Issue 37, 2014

Active mechanics and dynamics of cell spreading on elastic substrates

Abstract

The spreading area of cells has been shown to play a central role in the determination of cell fate and tissue morphogenesis; however, a clear understanding of how spread cell area is determined is still lacking. The observation that cell area and force generally increase with substrate rigidity suggests that cell area is dictated mechanically, by means of a force-balance between the cell and the substrate. A simple mechanical model, corroborated by experimental measurements of cell area and force is presented to analyze the temporal force balance between the cell and the substrate during spreading. The cell is modeled as a thin elastic disc that is actively pulled by lamellipodia protrusions at the cell front. The essential molecular mechanisms of the motor activity at the cell front, including, actin polymerization, adhesion kinetics, and the actin retrograde flow, are accounted for and used to predict the dynamics of cell spreading on elastic substrates; simple, closed-form expressions for the evolution of cell size and force are derived. Time-resolved, traction force microscopy, combined with measurements of cell area are performed to investigate the simultaneous variations of cell size and force. We find that cell area and force increase simultaneously during spreading but the force develops with an apparent delay relative to the increase in cell area. We demonstrate that this may reflect the strain-stiffening property of the cytoskeleton. We further demonstrate that the radial cell force is a concave function of spreading speed and that this may reflect the strengthening of cell–substrate adhesions during spreading.

Graphical abstract: Active mechanics and dynamics of cell spreading on elastic substrates

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2014
Accepted
01 Jul 2014
First published
08 Aug 2014

Soft Matter, 2014,10, 7234-7246

Active mechanics and dynamics of cell spreading on elastic substrates

N. Nisenholz, K. Rajendran, Q. Dang, H. Chen, R. Kemkemer, R. Krishnan and A. Zemel, Soft Matter, 2014, 10, 7234 DOI: 10.1039/C4SM00780H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements