Issue 19, 2014

Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers

Abstract

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core–satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core–satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (∼48 nm) core surrounded by smaller (∼15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Graphical abstract: Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2014
Accepted
19 Mar 2014
First published
19 Mar 2014

J. Mater. Chem. B, 2014,2, 2827-2837

Author version available

Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks and I. Blakey, J. Mater. Chem. B, 2014, 2, 2827 DOI: 10.1039/C4TB00263F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements