Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In the present work we introduce a path to the controlled construction of DSSCs based on hierarchically structured single walled, self-organized TiO2 layers. In a first step we describe a simple approach to selectively remove the inner detrimental shell of anodic TiO2 nanotubes (NTs). This then allows controlled well-defined layer-by-layer decoration of these TiO2-NT walls with TiO2 nanoparticles (in contrast to conventional TiO2 nanotubes). We show that such defined multiple layered decoration can be optimized to build dye sensitized solar cells that (under back-side illumination conditions) can yield solar light conversion efficiencies to the extent of 8%. The beneficial effects observed can be ascribed to a combination of three factors: (1) improved electronic properties of the “single walled” tubes themselves, (2) a further improvement of the electronic properties by the defined TiCl4 treatment, and (3) a higher specific dye loading that becomes possible for the layer-by-layer decorated single walled tubes.

Graphical abstract: Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%

Page: ^ Top