Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Charge control of the inverse trans-influence

Henry S. La Pierre *a, Michael Rosenzweig a, Boris Kosog a, Christina Hauser a, Frank W. Heinemann a, Stephen T. Liddle bc and Karsten Meyer *a
aFriedrich-Alexander-University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany. E-mail: karsten.meyer@fau.de; Fax: +49 (0)9131 85 27 367; Tel: +49 (0)9131 85 27 360
bSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
cSchool of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Received 27th August 2015 , Accepted 25th September 2015

First published on 25th September 2015


Abstract

The synthesis and characterization of uranium(VI) mono(imido) complexes, by the oxidation of corresponding uranium(V) species, are presented. These experimental results, paired with DFT analyses, allow for the comparison of the electronic structure of uranium(VI) mono(oxo) and mono(imido) ligands within a conserved ligand framework and demonstrate that the magnitude of the ground state stabilization derived from the inverse trans-influence (ITI) is governed by the relative charge localization on the multiply bonded atom or group.


While terminal oxo (O2−) and imido (RN2−) ligands are formally isolobal and isoelectronic,1–3 these ligands differ in the relative energy of their fragment orbitals and in the charge localization at O or N in their respective metal complexes.4–8 These subtle differences are most pronounced in the comparison of the reactivity and electronic structure of oxo and imido complexes of the early actinides (Th and U). Andersen's uranium(IV) oxo and imido complexes of [(η5-1,2,4-(Me3C)3C5H2)2U[double bond, length as m-dash]X] (X = O, NMe) are principle examples of this divergence.5,9,10 In these mid-valent complexes, the uranium oxo bond is significantly stronger, but much more polarized than the uranium imido bond, and, as a result, the imido engages in [2 + 2] reactions with unsaturated substrates. The oxo, in contrast, principally reacts as a nucleophile. Such dramatic differences in oxo and imido reactivity and electronic structure are less common among transition metal complexes within conserved ligand frameworks, and the variable steric profile afforded by the imido substituent is often employed as a directing group to control reactivity.11

Since the report of the first uranium imido complex by Gilje in 1984,12 an extensive body of work on uranium-ligand multiple bonding has developed.13–16 A major objective of these studies has been to understand the unique bonding in uranyl (and the actinyls) – the most common structural feature of high valent uranium compounds.17 In uranyl complexes, the two terminal oxo ligands are trans to each other and the U–O distances are typically both short at ∼1.8 Å. The inverse trans-influence (ITI) has been proposed as the basis for this geometric preference.18–24 In this model charge-induced mixing of the pseudocore 6p orbitals with the valence 5f orbitals leads to contraction and strengthening of the bond trans to the oxo ligand.25,26 Theoretical and experimental work have established a molecular orbital basis for the ITI,6,27–34 but the role that charge localization plays in developing a quadrupolar polarization of the uranium core electrons remains experimentally untested.

Uranium bis(imido) complexes, possessing uranyl-like geometry with two trans-imido ligands, [RN[double bond, length as m-dash]U[double bond, length as m-dash]NR]n+, have been reported by Hayton and Boncella and serve as an excellent synthetic perturbation of the ITI.35–38 Surprisingly, in contrast to dioxo uranium complexes, cis-bis(imido) complexes (and even tris(imido) complexes)39,40 such as [Cp*2U(NPh)2] (Cp* = C5Me5) can be prepared.41,42 Attempts to isolate analogous cis-dioxo complexes supported by Cp* (Cp* = C5Me5) lead only to elimination of Cp* dimer and precipitation of UO2 – indicating that deformation of O–U–O angle in uranyl is substantially more energy intensive than in the corresponding trans-bis(imido) complexes.9

However, appropriate complexes to disentangle the difference in high-valent uranium oxo and imido bonding have yet to be prepared. Complexes in which the highest uranium oxidation states (V) and (VI) are stabilized by a mono(imido) (or mono(oxo)) moiety are still scarce.43–51 Recently, we demonstrated that the ITI was key feature in determining geometry of the two Cs tacn-supported uranium(VI) mono(oxo) complexes [((RArO)3tacn)UVI(O)]SbF6 ((RArO)3tacn3− = 1,4,7-tris(3-R-5-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, R = t-Bu, adamantyl) obtained via oxidation of the corresponding C3 uranium(V) oxo compounds with silver(I) salts (Scheme 1).43 Herein we report the synthesis of uranium(VI) mono(imido) complexes supported by the conserved ligand framework ((RArO)3tacn3−=1,4,7-tris(3-R-5-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, R = t-Bu, adamantyl). These C3 complexes retain an axially ligated metal-ligand multiple bond in contrast to their oxo analogues. Theoretical modelling of these complexes demonstrates that charge localization at the multiply-bonded ligand (either (O2−) or (TMSN2−)) is an essential component of the ITI.


image file: c5cc07211e-s1.tif
Scheme 1 Oxidation of [((RArO)3tacn)UV(O)] with 1 equiv. AgSbF6 to give the complexes [((t-BuArO)3tacn)UVI(O)eq]SbF6 and [((AdArO)3tacn)UVI(O)ax]SbF6 (eq. = equatorial, ax. = axial with respect to the tris(aryloxide) coordination).43

The uranium(V) trimethylsilylimido complexes [((RArO)3tacn)UV(NSiMe3)]52 (1-R, with R = t-Bu, Ad) can be oxidized with AgSbF6 to yield the uranium(VI) imido complexes [((RArO)3tacn)UVI(NSiMe3)]SbF6 (2-R, see Scheme 2). Addition of one equivalent of AgSbF6 to cold, dark-brown methylene chloride solutions of 1-R results in an immediate colour change to black. After filtration through celite and removal of the solvent in vacuo, the uranium(VI) compounds 2-t-Bu and 2-Ad are obtained in near quantitative yields. In contrast to the previously reported Cs U(VI) mono(oxo) species, an exclusively axial coordination mode of the imido ligands is observed in both the tert-butyl as well as the sterically more encumbered adamantyl derivatized uranium(VI) imido complexes. The coordination modes were established by 1H NMR spectroscopy, showing the C3 symmetry to be present in solution (see ESI), and confirmed by X-ray diffraction on single crystals of both compounds.


image file: c5cc07211e-s2.tif
Scheme 2 Oxidation of [((RArO)3tacn)UV(NSiMe3)] (1-R) with 1 equiv. AgSbF6 to form [((RArO)3tacn)UVI(NSiMe3)]SbF6 (2-R).

The structures of the imido complexes 2-t-Bu (Fig. 1) and 2-Ad (see ESI) are very similar. Their U–Nimido bond distances are short, measuring 1.911(9) and 1.917(9) Å in 2-t-Bu (two independent molecules) and 1.921(4) Å in 2-Ad, consistent with previously reported U(VI)–Nimido distances.44,45 The N–Si bond lengths are 1.750(10) Å for the t-Bu (both independent molecules) and 1.745(4) Å for the adamantyl imido, and the U–N–Si angles for both complexes are essentially linear for both complexes (2-t-Bu, 180.0° and 2-Ad, 175.8(3)°). The slight deviation from linearity in 2-Ad is due to the increased steric clash with the ortho-adamantyl ligand substituents. The uranium center lies 0.195 and 0.189 Å below the plane of the three aryloxide oxygen atoms for 2-t-Bu, while the out-of-plane shift of 2-Ad is smaller at 0.139 Å. This trend was found previously for isostructural complexes of the same chelating ligand system, e.g. [((RArO)3tacn)UIV(OMe)]53 or [((RArO)3tacn)UV(O)],47 and is related to the greater steric demand of the adamantyl vs. tert-butyl groups in the ortho position of the aryloxide ligand pendant arms. The isoelectronic oxo ligand leads to a markedly different geometry at the uranium center in contrast to the axially bound imido ligands of the uranium(VI) complexes 2-R. In the compound with the sterically less encumbered t-Bu derivatized ligand, [((t-BuArO)3tacn)UVI(O)]SbF6, the terminal oxo is coordinated within the equatorial plane, along with the three aryloxide arms of the chelating ligand and the U–Oaryloxide bond trans to the oxo ligand is shortened.43


image file: c5cc07211e-f1.tif
Fig. 1 Molecular structure of one of the two independent cations of [((t-BuArO)3tacn)UVI(NSiMe3)]SbF6 in crystals of [((t-BuArO)3tacn)UVI(NSiMe3)]SbF6·0.5 [Na(DME)3]SbF6·1.5DME (2-t-Bu). Counter anion, co-crystallized solvent and NaSbF6, as well as hydrogen atoms are omitted for clarity. Thermal ellipsoids are at 50% probability. Selected bond lengths (Å) and angles (°): U–Nimido: 1.911(9)/1.917(9); N–Si: 1.752(10)/1.750(10); U–O: 2.137(3)/2.134(4); U–Ntacn: 2.617(4)/2.619(4); U–N–Si: 180.

In order to understand these observed differences, and to compare the electronic structures of the U(VI) imido and U(VI) oxo complexes, restricted DFT calculations were carried out, employing a ZORA/TZP all-electron basis set on the axial and hypothetical equatorial isomers of 2-t-Bu and 2-Ad. While the calculation of 2-Ad with an imido ligand hypothetically bound in the equatorial plane did not converge, suggesting instability of this geometrical isomer, calculations for both axial and equatorial imido coordination converged for 2-t-Bu. However, for the axially bound imido ligand in 2-t-Buax, the U–N distance is calculated to be slightly shorter by 0.017 Å compared to the equatorial derivative. The calculated energy of 2-t-Buax is approximately 11 kcal mol−1 lower in absolute energy than 2-t-Bueq, which fully agrees with the experimentally observed axial coordination of the imido ligand. For the respective oxo complexes the equatorial coordination was calculated to be more stable than the axial by approximately 6 kcal mol−1. These data suggest that the ITI is weaker for the imido compound than for the oxo counterpart. Additionally, a simple consideration of the calculated Mulliken charge to oxidation number ratio for the experimentally observed isomers of 2-t-Buax (0.44 for 2.61/6) and [((t-BuArO)3tacn)UVI(O)eq]+43 (0.42 for 2.52/6) indicates that the U–O is slightly more covalent than the U–N bond in 2-t-Buax. This result is in contrast to the mid-valent uranium oxo and imido complexes studied by Maron, Eisenstein, and Andersen,5,9,10 and suggests that the increased oxidation state and accompanied decrease in energy of the 5f orbitals leads to better energy parity with O 2p orbitals than the N 2p orbitals.

While the steric demands of the trimethylsilylimido ligand are greater than for the oxo ligand, and thus steric influences should not be overlooked, DFT calculations clearly show that the U[triple bond, length as m-dash]O bond is more polarized than the U[triple bond, length as m-dash]NR bond and that the charge localized at O (in the oxo) is substantially greater than that localized at N (in the imides) (Table 1). Specifically, for the model complexes of the experimentally observed isomers – 2-t-Buax and [((t-BuArO)3tacn)UVI(O)eq]+[thin space (1/6-em)]43 – the calculated charge on the TMSN2− is substantially lower in magnitude than on the oxo (−0.52 versus −0.63). In line with this observation, the calculated charge on the TMSN2− in the hypothetical imide isomer, 2-t-Bueq, is of insufficient magnitude (−0.57) to induce a stabilizing ITI; and hence, is higher in energy than the axial isomer, 2-t-Buax. It should be noted that increased covalency with increased bond polarity are not conflicting trends. Covalency is driven both by valence orbital degeneracy and orbital overlap: the importance of both of these trends for determining the magnitude of covalent bonding is particularly pronounced in the f-elements.54

Table 1 Selected calculated bond lengths, Nalewajski–Mrozek bond indices, and Mulliken charges for 2-t-Buax, 2-t-Bueq, 2-Adax, [((t-BuArO)3tacn)UVI(O)eq]+,43 and [((t-BuArO)3tacn)UVI(O)ax]+[thin space (1/6-em)]43
Complex Calc. bond length (and indice)a Calc. Mulliken charge on U Calc. Mulliken charge on TMSNnitrene or Ooxo
a Nalewajski–Mrozek bond indices.
2-t-Buax 1.9122 (2.71) +2.61 −0.52
2-t-Bueq 1.9294 (2.67) +2.58 −0.57
2-Adax 1.9143 (2.70) +2.68 −0.65
[((t-BuArO)3tacn)UVI(O)eq]+[thin space (1/6-em)]43 1.8273 (2.67) +2.52 −0.63
[((t-BuArO)3tacn)UVI(O)ax]+[thin space (1/6-em)]43 1.8348 (2.69) +2.59 −0.61


Since the molecular orbital description of the ITI primarily,25 but not exclusively, invokes involvement of a 6p orbital directed along the σ-bond axis we conclude that the oxo group induces the greater polarization of the metal atom core electrons. Mixing the 6p and the 5f orbitals induces a quadrupolar polarization because the orbitals are the same parity. This phenomenon leads to the observed shortening and strengthening of the bond to the trans disposed ligand. Consequently, the observed demand for a strong ligand coordinated trans to the terminal ligand (O2−vs. TMSN2−) is more pronounced in the oxo species, [((t-BuArO)3tacn)UVI(O)eq]SbF6.

In summary, we have synthesized terminal U(VI) imido complexes [((RArO)3tacn)UVI(NSiMe3)]SbF62-R, with a conserved ligand framework, via oxidation of the U(V) compounds with AgSbF6. Unlike the t-Bu derivative of the U(VI) complex with equatorial oxo coordination, for which ITI was shown previously to be a key feature, we find a different behaviour for the terminal imido complex 2-t-Bu, with the imido group coordinating exclusively in the axial position. While DFT calculations suggest that coordination of the imido ligand in the equatorial position of the 2-t-Bu derivative (but not in 2-Ad) would be sterically possible, this structure is higher in absolute energy and therefore is a disfavoured ground state geometry. These results show that polarization of the metal–ligand bond (and the resultant quadrupolar polarization of the metal core electrons) is a key factor in determining the magnitude of the ITI in actinide complexes.

This research was supported by the German Bundesministerium für Bildung und Forschung (BMBF 2020+, 02NUK012C), the Deutsche Forschungsgemeinschaft (DFG) within SFB 583 and ME1754/2-1. The FAU Erlangen-Nürnberg is gratefully acknowledged for financial support, as is COST Action CM1006. S.T.L. thanks the Royal Society, EPSRC, ERC, and University of Nottingham for support. This work is dedicated to the 60th birthday of Prof. Manfred Scheer (University of Regensburg).

Notes and references

  1. W. A. Nugent and J. A. Mayer, Metal–Ligand Multiple Bonds, Wiley, New York, 1988 Search PubMed.
  2. D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239 CrossRef CAS PubMed.
  3. H. S. La Pierre, S. G. Minasian, M. Abubekerov, S. A. Kozimor, D. K. Shuh, T. Tyliszczak, J. Arnold, R. G. Bergman and F. D. Toste, Inorg. Chem., 2013, 52, 11650 CrossRef CAS PubMed.
  4. W. A. Nugent, R. J. Mckinney, R. V. Kasowski and F. A. Vancatledge, Inorg. Chim. Acta, 1982, 65, L91 CrossRef CAS.
  5. N. Barros, D. Maynau, L. Maron, O. Eisenstein, G. F. Zi and R. A. Andersen, Organometallics, 2007, 26, 5059 CrossRef CAS.
  6. L. P. Spencer, P. Yang, S. G. Minasian, R. E. Jilek, E. R. Batista, K. S. Boland, J. M. Boncella, S. D. Conradson, D. L. Clark, T. W. Hayton, S. A. Kozimor, R. L. Martin, M. M. MacInnes, A. C. Olson, B. L. Scott, D. K. Shuh and M. P. Wilkerson, J. Am. Chem. Soc., 2013, 135, 2279 CrossRef CAS PubMed.
  7. T. L. Gianetti, H. S. La Pierre and J. Arnold, Eur. J. Inorg. Chem., 2013, 3771 CrossRef CAS PubMed.
  8. H. S. La Pierre, J. Arnold, R. G. Bergman and F. D. Toste, Inorg. Chem., 2012, 51, 13334 CrossRef CAS PubMed.
  9. G. F. Zi, L. Jia, E. L. Werkema, M. D. Walter, J. P. Gottfriedsen and R. A. Andersen, Organometallics, 2005, 24, 4251 CrossRef CAS.
  10. G. F. Zi, L. L. Blosch, L. Jia and R. A. Andersen, Organometallics, 2005, 24, 4602 CrossRef CAS.
  11. S. J. Meek, R. V. O'Brien, J. Llaveria, R. R. Schrock and A. H. Hoyveda, Nature, 2011, 471, 461 CrossRef CAS PubMed.
  12. R. E. Cramer, K. Panchanatheswaran and J. W. Gilje, J. Am. Chem. Soc., 1984, 106, 1853 CrossRef CAS.
  13. T. W. Hayton, Chem. Commun., 2013, 49, 2888 RSC.
  14. T. W. Hayton, Dalton Trans., 2010, 39, 1145 RSC.
  15. S. T. Liddle, Angew. Chem., Int. Ed., 2015, 54, 8604 CrossRef CAS PubMed.
  16. H. S. La Pierre and K. Meyer, Prog. Inorg. Chem., 2014, 58, 303 CrossRef CAS PubMed.
  17. Z. Y. Zhang and R. M. Pitzer, J. Phys. Chem. A, 1999, 103, 6880 CrossRef CAS.
  18. R. G. Denning, in Electronic Structure and Bonding in Actinyl Ions, in Structure and Bonding, ed. D. M. P. Mingos, Springer-Verlag, Berlin, 1992, p. 215 Search PubMed.
  19. K. Tatsumi and R. Hoffmann, Inorg. Chem., 1980, 19, 2656 CrossRef CAS.
  20. W. R. Wadt, J. Am. Chem. Soc., 1981, 103, 6053 CrossRef CAS.
  21. P. Pyykkö, L. J. Laakkönen and K. Tatsumi, Inorg. Chem., 1989, 28, 1801 CrossRef.
  22. N. Kaltsoyannis, Inorg. Chem., 2000, 39, 6009 CrossRef CAS.
  23. R. G. Denning, J. C. Green, T. E. Hutchings, C. Dallera, A. Tagliaferri, K. Giarda, N. B. Brookes and L. Braicovich, J. Chem. Phys., 2002, 117, 8008 CrossRef CAS PubMed.
  24. S. Matsika and R. M. Pitzer, J. Phys. Chem. A, 2001, 105, 637 CrossRef CAS.
  25. E. O'Grady and N. Kaltsoyannis, J. Chem. Soc., Dalton Trans., 2002, 1233 RSC.
  26. H. S. La Pierre and K. Meyer, Inorg. Chem., 2013, 52, 529 CrossRef CAS PubMed.
  27. D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake and S. T. Liddle, Science, 2012, 337, 717 CrossRef CAS PubMed.
  28. T. Vitova, J. C. Green, R. G. Denning, M. Loeble, K. Kvashnina, J. J. Kas, K. Jorissen, J. J. Rehr, T. Malcherek and M. A. Denecke, Inorg. Chem., 2015, 54, 174 CrossRef CAS PubMed.
  29. S. G. Minasian, J. L. Krinsky and J. Arnold, Chem. – Eur. J., 2011, 17, 12234 CrossRef CAS PubMed.
  30. A. J. Lewis, P. J. Carroll and E. J. Schelter, J. Am. Chem. Soc., 2013, 135, 13185 CrossRef CAS PubMed.
  31. A. J. Lewis, K. C. Mullane, E. Nakamaru-Ogiso, P. J. Carroll and E. J. Schelter, Inorg. Chem., 2014, 53, 6944 CrossRef CAS PubMed.
  32. D. M. King, F. Tuna, J. McMaster, W. Lewis, A. J. Blake, E. J. L. McInnes and S. T. Liddle, Angew. Chem., Int. Ed., 2013, 52, 4921 CrossRef CAS PubMed.
  33. D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake and S. T. Liddle, Nat. Chem., 2013, 5, 482 CrossRef CAS PubMed.
  34. D. M. King, J. McMaster, F. Tuna, E. J. L. McInnes, W. Lewis, A. J. Blake and S. T. Liddle, J. Am. Chem. Soc., 2014, 136, 5619 CrossRef CAS PubMed.
  35. T. W. Hayton, J. M. Boncella, B. L. Scott, P. D. Palmer, E. R. Batista and P. J. Hay, Science, 2005, 310, 1941 CrossRef CAS PubMed.
  36. T. W. Hayton, J. M. Boncella, B. L. Scott and E. R. Batista, J. Am. Chem. Soc., 2006, 128, 12622 CrossRef CAS PubMed.
  37. T. W. Hayton, J. M. Boncella, B. L. Scott, E. R. Batista and P. J. Hay, J. Am. Chem. Soc., 2006, 128, 10549 CrossRef CAS PubMed.
  38. R. E. Jilek, L. P. Spencer, R. A. Lewis, B. L. Scott, T. W. Hayton and J. M. Boncella, J. Am. Chem. Soc., 2012, 134, 9876 CrossRef CAS PubMed.
  39. N. H. Anderson, S. O. Odoh, Y. Yao, U. J. Williams, B. A. Schaefer, J. J. Kiernicki, A. J. Lewis, M. D. Goshert, P. E. Fanwick, E. J. Schelter, J. R. Walensky, L. Gagliardi and S. C. Bart, Nat. Chem., 2014, 6, 919 CrossRef CAS PubMed.
  40. N. H. Anderson, H. Yin, J. J. Kiernicki, P. E. Fanwick, E. J. Schelter and S. C. Bart, Angew. Chem., Int. Ed., 2015, 54, 9386 CrossRef CAS PubMed.
  41. D. S. J. Arney, C. J. Burns and D. C. Smith, J. Am. Chem. Soc., 1992, 114, 10068 CrossRef CAS.
  42. J. L. Kiplinger, D. E. Morris, B. L. Scott and C. J. Burns, Chem. Commun., 2002, 30 RSC.
  43. B. Kosog, H. S. La Pierre, F. W. Heinemann, S. T. Liddle and K. Meyer, J. Am. Chem. Soc., 2012, 134, 5284 CrossRef CAS PubMed.
  44. D. S. J. Arney and C. J. Burns, J. Am. Chem. Soc., 1993, 115, 9840 CrossRef CAS.
  45. D. S. J. Arney and C. J. Burns, J. Am. Chem. Soc., 1995, 117, 9448 CrossRef CAS.
  46. J. F. de Wet and J. G. H. du Preez, J. Chem. Soc., Dalton Trans., 1978, 592 RSC.
  47. S. C. Bart, C. Anthon, F. W. Heinemann, E. Bill, N. M. Edelstein and K. Meyer, J. Am. Chem. Soc., 2008, 130, 12536 CrossRef CAS PubMed.
  48. S. Fortier, N. Kaltsoyannis, G. Wu and T. W. Hayton, J. Am. Chem. Soc., 2011, 133, 14224 CrossRef CAS PubMed.
  49. D. P. Mills, O. J. Cooper, F. Tuna, E. J. L. McInnes, E. S. Davies, J. McMaster, F. Moro, W. Lewis, A. J. Blake and S. T. Liddle, J. Am. Chem. Soc., 2012, 134, 10047 CrossRef CAS PubMed.
  50. C. R. Graves, B. L. Scott, D. E. Morris and J. L. Kiplinger, J. Am. Chem. Soc., 2007, 129, 11914 CrossRef CAS PubMed.
  51. C. R. Graves, P. Yang, S. A. Kozimor, A. E. Vaughn, D. L. Clark, S. D. Conradson, E. J. Schelter, B. L. Scott, J. D. Thompson, P. J. Hay, D. E. Morris and J. L. Kiplinger, J. Am. Chem. Soc., 2008, 130, 5272 CrossRef CAS PubMed.
  52. I. Castro-Rodriguez, K. Olsen, P. Gantzel and K. Meyer, J. Am. Chem. Soc., 2003, 125, 4565 CrossRef CAS PubMed.
  53. B. Kosog, H. S. La Pierre, M. A. Denecke, F. W. Heinemann and K. Meyer, Inorg. Chem., 2012, 51, 7940 CrossRef CAS PubMed.
  54. M. W. Löble, J. M. Keith, A. B. Altman, S. C. E. Steiber, E. R. Batista, K. S. Boland, S. D. Conradson, D. L. Clark, J. Lezama Pacheco, S. A. Kozimor, R. L. Martin, S. G. Minasian, A. C. Olson, B. L. Scott, D. K. Shuh, T. Tyliszczak, M. P. Wilkerson and R. A. Zehnder, J. Am. Chem. Soc., 2015, 137, 2506 CrossRef PubMed.

Footnote

Electronic supplementary information (ESI) available: General considerations, synthetic and spectroscopic as well as crystallograohic and computational details for 2-t-Bu, 2-Ad, and crystallographic details for 3-Ad. CCDC 894627, 894628, and 747048. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc07211e

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.