate (UiO-66) and its derivative, Zr-2-NH2-benzenedicarboxylate (UiO-66(NH2)), are successfully prepared via a facile solvothermal method and applied to photocatalytic reactions. Powder X-ray diffraction (XRD) confirms the isoreticular nature of UiO-66 and UiO-66(NH2), while Fourier transformed infrared spectra (FTIR) prove the effective presence of amino group. UV-vis diffuse reflectance spectra (DRS) show the photoabsorption edge of UiO-66 could be shifted to the visible light region by simply introducing the amino group (–NH2) on the organic ligand. Importantly, UiO-66(NH2) is proved to perform as an efficient multifunctional visible-light-driven photocatalyst with high stability and considerable recyclability in both the photocatalytic selective oxidation of alcohols to aldehydes using molecular oxygen as oxidant and catalytic reduction of aqueous Cr(VI) to Cr(III) under ambient conditions. Furthermore, the possible reaction mechanism has also been investigated in detail. This work makes a systematic attempt to understand the reaction of photocatalytic selective oxidation of alcohols over MOFs and represents the first example to report the identification of MOFs as promising visible-light photocatalysts toward reduction of aqueous Cr(VI). More significantly, our finding also provides a new way to design MOFs-based photocatalysts, that is, by tuning the predesigned ligands with specific functional groups, the optical absorption properties of MOFs can be flexibly modulated, and then the effective solar energy conversion can be expected.