Resistive switching memory devices based on electrical conductance tuning in poly(4-vinyl phenol)–oxadiazole composites
Abstract
Nonvolatile memory devices, based on electrical conductance tuning in thin films of poly(4-vinyl phenol) (PVP) and 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) composites, are fabricated. The current–voltage characteristics of the fabricated devices show different electrical conductance behaviors, such as the write-once read-many-times (WORM) memory effect, the rewritable flash memory effect and insulator behavior, which depend on the content of PBD in the PVP + PBD composites. The OFF and ON states of the WORM and rewritable flash memory devices are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage. The memory mechanism is deduced from the modeling of the nature of currents in both states in the devices.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        