Thais Delgado-Abada,
Jaime Martínez-Ferrera,
Javier Reig-Lópeza,
Rossella Melloa,
Rafael Acereteb,
Gregorio Asensioa and
María Elena González-Núñez*a
aDepartamento de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés Estellés s.n., 46100-Burjassot, Valencia, Spain. E-mail: elena.gonzalez@uv.es
bDepartamento de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés Estellés s.n., 46100-Burjassot, Valencia, Spain
First published on 6th October 2014
Supercritical carbon dioxide (scCO2), a solvent with a zero dipole moment, low dielectric constant, and no hydrogen bonding behavior, is a suitable medium to perform the uncatalyzed electrophilic bromination of weakly activated aromatics with no interference of radical pathways. The ability of scCO2 to promote these reactions matches those of strongly ionizing solvents such as aqueous acetic and trifluoroacetic acids. Conversely, carbon tetrachloride, with similar polarity parameters to scCO2, leads exclusively to side chain functionalization. The strong quadrupole moment, and the acidic, but non basic, Lewis character of carbon dioxide, are proposed as key factors for the singular performance of scCO2 in reactions involving highly polar and ionic intermediates.
The reaction of molecular bromine with alkyl aromatics8 is a suitable probe for solvation in scCO2 since it follows polar or radical pathways depending on the reaction conditions. In the presence of Lewis acid catalysts,8,9 or in strongly ionizing solvents,10 the reaction proceeds through the electrophilic aromatic substitution mechanism,8–11 which involves the rapid formation of a charge transfer π-complex [ArH·Br2], followed by the rate-determining ionization of the Br–Br bond with σ-adduct formation [ArHBr+, Br−], and then loss of a proton to restore aromaticity (Scheme 1). Lewis acids facilitate the reaction9 by coordinating bromine atoms, which enhances both the electrophilicity of the brominating species (Step 1, Scheme 1) and the ability of bromide as a leaving group (Step 2, Scheme 1). Strongly ionizing solvents promote the ionization of the polarized π-complex [ArH·Br2] by solvating the leaving bromide anion (Step 2, Scheme 1).8,11 Conversely, reactions in apolar solvents under thermal conditions provide mainly side-chain functionalization at benzylic positions.12
![]() | ||
Scheme 1 Mechanism of the electrophilic bromination of aromatics.10,11 |
Predicting the course of these reactions in scCO2 is not obvious. Actually, scCO2 is an excellent solvent for radical reactions13 which has been found suitable for side-chain photobromination of alkyl aromatics14 with minor interference of polar side processes. Therefore, the reaction of bromine with aromatics in scCO2 represents an interesting test for solvation in this medium, as well as an alternative approach to a major transformation in synthesis which continues to raise interest from mechanistic,11 preparative, and environmental15 points of view.
We herein report a comparative study of the reaction of bromine with weakly activated aromatics in different solvents under thermal conditions. The results show that scCO2 is a suitable solvent to perform the selective electrophilic bromination of weakly activated aromatics in the absence of added catalysts (eqn (1)). The ability of scCO2 to promote the uncatalyzed bromination of benzene is matched only by 85% aqueous trifluoroacetic acid, a strongly ionizing polar protic solvent. The results disclose the role of the Lewis acid character,5 the quadrupole moment,16 and the low basicity17 of carbon dioxide in the solvation of the different species involved in the reaction.
![]() | (1) |
Substrate conversion and product distribution were determined exclusively from the organic material collected from the internal walls of the glass vial and the ampule, which were washed with specific volumes of dichloromethane solutions of acetone or cyclohexene as quenchers for bromine, and adamantane as an external standard. The resulting solutions were treated with sodium bicarbonate and sodium sulphate, and then analyzed by gas chromatography and mass spectrometry (see the results in Table 1). The external walls of the glass vial, the stainless steel reactor, the outlet valve and the cold trap were washed separately and analyzed following the same procedure. Only trace amounts of starting materials or reaction products were found in these regions. Mass balances were >95% in all cases, indicating that the diffusion of reagents from the glass vial to the stainless steel external reactor walls was negligible in the experimental process. The control experiments performed by pressurizing the reactor to 250 bar at 40 °C, cooling the system to 0 °C and maintaining it at this temperature for 2 h, followed by depressurization and analysis of the reaction mixture as described above, showed no significant conversion of substrates. Comparative experiments in conventional solvents (neat and 85% v/v aqueous acetic and trifluoroacetic acids, and carbon tetrachloride) were done using the same concentrations, molar Br2:
1 ratios, temperature and reaction time, and protected from light (Table 1). The resulting mixtures were quenched and analyzed as described above. Detailed experimental procedures are described in the Experimental part and the ESI.‡
1/Run | Solventb | Conv.c (%) | Product distribution (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Reactions in scCO2 (250 bar) and conventional solvents performed at 40 °C for 2 h, with a molar ratio 1![]() ![]() ![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | scCO2 | 10 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | aq. AA | — | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | TFA | 3 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | aq. TFA | 4 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | CCl4 | — | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | scCO2 | 38 | 38 | 62 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | aq. AA | 20 | 39 | 61 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | TFA | 68 | 36 | 64 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | aq. TFA | 90 | 25 | 75 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | CCl4 | 74 | — | — | 98 | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | scCO2 | 66 | 36 | 64 | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | AA | 19 | — | — | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | CCl4 | 100 | — | — | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | scCO2 | 43 | 14 | 86 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | AA | 33 | 10 | 32 | 23 | 35 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 | TFA | 100 | 17 | 83 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 | CCl4 | 91 | — | — | 98 | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 | scCO2 | 77 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19 | AA | 5 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20 | CCl4 | — | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
21 | scCO2 | >99 | — | 95 | 3d | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
22 | AA | 41 | 18 | 82 | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
23 | CCl4 | >99 | — | — | — | 98e | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
24 | scCO2 | 66 | 92 | 8 | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 | AA | 28 | 77 | 10 | 13 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
26 | CCl4 | 83 | — | — | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
27 | scCO2 | 32 | 88 | 12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28 | AA | — | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
29 | CCl4 | — | — | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
30 | scCO2 | 27 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
31 | aq. AA | — | — | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32 | CCl4 | — | — |
Bromine reacted with benzene (1a) in scCO2 to give bromobenzene with 10% substrate conversion relative to bromine after 2 h under our reaction conditions (Entry 1, Table 1). Prolonging the reaction time up to 5 h did not improve the result. Conversely, bromine did not react with benzene in carbon tetrachloride, benzene, acetic acid or aqueous acetic acid, under similar reaction conditions. The reactions in neat and aqueous trifluoroacetic acid gave, respectively, 3% and 4% substrate conversions after 2 h at 40 °C.19
Toluene (1b) reacted with bromine in scCO2 to give exclusively ortho- and para-monosubstituted products, with 38%substrate conversion vs. bromine (Entry 6, Table 1). meta-Bromotoluene was not found as a reaction product, which evidenced a high positional selectivity and absence of acid-catalyzed isomerization of the products.20 Benzylic functionalization was never detected under our reaction conditions. The reactions of bromine with toluene in neat trifluoroacetic acid, aqueous acetic and trifluoroacetic acids gave, respectively, 68%, 20%, and 90% substrate conversions (Entries 7–9, Table 1).21 The same results were obtained when the reactions were performed by slowly adding a bromine solution to the substrate solution under the same conditions.
The diffusion rate of bromine from the glass vial into the substrate solution had a significant impact on the reaction efficiency. Thus, increasing the contact area between the substrate and bromine solutions through the ampule cap generally improved the substrate conversion. However, no reaction took place when benzene (1a) and bromine were placed in the same glass vial at 250 bar and 40 °C for 2 h without stirring. This indicates that high bromine concentrations in the reaction mixture inhibits the reaction rate.10 In the case of toluene (1b), the reactions performed by placing bromine in an open ampule inside the glass vial led to 29% substrate conversion. Control experiments performed by slowly adding (0.0196 mmol min−1) a bromine solution in aqueous acetic and trifluoroacetic acid to a benzene solution (1a) in the same solvents at 40 °C showed no differences in relation to our standard conditions.
The relative reaction rates of benzene (1a) and toluene (1b) with bromine in scCO2 were estimated in competitive experiments performed with initial molar ratios 1a:
1b
:
Br2 1.5
:
1.5
:
1 for 15 min under our standard conditions. A gas chromatography analysis of the reaction products, performed as described above, showed an average relative conversion 1b
:
1a of 5
:
1. The competitive reactions performed at 40 °C for 15 min in aqueous acetic or trifluoroacetic acids led to an exclusive reaction of 1b, and relative conversions 1b
:
1a of 350
:
1, respectively.22 Therefore, the uncatalyzed bromination of aromatics in scCO2 exhibited poorer substrate selectivity than the reactions in aqueous acetic or trifluoroacetic acids, but displayed similar positional selectivity.23 By way of comparison, the substrate selectivity reported9a for the reaction of toluene (1b) and benzene (1a) with bromine in nitromethane at 25 °C in the presence of FeCl3 was 1b
:
1a 3.6
:
1. The ortho:meta:para regioselectivity of the bromination of 1b under the same conditions was 68.7
:
1.8
:
29.5.
The bromine reactions with a series of aromatics 1 in scCO2 exclusively gave the corresponding electrophilic substitution products in all cases (Table 1). Remarkably, the selectivity in the reaction of cumene (1d) (Entries 14–17, Table 1) was similar for scCO2 and trifluoroacetic acid, while the reaction in acetic led mainly to the products derived from benzylic functionalization, followed by solvent-promoted ionization. Ethylbenzene (1c) also led to bromination at the benzylic position in acetic acid (Runs 11 and 13, Table 1). For ethylbenzene (1c), cumene (1d), tert-butylbenzene (1e), ortho-xylene (1f), biphenyl (1h), and fluorobenzene (1i), the electrophilic aromatic substitution reactions in scCO2 took place preferentially at the less sterically hindered para positions (Table 1). ortho-Xylene (1f) reacted faster than para-xylene (1g), probably due to the less hindered reactive positions in the former. No acid-catalyzed rearrangement of the isomeric xylenes was observed under our reaction conditions.20 The reactions of toluene (1b), ethylbenzene (1c), and tert-butylbenzene (1e) with bromine in scCO2 at 100 bar and 40 °C led to the same results reported in Table 1, indicating that the electrophilic bromination or aromatics 1 is no pressure-sensitive.4
The reactions proved less efficient in glacial or aqueous acetic acid (Table 1). For instance, biphenyl (1h), and fluorobenzene (1i) failed to give any substitution product in acetic acid and aqueous acetic acid, respectively (Entries 28 and 31, Table 1), while they reacted with 32% and 27% substrate conversions in scCO2 (Runs 27 and 30, Table 1). Remarkably, fluorobenzene (1i) reacted with bromine in scCO2 to give para-bromofluorobenzene (2ip) exclusively, while the regioselectivity reported9b for the reaction in nitromethane in the presence of FeCl3 was ortho:meta:para 10.5:
<0.2
:
89.5. Chlorobenzene and bromobenzene were unreactive in both scCO2 and conventional ionizing solvents.
Use of CCl4 as a solvent for the reaction of alkyl-substituted aromatics with bromine always led to the exclusive functionalization of the benzylic position (Table 1). The dramatic change in the reaction course observed upon going from CCl4 to scCO2 contrasted with the similar standard polarity parameters tabulated for these solvents:2 dipole moment (zero in both cases), relative permittivity (2.24 and 1.1–1.5), ETN (0.052 and 0.068–0.116), and hydrogen-bond acceptor/donor indexes β/α (0.12/0 and 0/0).
(i) The lower toluene (1b)/benzene (1a) selectivity observed in scCO2, if compared to that in aqueous acetic and trifluoroacetic acids, evidences a less substrate-selective [ArH·Br2] π-complexation (Step 1, Scheme 1) and, therefore, a stronger electrophilic brominating species in scCO2.11,23 This suggests that the very low Lewis base character of carbon dioxide17 prevents a strong interaction with bromine and preserves its electrophilic character. Accordingly, the actual brominating species in scCO2 would be unsolvated bromine molecules.
(ii) At a low bromine concentration, the polarized [ArH·Br2] π-complex evolves into the σ-adduct [ArHBr+, Br−] through the solvent-promoted ionization of the Br–Br σ-bond (Step 2, Scheme 1).10,11 The specific Lewis acid–base, dipole–quadrupole, and ion–quadrupole interactions of carbon dioxide with the leaving bromide anion5d,24 appear strong enough to activate this process. The preference for the para position observed in the reactions of bromine with toluene (1b) in scCO2 and conventional ionizing solvents (Table 1), if compared with the ortho-selectivity reported9b for the FeCl3-catalyzed reaction, can be attributed to the greater steric hindrance of the solvation shells around the terminal bromine atom in the π-complex if compared to the complexed Lewis acid.9,10d In this context, the para-selectivity observed in the reaction of bromine with fluorobenzene (1i) in scCO2 (Entry 30, Table 1) would be indicative of significant interactions of carbon dioxide with the fluorine atom, in agreement with the well-known CO2-philic character of fluorinated hydrocarbons.1
(iii) The non basic character of carbon dioxide17 further contributes to differentiate the reaction course in relation to conventional solvents as it enhances the role of bromide anion as a Bronsted base to remove the proton from the σ-complex in the rearomatization step (Step 3, Scheme 1), and prevents the ionization of HBr. In this way, scCO2 should minimize the complexation of molecular bromine with bromide anion [Br2 + Br− ⇆ Br3−],10,11,25 a side process that actually depletes the electrophile from the solution. Although no data on this complex equilibrium in scCO2 are presently available, this factor should not be disregarded as a significant contributor to the singular efficiency of this medium to promote the electrophilic aromatic bromination of benzene (1a).
(iv) At a high initial bromine concentration, the electrophile would compete with scCO2 in the ionization of the polarized π-complex [ArH·Br2] to give the σ-complex and Br3− (Step 2, Scheme 1). Since the delocalized Br3− species is a weaker base than bromide anion, this process actually removes both the reactive electrophilic brominating species and the base required in the last rearomatization step (Step 3, Scheme 1) from the reaction medium. This side process accounts for the low reaction rates and the kinetic orders higher than two observed in conventional solvents,10 and also the inhibitory effect by the high initial bromine concentrations observed in scCO2. Indeed, these effects should be greater for reactions in scCO2 as the solvent cannot participate as a base in the rearomatization step in this case.
The striking difference between the reaction courses observed in scCO2 and carbon tetrachloride, both solvents with similar polarity parameters, evidences the ability of scCO2 to solvate highly polar intermediates and transition states through intermolecular interactions which are silent to standard polarity probes.2 These interactions strongly favor polar reaction pathways over alternative routes that lead to side-chain functionalization, such as the thermal homolysis of the Br–Br σ-bond, single electron transfer processes, or even molecule-induced homolysis, which are preferred in carbon tetrachloride.11i,26 Notwithstanding, the solvent-promoted electrophilic aromatic substitution in scCO2 is not fast enough to compete with the radical-mediated side-chain bromination of the alkyl aromatics performed under photochemical conditions,14 and this fact makes scCO2 a unique solvent to perform either polar or radical reactions of alkyl aromatics with bromine through the proper selection of reaction conditions.
Footnotes |
† This article is dedicated in memoriam to Professor Ruggero Curci. |
‡ Electronic supplementary information (ESI) available: Detailed experimental procedures, gas chromatograms and mass spectra of the reaction products. See DOI: 10.1039/c4ra10557e |
This journal is © The Royal Society of Chemistry 2014 |