Issue 46, 2014

Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li

Abstract

Partially ordered but not graphitized carbons are widely employed for sodium and lithium ion battery (NIB and LIB) anodes, either in their pure form or as a secondary supporting phase for oxides, sulfides and insertion electrodes. These “pseudographitic” materials ubiquitously display a poor initial coulombic efficiency (CE), which has been historically attributed to solid electrolyte interface (SEI) formation on their large surface areas (up to ∼2500 m2 g−1). Here we identify the other sources CE loss by examining a pseudographitic carbon with a state-of-the-art capacity (>350 mA h g−1 for NIB, >800 mA h g−1 for LIB), but with a purposely designed low surface area (14.5 m2 g−1) that disqualifies SEI from having a substantial role. During the initial several (<5) cycles both Na and Li are irreversibly trapped in the bulk, with the associated CE loss occurring at higher desodiation/delithiation voltages. We measure a progressively increasing graphene interlayer spacing and a progressively increasing Raman G band intensity, indicating that the charge carriers become trapped not only at the graphene defects but also between the graphene planes hence causing them to both dilate and order. For the case of Li, we also unambiguously detected irreversible metal underpotential deposition (“nanoplating”) within the nanopores at roughly below 0.2 V. It is expected that in conventional high surface area carbons these mechanisms will be a major contributor to CE loss in parallel to classic SEI formation. Key implications to emerge from these findings are that improvements in early cycling CE may be achieved by synthesizing pseudographitic carbons with lower levels of trapping defects, but that for LIBs the large cycle 1 CE loss may be unavoidable if highly porous structures are utilized.

Graphical abstract: Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li

Supplementary files

Article information

Article type
Paper
Submitted
22 Sep 2014
Accepted
13 Oct 2014
First published
14 Oct 2014

J. Mater. Chem. A, 2014,2, 19685-19695

Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li

E. Memarzadeh Lotfabad, P. Kalisvaart, A. Kohandehghan, D. Karpuzov and D. Mitlin, J. Mater. Chem. A, 2014, 2, 19685 DOI: 10.1039/C4TA04995K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements