Issue 34, 2014

Thermal transitions in hydrated layer-by-layer assemblies observed using electrochemical impedance spectroscopy

Abstract

Layer-by-layer (LbL) assemblies have been of great interest due to their versatile functionality and ease of fabrication, but their response to temperature is not completely understood. It has been recently shown that hydrated LbL assemblies of poly(diallyldimethylammonium chloride) (PDAC) and poly(styrene sulfonate) (PSS) under go a thermal transition much like a “glass-melt” transition. This thermal transition is of great interest because many LbL applications are found in water. Here, we report upon the nature of this thermal transition as probed using electrochemical impedance spectroscopy (EIS) as a function of assembly salt concentration, film thickness, and outermost layer. EIS reveals that the transition is signified by a structural rearrangement of virtual pores, resulting in increased conductivity and decreased surface coverage of the electrode. Two separate thermal transitions are obtained from changes in the film resistance (Ttr,Rf) and the charge transfer resistance (Ttr,Rct). Only Ttr,Rct is strongly dependent on film thickness, salt concentration, and outermost layer, for which values ranging from 50 to 64 °C were observed. As the assembly salt concentration increases from 0.5 M to 1.0 M NaCl, Ttr,Rct increases by about 10 °C. Below 20 layers, deviations of Ttr,Rct with respect to outermost layer appear, in which PSS-capped LbL films tend to show elevated Ttr,Rct values. These results suggest that extrinsic charge compensation plays a large role in the value of Ttr,Rct in which a large degree of extrinsic charge compensation drives Ttr,Rct towards higher values. On the other hand, Ttr,Rf is largely unaffected by assembly parameters, and closer in value to prior reports via calorimetry and quartz crystal microbalance with dissipation.

Graphical abstract: Thermal transitions in hydrated layer-by-layer assemblies observed using electrochemical impedance spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2014
Accepted
08 Jul 2014
First published
23 Jul 2014

Soft Matter, 2014,10, 6467-6476

Author version available

Thermal transitions in hydrated layer-by-layer assemblies observed using electrochemical impedance spectroscopy

C. Sung, K. Hearn and J. Lutkenhaus, Soft Matter, 2014, 10, 6467 DOI: 10.1039/C4SM01269K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements