Issue 39, 2015

Magneto-electronic properties of multilayer graphenes

Abstract

This article reviews the rich magneto-electronic properties of multilayer graphene systems. Multilayer graphenes are built from graphene sheets attracting one another by van der Waals forces; the magneto-electronic properties are diversified by the number of layers and the stacking configurations. For an N-layer system, Landau levels are divided into N groups, with each identified by a dominant sublattice associated with the stacking configuration. We focus on the main characteristics of Landau levels, including the degeneracy, wave functions, quantum numbers, onset energies, field-dependent energy spectra, semiconductor–metal transitions, and crossing patterns, which are reflected in the magneto-optical spectroscopy, scanning tunneling spectroscopy, and quantum transport experiments. The Landau levels in AA-stacked graphene are responsible for multiple Dirac cones, while in AB-stacked graphene the Dirac properties depend on the number of graphene layers, and in ABC-stacked graphene the low-lying levels are related to surface states. The Landau-level mixing leads to anticrossings patterns in energy spectra, which are seen for intergroup Landau levels in AB-stacked graphene, while in particular, a formation of both intergroup and intragroup anticrossings is observed in ABC-stacked graphene. The aforementioned magneto-electronic properties lead to diverse optical spectra, plasma spectra, and transport properties when the stacking order and the number of layers are varied. The calculations are in agreement with optical and transport experiments, and novel features that have not yet been verified experimentally are presented.

Graphical abstract: Magneto-electronic properties of multilayer graphenes

Article information

Article type
Perspective
Submitted
23 Aug 2015
Accepted
08 Sep 2015
First published
09 Sep 2015

Phys. Chem. Chem. Phys., 2015,17, 26008-26035

Author version available

Magneto-electronic properties of multilayer graphenes

C. Lin, J. Wu, Y. Ou, Y. Chiu and M. Lin, Phys. Chem. Chem. Phys., 2015, 17, 26008 DOI: 10.1039/C5CP05013H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements