Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

This paper describes the pyrolysis of pyridinedicarboxylate-containing Zn-based metal–organic frameworks (MOFs) to form nanoporous carbons with accessible N dopants to adsorb CO2. The optimal materials were synthesized using N-heterocycle additives to control the amount of coordinated DMF in the base MOF structure, thereby increasing its thermal stability prior to pyrolysis.

Graphical abstract: Enhanced CO2 capture capacities and efficiencies with N-doped nanoporous carbons synthesized from solvent-modulated, pyridinedicarboxylate-containing Zn-MOFs

Page: ^ Top