Issue 22, 2017

Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy

Abstract

Epoxy nanocomposites reinforced with polypyrrole functionalized nano-magnetite (Fe3O4–PPy) showed significantly enhanced electromagnetic wave absorption performance and flame retardancy. The Fe3O4–PPy nanocomposites were prepared by the surface initiated polymerization method. The epoxy/(30.0 wt%)Fe3O4–PPy nanocomposites possess a minimum reflection loss (RL) value of −35.7 dB, which is much lower than that of either epoxy/(7.5 wt%)PPy nanocomposites with a minimum RL value of −11.0 dB or epoxy/(30.0 wt%)Fe3O4 with a minimum RL value of −17.8 dB at the same thickness (1.7 mm). Meanwhile, the bandwidth of epoxy/(30.0 wt%)Fe3O4–PPy nanocomposites for RL < −10 dB and RL < −20 dB is 4.0 GHz and 0.8 GHz, respectively. The increased interface area, eddy current loss and anisotropic energy are essentially important to achieve higher reflection loss and broader absorption bandwidth for epoxy/(30.0 wt%)Fe3O4–PPy nanocomposites. Moreover, the significantly reduced flammability was observed in the epoxy/(30.0 wt%)Fe3O4–PPy nanocomposites compared with pure epoxy. The total heat release of epoxy/(30.0 wt%)Fe3O4–PPy nanocomposites decreased from 25.5 kJ g−1 of pure epoxy to just 12.3 kJ g−1. The tensile strength of the epoxy nanocomposites was reported as well. These new nanocomposites with an enhanced electromagnetic wave absorption property and flame retardancy possess great potential for safer electromagnetic wave absorbers in the electronic industry to satisfy stringent industrial standards.

Graphical abstract: Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2017
Accepted
20 Apr 2017
First published
20 Apr 2017

J. Mater. Chem. C, 2017,5, 5334-5344

Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy

J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, M. A. Khan, D. P. Young, X. Liu, X. Zhang, J. Kong and Z. Guo, J. Mater. Chem. C, 2017, 5, 5334 DOI: 10.1039/C7TC01502J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements