Issue 8, 2014

Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method

Abstract

A novel template-free oxalate route was applied to synthesize mesoporous manganese oxides with high surface area (355 m2 g−1) and well-defined mesopores which can be obtained in large quantities. The physicochemical properties of the materials were characterized by means of TG, XRD, SEM, TEM, H2-TPR and XPS techniques. All catalysts were tested on catalytic deep oxidation of benzene, and the effects of calcination temperature on the features of catalyst structure and catalytic activity were investigated. Manganese oxides prepared by oxalate route exhibited better catalytic activities for complete oxidation of benzene, toluene and o-xylene as compared with related manganese oxides prepared by other different methods (NaOH route, NH4HCO3 route and nanocasting strategy), and especially the temperature for benzene conversion of 90% on the oxalate-derived manganese oxide catalysts was 209 °C, which is 132 °C lower than required for the catalyst prepared by NaOH route. The catalytic performance of manganese oxide is correlated with surface area, pore size, low-temperature reducibility and distribution of surface species. The mole ratio of Mn4+/Mn2+ on the samples which performed with better catalytic activity was close to 1.0. This is good for the redox process of Mn4+ ↔ Mn3+ ↔ Mn2+ which is the key factor in determining the activity on MnOx, further indicating that the oxalate route is good for keeping the distribution of manganese oxidation states at an appropriate degree. A possible process of VOCs’ complete oxidation on manganese oxide catalysts is discussed. In addition, the best catalyst was highly stable with prolonged time on stream and was resistant to water vapor.

Graphical abstract: Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method

Article information

Article type
Paper
Submitted
25 Sep 2013
Accepted
18 Nov 2013
First published
19 Nov 2013

J. Mater. Chem. A, 2014,2, 2544-2554

Author version available

Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method

W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu and Y. Chen, J. Mater. Chem. A, 2014, 2, 2544 DOI: 10.1039/C3TA13847J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements