Issue 32, 2014

Biomimetic polyurethanes in nano and regenerative medicine

Abstract

Nature's inspiration is a promising tool to design new biomaterials especially for frontier technological areas such as tissue engineering and nanomedicine. Polyurethanes (PURs) are a flexible platform of materials that can be designed to fit the requirements imposed by their final applications. The choice of their building blocks (which are used in the synthesis as macrodiols, diisocyanates, and chain extenders) can be implemented to obtain biomimetic constructs, which can mimic the native tissue in terms of mechanical, morphological and surface properties. In bone tissue engineering, elastomeric PURs avoid shear forces at the interface between bone and the implant, supporting the proliferation of osteogenic cells. Soft tissues can be engineered equally efficiently by PURs, which have been reported to be reliable candidates in the fabrication of muscle constructs (including heart, blood vessels, cartilage and peripheral nerve regeneration). This review summarizes the recent progress in the biomedical applications of polyurethanes. After introducing the concept of biomimetics (paragraph 2), the use of PURs in the engineering of hard tissues (para. 3.1), soft tissues (para. 3.2) and in nanomedicine (para. 4) is reported. Taken collectively, reports in the literature clearly indicate the potential of PURs to complement or substitute alternative, FDA approved, degradable polymers, such as those belonging to the polyester family, in the replacement of damaged tissues or organs, as well as in the emerging field of nanomedicine, where they might show superior drug encapsulation efficiency and enhanced capability to target specific tissue compartments.

Graphical abstract: Biomimetic polyurethanes in nano and regenerative medicine

Article information

Article type
Feature Article
Submitted
03 Apr 2014
Accepted
04 Jun 2014
First published
04 Jun 2014

J. Mater. Chem. B, 2014,2, 5128-5144

Author version available

Biomimetic polyurethanes in nano and regenerative medicine

S. Sartori, V. Chiono, C. Tonda-Turo, C. Mattu and C. Gianluca, J. Mater. Chem. B, 2014, 2, 5128 DOI: 10.1039/C4TB00525B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements