Issue 45, 2014

An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields

Abstract

When a suspension of colloidal particles is placed in an oscillating electric field, the contrast in dielectric constant between the particles and the solvent induces a dipole moment in each of the colloidal particles. The resulting dipole–dipole interactions can strongly influence the phase behavior of the system. We investigate the phase behavior of cube-shaped colloidal particles in electric fields, using both experiments and Monte Carlo simulations. In addition to a string fluid phase and a body centered tetragonal (BCT) crystal phase, we observe a columnar phase consisting of hexagonally ordered strings of rotationally disordered cubes. By simulating the system for a range of pressures and electric field strengths, we map out the phase diagram, and compare the results to the experimentally observed phases. Additionally, we estimate the accuracy of a point-dipole approximation on the alignment of cubes in string-like clusters.

Graphical abstract: An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields

Article information

Article type
Paper
Submitted
10 Aug 2014
Accepted
11 Sep 2014
First published
13 Oct 2014

Soft Matter, 2014,10, 9110-9119

An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields

H. R. Vutukuri, F. Smallenburg, S. Badaire, A. Imhof, M. Dijkstra and A. van Blaaderen, Soft Matter, 2014, 10, 9110 DOI: 10.1039/C4SM01778A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements