DOI:
10.1039/C4RA09495F
(Paper)
RSC Adv., 2014,
4, 54719-54724
Fe-promoted oxidative cyclization of α-benzoylthioformanilides for the synthesis of 2-benzoylbenzothiazoles†
Received
30th August 2014
, Accepted 17th October 2014
First published on 20th October 2014
Abstract
2-Benzoylbenzothiazoles were obtained in good yields via an efficient synthesis involving oxidative cyclization of α-benzoylthioformanilides catalyzed by FeCl3. This protocol has the advantages of short reaction times, moderate to good yields, convenient manipulation, and high selectivities.
Introduction
Benzothiazole derivatives are important heterocyclic compounds, and are found widely in natural products and pharmaceuticals.1 Many compounds containing a benzothiazole motif have potent biological activities such as antibacterial, antimicrobial, anti-inflammatory, anti-HIV, antibiotic, anticancer, and antiparasitic activities.2 Various benzothiazoles can be used as advanced materials in applications such as liquid crystals, nonlinear optics, organic light-emitting diodes, heat-resistant fibers, whitening agents, and constituents of cyanine dyes.3 2-Benzoylbenzothiazoles have received increasing attention recently due to the synthetic challenges and broad biological activities. It have been reported that (4-methyl-3-hydroxyphenyl)(6-hydroxy-1,3-benzothiazol-2-yl)methanone can be used as potent cPLA2α inhibitors.4 Although the synthesis of 2-arylbenzothiazoles has received much attention in the past few decades,5 2-benzoylbenzothiazoles have rarely been synthesized, because of the difficulty of introducing a benzoyl group at the 2-position of benzothiazoles. The methods reported for the synthesis of 2-benzoylbenzothiazoles include manganese triacetate-promoted cyclization of substituted thioformanilides,6 condensation of 2-aminothiophenol with arylformyl aldehydes,7 copper-catalyzed reactions of aromatic disulfide amines and aldehydes,8 one-pot tandem reactions of 1,1-dibromoethenes with 2-aminothiophenols, promoted by TBAF·3H2O and RuCl3/air,9 air-oxidized tandem reactions of 2-aminothiophenols and phenylacetaldehydes, catalyzed by FeCl3·6H2O,10 I2-promoted domino oxidative cyclizations of aromatic ketones with o-aminobenzennethiols,11 iron-catalyzed reactions of benzothiazoles and aromatic ketones, using oxygen as the oxidant,12 iron-catalyzed aroylation of benzothiazoles with aryl ketones,13 and CuI- and LiCl-catalyzed coupling reactions of 2-benzothiazolylizinc bromide with acid chlorides.14 Although these methods have been successfully used to synthesize a large library of 2-benzoylbenzothiazoles, many of them suffer from drawbacks such as unsatisfactory yields, long reaction times, side reactions, expensive catalysts, and inaccessible starting materials. The development of more efficient methods for the preparation of this type of heterocyclic compound is therefore still an active research area, and there is scope for further improvements to give milder reaction conditions and improved yields.
In recent years, iron, which is an abundant, economical, and environmentally friendly metal, has shown increasing promise as a catalyst in many organic syntheses.15 FeCl3, in particular, is cheap and readily available; it is highly reactive and has been widely used as a catalyst in aza-Michael additions,16 allylation of carbonyl compounds,17 Nazarov cyclizations,18 ring-opening reactions,19 electrophilic substitutions,20 hydroamination of alkenes,21 Prins reactions,22 alkylation,23 and other reactions.24 Recently Lei reported Fe-catalyzed oxidative C–H functionalization/C–S bond formation for the synthesis of benzothiazoles.25 This method has the advantages of good yields, high selectivity and mild reaction conditions. In this paper, we report the efficient synthesis of 2-benzoylbenzothiazoles via intramolecular C(Ar)–H and S–H activation/C–S bond formation catalyzed by FeCl3 under mild reaction conditions (Scheme 1).
 |
| | Scheme 1 Synthesis of 2-benzoylbenzothiazoles via FeCl3-catalyzed C–H and S–H activation. | |
Results and discussion
We selected the oxidative reaction of N-(4-methyl) benzoylbenzothioamide (1a) as the model reaction for optimizing the reaction conditions. When the reaction was carried out using K2S2O8 as the oxidant, in DMSO in the absence of an iron catalyst, the desired product 2a was obtained in only 22% yield (Table 1, entry 1). When 10 mol% FeCl3 was added, the yield improved to 36% (Table 1, entry 2). However, when the reaction was carried out in the presence of FeCl3 without K2S2O8, the reaction did not occur (Table 1, entry 3). The oxidant K2S2O8 is therefore very important for this transformation. Additives were used to promote the formation of a more easily oxidized imidothiolate anion. The addition of Et3N, Na2CO3, or HCl did not noticeably improve the yield (Table 1, entries 4–6). However, in the presence of pyridine, the yield of, and selectivity for, 2a improved considerably (Table 1, entry 7). The reaction yields were similar when the reaction was performed at 120 °C (Table 1, entry 8) and 80 °C. When the reaction temperature was lowered to 40 °C, the yield decreased (Table 1, entry 9). Increasing the amounts of pyridine, FeCl3, or K2S2O8 did not improve the yield (Table 1, entries 10–12). Other solvents, namely toluene, DMF, and EtOH, were used instead of DMSO under these conditions, but changing the solvent did not affect the reaction (Table 1, entries 13–15). Based on all these experiments, the optimum reaction conditions were identified as 10 mol% FeCl3, K2S2O8 (1 equiv.), and pyridine (2 equiv.) in DMSO at 80 °C.
Table 1 Optimization of reaction conditionsa

|
| Entry |
Catalyst (mol%) |
Oxidant |
Additive |
Solvent |
Temp. (°C) |
Yieldb (%) |
| 2a |
3a |
| All reactions are lead under a nitrogen atmosphere. Yields were determined by LC-MS. |
| 1 |
— |
K2S2O8 (1 eq.) |
— |
DMSO |
80 |
22 |
73 |
| 2 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
— |
DMSO |
80 |
36 |
63 |
| 3 |
FeCl3 (10) |
— |
— |
DMSO |
80 |
NR |
| 4 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Et3N (2 eq.) |
DMSO |
80 |
27 |
0 |
| 5 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Na2CO3 (2 eq.) |
DMSO |
80 |
45 |
0 |
| 6 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
HCl (2 eq.) |
DMSO |
80 |
55 |
4 |
| 7 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
DMSO |
80 |
86 |
0 |
| 8 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
DMSO |
120 |
86 |
0 |
| 9 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
DMSO |
40 |
72 |
3 |
| 10 |
FeCl3 (10) |
K2S2O8 (2 eq.) |
Pyridine (2 eq.) |
DMSO |
80 |
87 |
0 |
| 11 |
FeCl3 (15) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
DMSO |
80 |
87 |
8 |
| 12 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (4 eq.) |
DMSO |
80 |
84 |
7 |
| 13 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
Toluene |
80 |
31 |
7 |
| 14 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
EtOH |
80 |
NR |
| 15 |
FeCl3 (10) |
K2S2O8 (1 eq.) |
Pyridine (2 eq.) |
DMF |
80 |
NR |
With the optimum reaction conditions in hand, we evaluated the scope and functional group compatibility of this reaction. The influence of the substituents on the aniline ring (Table 2, entries 1–7) was not a crucial factor for this transformation, and substrates bearing electron-donating groups and electron-withdrawing groups all reacted smoothly and efficiently to give 2 in moderate to excellent yields. The substituents on the benzoyl group did not affect the reaction either (Table 2, entries 8–10 and 15–21). The reaction yields were not affected by steric hindrance by either substrate. It is important that this reaction has high regioselectivity. When reactants with a meta substituent on the aniline ring were used, the major products were substituted at C-7 (ortho to the newly formed C–S bond; Table 2, entries 6, 8, and 9).
Table 2 FeCl3-catalyzed synthesis of 2-benzoylbenzothiazoles 2

|
| Entry |
R1 |
R2 |
R3 |
R4 |
Ar |
Product |
Isolated yield (%) |
| 1 |
H |
H |
CH3 |
H |
C6H5 |
2a |
86 |
| 2 |
H |
H |
Br |
H |
C6H5 |
2b |
89 |
| 3 |
H |
H |
F |
H |
C6H5 |
2c |
93 |
| 4 |
H |
H |
Cl |
H |
C6H5 |
2d |
90 |
| 5 |
H |
H |
CH3O |
H |
C6H5 |
2e |
87 |
| 6 |
H |
H |
H |
CH3 |
C6H5 |
2f |
83 |
| 7 |
Cl |
H |
H |
H |
C6H5 |
2g |
83 |
| 8 |
H |
H |
F |
Cl |
4-CH3C6H4 |
2h |
90 |
| 9 |
H |
H |
H |
CH3 |
4-CH3C6H4 |
2i |
80 |
| 10 |
H |
H |
CH3O |
H |
4-CH3C6H4 |
2j |
88 |
| 11 |
H |
H |
F |
H |
Furan-2-yl |
2k |
96 |
| 12 |
H |
H |
CH3O |
H |
Furan-2-yl |
2l |
91 |
| 13 |
H |
H |
CH3O |
H |
Thiophen-2-yl |
2m |
93 |
| 14 |
H |
H |
Cl |
H |
Thiophen-2-yl |
2n |
94 |
| 15 |
H |
H |
CH3 |
H |
2-ClC6H4 |
2o |
87 |
| 16 |
H |
H |
CH3O |
H |
4-BrC6H4 |
2p |
85 |
| 17 |
H |
H |
Br |
H |
4-BrC6H4 |
2q |
87 |
| 18 |
H |
H |
CH3 |
H |
4-CH3OC6H4 |
2r |
89 |
| 19 |
H |
H |
F |
H |
4-CH3OC6H4 |
2s |
89 |
| 20 |
H |
H |
Cl |
H |
4-ClC6H4 |
2t |
85 |
| 21 |
H |
H |
EtO |
H |
4-(CH3)3CC6H4 |
2u |
90 |
Based on literature reports,25 we propose the following mechanism for the reaction (Scheme 2). Initially, α-benzoylthioformanilide 1 is oxidized by Fe3+, and loses an electron and H+ to form the thioyl radical intermediate A, accompanied by Fe3+ reduction to Fe2+. Fe2+ is re-oxidized by K2S2O8 to regenerate Fe3+. Cyclization of intermediate A, followed by oxidation in the presence of K2S2O8, gives the product 2-benzoylbenzothiazole 2.
 |
| | Scheme 2 Proposed mechanism of synthesis of 2-benzoylbenzothiazoles. | |
Conclusions
In summary, we developed an efficient protocol for the preparation of 2-benzoylbenzothiazole derivatives via C–H functionalization/C–S bond formation, catalyzed by FeCl3. This protocol has the advantages of short reaction times, good yields, mild reaction conditions, high selectivities, and convenient manipulation. This novel protocol will be valuable in the construction of such heterocycles, which are of biological and medicinal interest.
Experimental section
Melting points were determined using an XT-5 melting point apparatus and are uncorrected. IR spectra were recorded (cm−1) with a Varian F-1000 spectrometer, using KBr. 1H NMR (400 or 300 MHz) and 13C NMR (100 or 75 MHz) spectra were recorded using a Varian Inova-300 MHz and Varian Inova-400 MHz spectrometer, respectively, in DMSO-d6 or CDCl3 solution. J values are in hertz. Chemical shifts are expressed in parts per million downfield from TMS as an internal standard. HRMS of all the compounds were obtained using a Bruker MicrOTOF-QII mass spectrometer with an ESI resource. DMSO was dried and distilled from calcium hydride. Toluene was dried and distilled from sodium. All chemicals and solvents were used without further purification, unless otherwise stated. Compounds 1 were synthesized according to the procedure reported in the literature.26
General procedure
A Schlenk tube equipped with a stirring-bar was charged with FeCl3 (0.05 mmol), α-benzoylthioformanilides 1 (0.50 mmol), and K2S2O8 (135.1 mg, 0.50 mmol). The reaction tube was purged with nitrogen, and then pyridine (1.0 mmol) and DMSO (2 mL) were added to the reaction tube via a syringe. The Schlenk tube was warmed to 80 °C and stirred for 1 h. The reaction mixture was then quenched with water and extracted with ethyl acetate (20 mL × 2). The organic layers were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude products were purified by recrystallization from 95% EtOH to give pure 2 in 80–96% yields. The products were further identified using FTIR and NMR spectroscopies, and HRMS.
2-Benzoyl-6-methylbenzothiazole (2a). White solid: mp 100–102 °C (Lit.27 104–108 °C). IR (KBr): 3059, 1640, 1597, 1570, 1493, 1292, 1118, 909, 852, 704 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.50 (d, J = 7.6 Hz, 2H, ArH), 8.07 (d, J = 8.4 Hz, 1H, ArH), 7.75 (s, 1H, ArH), 7.62 (t, J = 7.2 Hz, 1H, ArH), 7.51 (t, J = 7.2 Hz, 2H, ArH), 7.35 (d, J = 8.4 Hz, 1H, ArH), 2.49 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ = 185.4, 166.1, 152.1, 138.3, 137.3, 135.1, 133.8, 131.2, 128.8, 128.5, 125.2, 121.7, 21.8. HRMS (ESI): m/z calcd for C15H11NNaOS [(M + Na)+], 276.0459; found, 276.0459.
2-Benzoyl-6-bromobenzothiazole (2b). White solid; mp 121–123 °C (Lit.8 123–125 °C); IR (KBr): 3099, 1642, 1594, 1535, 1478, 1287, 1123, 893, 703 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.56 (s, 1H, ArH), 8.42 (d, J = 6.6 Hz, 2H, ArH), 8.19 (d, J = 8.4 Hz, 1H, ArH), 7.80–7.75 (m, 2H, ArH), 7.65–7.59 (m, 2H, ArH). 13C NMR (100 MHz, CDCl3) δ = 184.9, 167.7, 152.7, 138.5, 134.7, 134.1, 131.3, 130.7, 128.6, 126.8, 124.8, 122.0.
2-Benzoyl-6-fluorobenzothiazole (2c). Light grey solid; mp 96–97 °C (Lit.27 92–97 °C); IR (KBr): 3086, 1641, 1598, 1563, 1497, 1440, 1248, 863, 704 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.42 (d, J = 6.9 Hz, 2H, ArH), 8.29–8.26 (m, 1H, ArH), 8.13 (d, J = 8.1 Hz, 1H, ArH), 7.76–7.73 (m, 1H, ArH), 7.64–7.60 (m, 2H, ArH), 7.54–7.50 (m, 1H, ArH); 13C NMR (75 MHz, DMSO-d6) δ = 185.0, 167.4, 161.8 (d, JCF = 245.8 Hz), 150.6, 138.3, 138.1, 134.7 (d, JCF = 9.5 Hz), 131.2, 129.1, 127.6 (d, JCF = 9.9 Hz), 116.9 (d, JCF = 25.4 Hz), 109.4 (d, JCF = 25.9 Hz); HRMS (ESI): m/z calcd for C14H8FNNaOS [(M + Na)+], 280.0208; found, 280.0200.
6-Chloro-2-benzoylbenzothiazole (2d). White solid; mp 105–106 °C (Lit.27 103–106 °C). IR (KBr): 3126, 1657, 1588, 1533, 1483, 1292, 1095, 844, 712 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.44–8.40 (m, 3H, ArH), 8.26 (d, J = 8.4 Hz, 1H, ArH), 7.76 (d, J = 6.3 Hz, 1H, ArH), 7.68–7.63 (m, 3H, ArH); 13C NMR (75 MHz, DMSO-d6) δ = 185.1, 168.1, 152.4, 138.1, 134.7, 133.2, 131.3, 129.1, 128.5, 127.1, 122.9; HRMS (ESI): m/z calcd for C14H8ClNNaOS [(M + Na)+], 295.9913; found, 295.9904.
2-Benzoyl-6-methoxybenzothiazole (2e). White solid; mp 168–169 °C (Lit.8 171–173 °C); IR (KBr): 3095, 1640, 1607, 1494, 1452, 1258, 1229, 1017, 860, 708 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.54 (d, J = 7.2 Hz, 2H, ArH), 8.11 (d, J = 9.2 Hz, 1H, ArH), 7.66 (t, J = 7.6 Hz, 1H, ArH), 7.56 (t, J = 7.6 Hz, 2H, ArH), 7.43–7.42 (m, 1H, ArH), 7.26–7.18 (m, 1H, ArH), 3.93 (s, 3H, OCH3). 13C NMR (100 MHz, CDCl3) δ = 185.2, 164.6, 159.8, 148.5, 139.1, 135.2, 133.7, 131.2, 128.5, 126.5, 117.7, 103.4, 55.9.
2-Benzoyl-7-methylbenzothiazole (2f). Light yellow solid; mp 96–98 °C; IR (KBr): 3121, 1642, 1597, 1480, 1440, 1291, 1123, 861, 784, 720 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.43 (d, J = 5.1 Hz, 2H, ArH), 8.10 (d, J = 7.2 Hz, 1H, ArH), 7.75 (d, J = 6.3 Hz, 1H, ArH), 7.65–7.55 (m, 3H, ArH), 7.47–7.44 (m, 1H, ArH), 2.59 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ = 185.4, 166.6, 153.8, 137.7, 135.0, 133.9, 132.2, 131.3, 128.5, 127.6, 127.2, 123.2, 21.4; HRMS (ESI): m/z calcd for C15H11NNaOS [(M + Na)+], 276.0459; found, 276.0472.
4-Chloro-2-benzoylbenzothiazole (2g). White solid; mp 110–111 °C (Lit.9 110–112 °C); IR (KBr): 3057, 1650, 1599, 1482, 1442, 1291, 1100, 888, 769 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.52–8.46 (m, 2H, ArH), 8.25–8.21 (m, 1H, ArH), 7.77–7.74 (m, 2H, ArH), 7.65–7.61 (m, 3H, ArH). 13C NMR (100 MHz, CDCl3) δ = 184.3, 167.8, 150.9, 138.4, 134.5, 134.2, 131.6, 130.5, 128.6, 128.1, 127.1, 120.7.
7-Chloro-6-fluoro-2-(4-methylbenzoyl)benzothiazole (2h). Light grey solid; mp 150–152 °C; IR (KBr): 3122, 1633, 1601, 1494, 1452, 1390, 1294, 1268, 1253, 1184, 1093, 968, 891 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.46 (d, J = 8.0 Hz, 2H, ArH), 8.11–8.08 (m, 1H, ArH), 7.41 (d, J = 9.2 Hz, 1H, ArH), 7.38–7.34 (m, 2H, ArH), 2.47 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ = 183.7, 168.3, 157.3 (d, JCF = 250.8 Hz), 150.1, 145.4, 139.1, 131.8, 131.7, 131.4, 129.3, 126.8, 125.0 (d, JCF = 8.4 Hz), 116.6 (d, JCF = 24.3 Hz), 113.8 (d, JCF = 22.7 Hz), 109.0, 108.8, 21.9; HRMS (ESI): m/z calcd for C15H9ClFNNaOS [(M + Na)+], 327.9975; found, 327.9974.
7-Methyl-2-(4-methylbenzoyl)benzothiazole (2i). White solid; mp 112–114 °C; IR (KBr): 3095, 1639, 1600, 1560, 1479, 1286, 1180, 1121, 864, 789 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.47 (d, J = 8.0 Hz, 2H, ArH), 8.08 (d, J = 8.4 Hz, 1H, ArH), 7.50 (t, J = 7.6 Hz, 1H, ArH), 7.32–7.37 (m, 3H, ArH), 2.65 (s, 3H, CH3), 2.47 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ = 185.0, 166.9, 153.8, 144.9, 137.6, 132.5, 132.3, 131.4, 129.3, 127.4, 127.1, 123.1, 21.9, 21.4; HRMS (ESI): m/z calcd for C16H13NNaOS [(M + Na)+], 290.0616; found, 290.0606.
2-(4-Methylbenzoyl)-6-methoxybenzothiazole (2j). Light grey solid; mp 148–150 °C; IR (KBr): 3094, 1634, 1604, 1492, 1450, 1255, 1229, 1180, 1020, 865, 830, 741 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.45 (d, J = 7.6 Hz, 2H, ArH), 8.09 (d, J = 9.2 Hz, 1H, ArH), 7.40 (s, 1H, ArH), 7.34 (d, J = 7.6 Hz, 2H, ArH), 7.17 (d, J = 8.8 Hz, 1H, ArH), 3.91 (s, 3H, OCH3), 2.46 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ = 184.7, 164.9, 159.6, 148.5, 144.7, 139.0, 132.6, 131.3, 129.2, 126.4, 117.5, 103.4, 55.8, 21.8; HRMS (ESI): m/z calcd for C16H13NNaO2 [(M + Na)+], 306.0565; found, 306.0570.
(6-Fluorobenzo[d]thiazol-2-yl)(furan-2-yl)methanone (2k). Grey solid; mp 144–146 °C; IR (KBr): 3126, 1636, 1597, 1497, 1461, 1393, 1247, 1015, 840 cm−1; 1H NMR (300 MHz, DMSO-d6) δ = 8.33 (s, 1H, ArH), 8.17–8.14 (m, 1H, ArH), 7.83 (s, 1H, ArH), 7.66 (d, J = 7.6 Hz, 1H, ArH), 7.34–7.28 (m, 1H, ArH), 6.69 (s, 1H, ArH); 13C NMR (75 MHz, DMSO-d6) δ = 173.5, 168.6, 163.8 (d, JCF = 245.6 Hz), 153.2, 152.7, 151.4, 140.1 (d, JCF = 11.8 Hz), 129.6 (d, JCF = 9.4 Hz), 128.0, 119.2 (d, JCF = 25.3 Hz), 116.1, 111.7 (d, JCF = 27.2 Hz); HRMS (ESI): m/z calcd for C12H6FNNaO2S [(M + Na)+], 270.0001; found, 270.0012.
(Furan-2-yl)(6-methoxybenzo[d]thiazol-2-yl)methanone (2l). Light yellow solid; mp 208–210 °C; IR (KBr): 3086, 1629, 1603, 1495, 1465, 1399, 1259, 1230, 1024, 839, 797, 755 cm−1; 1H NMR (400 MHz, DMSO-d6) δ = 8.29–8.24 (m, 2H, ArH), 8.15 (d, J = 8.4 Hz, 1H, ArH), 7.81 (s, 1H, ArH), 7.27 (d, J = 8.4 Hz, 1H, ArH), 6.88 (s, 1H, ArH), 3.89 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3) δ = 172.1, 163.4, 159.7, 149.9, 148.6, 148.4, 138.9, 126.2, 124.5, 117.7, 112.8, 103.4, 55.9; HRMS (ESI): m/z calcd for C13H9NNaO3S [(M + Na)+], 282.0201; found, 282.0200.
(6-Methoxybenzo[d]thiazol-2-yl)(thiophen-2-yl)methanone (2m). Light yellow solid; mp 162–164 °C. IR (KBr): 3065, 1621, 1605, 1495, 1410, 1256, 1230, 1038, 833 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.71 (s, 1H, ArH), 8.09 (s, 1H, ArH), 7.80 (s, 1H, ArH), 7.38 (s, 1H, ArH), 7.18 (s, 2H, ArH), 3.91 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3) δ = 176.9, 164.0, 159.7, 148.3, 139.8, 139.1, 137.0, 136.4, 128.4, 126.3, 117.7, 103.5, 55.9; HRMS (ESI): m/z calcd for C13H9NNaO2S2 [(M + Na)+], 297.9972; found, 297.9986.
(6-Chlorobenzo[d]thiazol-2-yl)(thiophen-2-yl)methanone (2n). Light grey solid; mp 140–142 °C; IR (KBr): 3088, 1630, 1485, 1410, 1294, 1124, 1087, 1038, 813, 785, 718 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.74 (s, 1H, ArH), 8.13 (d, J = 8.4 Hz, 1H, ArH), 7.97 (s, 1H, ArH), 7.85–7.84 (m, 1H, ArH), 7.54 (d, J = 8.8 Hz, 1H, ArH), 7.26 (s, 1H, ArH); 13C NMR (75 MHz, CDCl3) δ = 176.6, 167.1, 152.2, 139.5, 138.1, 137.5, 137.0, 133.9, 128.5, 128.0, 126.3, 121.8; HRMS (ESI): m/z calcd for C12H6ClNNaOS2 [(M + Na)+], 301.9477; found, 301.9455.
2-(2-Chlorobenzoyl)-6-methylbenzothiazole (2o). Light yellow solid; mp 164–166 °C; IR (KBr): 3079, 1658, 1588, 1485, 1433, 1297, 1267, 909, 857, 813, 744 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.03 (d, J = 8.4 Hz, 1H, ArH), 7.79 (s, 1H, ArH), 7.77–7.73 (m, 1H, ArH), 7.53–7.46 (m, 2H, ArH), 7.43–7.39 (m, 1H, ArH), 7.3–7.36 (m, 1H, ArH), 2.52 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ = 187.7, 164.9, 152.0, 138.8, 137.8, 136.1, 132.6, 132.3, 130.8, 130.5, 129.0, 126.5, 125.5, 121.9, 21.9; HRMS (ESI): m/z calcd for C15H10ClNNaOS [(M + Na)+], 310.0069; found, 310.0057.
2-(4-Bromobenzoyl)-6-methoxybenzothiazole (2p). Light yellow solid; mp 192–195 °C (Lit.28 197–199 °C); IR (KBr): 3090, 1637, 1604, 1496, 1448, 1257, 1114, 1016, 910, 863, 832, 747 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.44 (s, 2H, ArH), 8.08 (s, 1H, ArH), 7.69 (s, 2H, ArH), 7.40 (s, 1H, ArH), 7.19 (s, 1H, ArH), 3.93 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3) δ = 184.0, 164.2, 159.9, 148.5, 139.2, 133.9, 132.7, 131.8, 129.2, 126.5, 117.8, 103.4, 55.9; HRMS (ESI): m/z calcd for C15H10BrNNaO2S [(M + Na)+], 369.9513; found, 369.9493.
2-(4-Bromobenzoyl)-6-bromobenzothiazole (2q). Light yellow solid; mp 160–161 °C; IR (KBr): 3092, 1642, 1584, 1477, 1397, 1289, 1124, 1075, 891, 836, 751 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.44 (d, J = 7.6 Hz, 2H, ArH), 8.16 (s, 1H, ArH), 8.08 (d, J = 8.8 Hz, 1H, ArH), 7.70 (d, J = 6.8 Hz, 3H, ArH); 13C NMR (75 MHz, CDCl3) δ = 182.7, 166.2, 151.5, 137.5, 132.3, 131.7, 130.9, 129.8, 128.7, 125.7, 123.7, 121.2; HRMS (ESI): m/z calcd for C14H7Br2NNaOS [(M + Na)+], 417.8513; found, 417.8509.
2-(4-Methoxybenzoyl)-6-methylbenzothiazole (2r). Light yellow solid; mp 138–139 °C (Lit.9 137–139 °C); IR (KBr): 3033, 2913, 1632, 1603, 1494, 1301, 1267, 1118, 1031, 911, 860, 814, 760 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.63 (d, J = 8.4 Hz, 2H, ArH), 8.09 (d, J = 8.4 Hz, 1H, ArH), 7.77 (s, 1H, ArH), 7.37 (d, J = 8.4 Hz, 1H, ArH), 7.03 (d, J = 8.4 Hz, 1H, ArH), 3.91 (s, 3H, OCH3), 2.52 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ = 183.7, 167.2, 164.6, 152.4, 138.4, 137.5, 134.1, 129.0, 128.2, 125.4, 122.0, 114.2, 55.9, 22.2; HRMS (ESI): m/z calcd for C16H13NNaO2S [(M + Na)+], 306.0565; found, 306.0575.
6-Fluoro-2-(4-methoxybenzoyl)benzothiazole (2s). Light yellow solid; mp 146–148 °C; IR (KBr): 3097, 1632, 1603, 1564, 1501, 1448, 1304, 1250, 1177, 1111, 869, 840, 760 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.56 (d, J = 8.4 Hz, 2H, ArH), 8.18–8.17 (m, 1H, ArH), 7.66 (d, J = 8.0 Hz, 1H, ArH), 7.33–7.29 (m, 1H, ArH), 7.14 (d, J = 8.4 Hz, 1H, ArH), 3.91 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3) δ = 181.8, 166.8, 163.4, 160.8 (d, JCF = 248.2 Hz), 149.5, 137.1 (d, JCF = 11.2 Hz), 132.8, 126.5, 125.8 (d, JCF = 9.6 Hz), 115.0 (d, JCF = 25.1 Hz), 112.9, 107.1 (d, JCF = 26.5 Hz), 54.6; HRMS (ESI): m/z calcd for C15H11FNO2S [(M + Na)+], 288.0495; found, 288.0471.
6-Chloro-2-(4-chlorobenzoyl)benzothiazole (2t). Light yellow solid; mp 136–138 °C; IR (KBr): 3089, 1638, 1586, 1479, 1294, 1134, 1095, 898, 842, 810, 750 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.54 (d, J = 8.8 Hz, 2H, ArH), 8.14 (d, J = 8.8 Hz, 1H, ArH), 7.99 (s, 1H, ArH), 7.56–7.52 (m, 3H, ArH); 13C NMR (75 MHz, CDCl3) δ = 184.5, 167.3, 152.3, 140.8, 138.1, 134.2, 132.9, 132.7, 128.9, 128.1, 126.5, 121.8; HRMS (ESI): m/z calcd for C14H7Cl2NNaOS [(M + Na)+], 329.9523; found, 329.9499.
2-(4-tert-butylbenzoyl)-6-ethoxybenzothiazole (2u). Light yellow solid; mp 108–110 °C; IR (KBr): 3080, 2970, 1633, 1601, 1492, 1250, 1223, 1191, 1054, 899, 861, 726 cm−1; 1H NMR (400 MHz, CDCl3) δ = 8.48 (d, J = 8.8 Hz, 2H, ArH), 8.07 (d, J = 9.2 Hz, 1H, ArH), 7.56 (d, J = 8.8 Hz, 2H, ArH), 7.37 (s, 1H, ArH), 7.16–7.14 (m, 1H, ArH), 4.14–4.09 (m, 2H, CH2), 1.47 (t, J = 6.8 Hz, 3H, CH3), 1.37 (s, 9H, 3 × CH3); 13C NMR (75 MHz, CDCl3) δ = 183.7, 163.8, 158.0, 156.4, 147.4, 138.0, 131.5, 130.1, 125.3, 124.5, 116.8, 102.9, 63.1, 34.2, 30.1, 13.7; HRMS (ESI): m/z calcd for C20H21NNaO2S [(M + Na)+], 362.1191; found, 362.1202.
Acknowledgements
We are grateful for financial support from the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (no. 10KJA150049), the Natural Science Foundation of Jiangsu Province (no. BK20131160), the Natural Science Foundation of the Jiangsu Higher Education Institutions (no. 11KJB150014), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Foundation of the Key Laboratory of Organic Synthesis of Jiangsu Province (no. JSK1210).
References
- D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893 CrossRef CAS PubMed.
-
(a) T. D. Bradshaw and A. D. Westwell, Curr. Med. Chem., 2004, 11, 1009 CrossRef CAS;
(b) E. Kashiyama, L. Hutchinson, M. S. Chua, S. F. Stinson, L. R. Phillips, G. Kaur, E. A. Sausville, T. D. Bradshaw, A. D. Westwell and M. F. G. Stevens, J. Med. Chem., 1999, 42, 4172 CrossRef CAS PubMed;
(c) I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell and M. F. G. Stevens, J. Med. Chem., 2002, 45, 744 CrossRef CAS PubMed;
(d) I. Hutchinson, M. S. Chua, H. L. Browne, V. Trapani, T. D. Bradshaw, A. D. Westwell and M. F. G. Stevens, J. Med. Chem., 2001, 44, 1446 CrossRef CAS PubMed;
(e) S. M. Sondhi, N. Singh, A. Kumar, O. Lozach and L. Meijer, Bioorg. Med. Chem., 2006, 14, 3758 CrossRef CAS PubMed;
(f) B. Gong, F. Hong, C. Kohm, L. Bonham and P. Klein, Bioorg. Med. Chem. Lett., 2004, 14, 1455 CrossRef CAS PubMed;
(g) A. Pinar, P. Yurdakul, I. Yildiz, O. Temiz-Arpaci, N. L. Acan, E. Aki-Senr and I. Yalcin, Biochem. Biophys. Res. Commun., 2004, 317, 670 CrossRef CAS PubMed;
(h) S. M. Rida, F. A. Ashour, S. A. M. El-Hawsh, M. M. ElSemary, M. H. Badr and M. A. Shalaby, Eur. J. Med. Chem., 2005, 40, 949 CrossRef CAS PubMed;
(i) P. E. Sum, D. How, N. Torres, H. Newman, P. J. Petersen and T. S. Mansoura, Bioorg. Med. Chem. Lett., 2003, 13, 2607 CrossRef CAS.
-
(a) A. Reiser, L. J. Leyshon, D. Saunders, M. V. Mijovic, A. Bright and J. Bogie, J. Am. Chem. Soc., 1972, 94, 2414 CrossRef CAS;
(b) W. J. Ke, H. S. Xu, X. F. Liu and X. H. Wan, Heterocycles, 2000, 53, 1821 CrossRef CAS PubMed;
(c) F. S. Rodembusch, T. Buckup, M. Segala, L. Tavares, R. R. B. Correia and V. Stefani, Chem. Phys., 2004, 305, 115 CrossRef CAS PubMed;
(d) J. R. Gong, L. J. Wan, S. B. Lei, C. L. Bai, X. H. Zhang and S. T. Lee, J. Phys. Chem. B, 2005, 109, 1675 CrossRef CAS PubMed;
(e) T. R. Chen, J. Mol. Struct., 2005, 737, 35 CrossRef CAS PubMed;
(f) C. S. Wang, I. W. Wang, K. L. Cheng and C. K. Lai, Tetrahedron, 2006, 62, 9383 CrossRef CAS PubMed.
- A. Spadaro, M. Frotscher and R. W. Hartmann, J. Med. Chem., 2012, 55, 2469 CrossRef CAS PubMed.
-
(a) M. T. Bogert and B. Naiman, J. Am. Chem. Soc., 1935, 57, 1529 CrossRef CAS;
(b) Y. Kawashita, C. Ueba and M. Masahiko, Tetrahedron Lett., 2006, 47, 4231 CrossRef CAS PubMed;
(c) J. A. Seijas, M. P. Vázquez-Tato, M. R. Carballido-Reboredo, J. Crecente-Campo and L. Romar-López, Synlett, 2007, 313 CrossRef CAS PubMed;
(d) S. Rudrawer, A. Kondaskar and A. K. Chakraborti, Synthesis, 2005, 2521 Search PubMed;
(e) R. H. Tale, Org. Lett., 2002, 4, 1641 CrossRef CAS PubMed;
(f) Y. H. So and R. DeCaire, Synth. Commun., 1998, 28, 4123 CrossRef CAS;
(g) C. Benedl, F. Bravo, P. Uriz, E. Fernández, C. Claver and S. Castillón, Tetrahedron Lett., 2003, 44, 6073 CrossRef;
(h) C. H. Chou, P. C. Yu and B. C. Wang, Tetrahedron Lett., 2008, 49, 4145 CrossRef CAS PubMed;
(i) M. Rueping and W. Ieawsuwan, Synlett, 2007, 247 CrossRef CAS PubMed;
(j) T. Itoh, K. Nagata, H. Ishikawa and A. Ohsawa, Heterocycles, 2004, 62, 197 CrossRef CAS PubMed;
(k) D. Q. Shi, S. F. Rong and G. L. Dou, Synth. Commun., 2010, 40, 2302 CrossRef CAS;
(l) Y. Liao, H. Qi, S. Chen, P. Jiang, W. Zhou and G. J. Deng, Org. Lett., 2012, 14, 6004 CrossRef CAS PubMed;
(m) S. Lin and L. Yang, Tetrahedron Lett., 2005, 46, 4315 CrossRef CAS PubMed.
- X. J. Mu, J. P. Zou, R. S. Zeng and J. C. Wu, Tetrahedron Lett., 2005, 46, 4345 CrossRef CAS PubMed.
- X. L. Yang, C. M. Xu, S. M. Lin, J. X. Chen, J. C. Ding, H. Y. Wu and W. K. Su, J. Braz. Chem. Soc., 2010, 21, 37 CrossRef CAS PubMed.
- J. Hyvl and J. Srogl, Eur. J. Org. Chem., 2010, 2849 CrossRef CAS.
- X. Fan, Y. He, X. Zhang, S. Guo and Y. Wang, Tetrahedron, 2011, 67, 6369 CrossRef CAS PubMed.
- X. Fan, Y. He, Y. Wang, Z. Xue, X. Zhang and J. Wang, Tetrahedron Lett., 2011, 52, 899 CrossRef CAS PubMed.
- Y. P. Zhu, M. Lian, F. C. Jia, M. C. Liu, J. J. Yuan, Q. H. Gao and A. X. Wu, Chem. Commun., 2012, 48, 9086 RSC.
- S. Liu, R. Chen, H. Chen and G. J. Deng, Tetrahedron Lett., 2013, 54, 3838 CrossRef CAS PubMed.
- J. Wang, X. Z. Zhang, S. Y. Chen and X. Q. Yu, Tetrahedron, 2014, 70, 245 CrossRef CAS PubMed.
- S. Y. Park, K. Lee and S. H. Kim, Bull. Korean Chem. Soc., 2014, 35, 1848 CrossRef CAS.
-
(a) C. Bolm, J. Legros, J. Le Paih and L. Zani, Chem. Rev., 2004, 104, 6217 CrossRef CAS PubMed;
(b) B. D. Sherry and A. Fürster, Acc. Chem. Res., 2008, 41, 1500 CrossRef CAS PubMed;
(c) A. Correa, O. G. Mancheno and C. Bolm, Chem. Soc. Rev., 2008, 37, 1108 RSC;
(d) P. D. Oldenburg, A. A. Shteinman and L. Que Jr, J. Am. Chem. Soc., 2005, 127, 15627 CrossRef PubMed;
(e) S. Enthaler, K. Junge and M. Beller, Angew. Chem., Int. Ed., 2008, 47, 3317 CrossRef CAS PubMed;
(f) F. Shi, M. K. Tse, Z. P. Li and M. Beller, Chem.–Eur. J., 2008, 14, 8793 CrossRef CAS PubMed;
(g) X. B. Xu, J. Liu, L. F. Liang, H. F. Li and Y. Z. Li, Adv. Synth. Catal., 2009, 351, 2599 CrossRef CAS.
-
(a) M. Pérez and R. Pleixats, Tetrahedron, 1995, 51, 8355 CrossRef;
(b) L.-W. Xu, C.-G. Xia and X.-X. Hu, Chem. Commun., 2003, 2570 RSC.
-
(a) T. Watahiki and T. Oriyama, Tetrahedron Lett., 2002, 43, 8959 CrossRef CAS;
(b) T. Watahiki, Y. Akabane, S. Mori and T. Oriyama, Org. Lett., 2003, 5, 3045 CrossRef CAS PubMed.
-
(a) T. K. Jones and S. E. Denmark, Helv. Chim. Acta, 1983, 66, 2377 CrossRef CAS;
(b) Y. Wang, A. M. Arif and F. G. West, J. Am. Chem. Soc., 1999, 121, 876 CrossRef CAS.
-
(a) N. Iranpoor and P. Salehi, Synthesis, 1994, 1152 CrossRef CAS PubMed;
(b) N. Iranpoor, T. Tarrian and Z. Movahedi, Synthesis, 1996, 1473 CrossRef CAS PubMed.
- J. Marquié, A. Laporterie, J. Dubac, N. Roques and J.-R. Desmurs, J. Org. Chem., 2001, 66, 421 CrossRef.
-
(a) J. Michaux, V. Terrason, S. Marque, J. Wehbe, D. Prim and J. M. Campagne, Eur. J. Org. Chem., 2007, 2601 CrossRef;
(b) K. Komeyama, Y. Mieno, S. Yukawa, T. Morimoto and K. Takaki, Chem. Lett., 2007, 36, 752 CrossRef CAS.
- K. Zheng, X. Liu, S. Qin, M. Xie, L. Lin, C. Hu and X. Feng, J. Am. Chem. Soc., 2012, 134, 17564 CrossRef CAS PubMed.
-
(a) M. R. Zanwar, V. Kavala, S. D. Gawande, C. W. Kuo, W. C. Huang, T. S. Kuo, H. N. Huang, C. H. He and C. F. Yao, J. Org. Chem., 2014, 79, 842 CrossRef PubMed;
(b) L. R. Jefferies and S. P. Cook, Org. Lett., 2014, 16, 2026 CrossRef CAS PubMed.
-
(a) S. Jalal, K. Bera, S. Sarkar, K. Paul and U. Jana, Org. Biomol. Chem., 2014, 12, 1759 RSC;
(b) K. C. Majumdar and D. Ghosh, Tetrahedron Lett., 2014, 55, 3108 CrossRef CAS PubMed;
(c) D. Leifert, C. G. Daniliuc and A. Studer, Org. Lett., 2013, 15, 6286 CrossRef CAS PubMed;
(d) K. Paul, K. Bera, S. Jalal, S. Sarkar and U. Jana, Org. Lett., 2014, 16, 2166 CrossRef CAS PubMed;
(e) W. Du, L. Tian, J. Lai, X. Huo, X. Xie, X. She and S. Tang, Org. Lett., 2014, 16, 2470 CrossRef CAS PubMed.
- H. Wang, L. Wang, J. Shang, X. Li, H. Wang, J. Gui and A. Lei, Chem. Commun., 2012, 48, 76 RSC.
- R. S. Zeng, J. P. Zou, S. J. Zhi and Q. Shen, Youji Huaxue, 2004, 24, 166 CAS.
- F. F. Gao, Y. Q. Guo, H. Z. Li, A. X. Wu and W. J. Xue, Org. Lett, 2013, 15, 890 CrossRef PubMed.
- Q. Cai, Q. Gao, F. Jia, M. Liu, A. Wu, X. Wu and Y. P. Zhu, J. Org. Chem, 2013, 78, 2792 CrossRef PubMed.
Footnote |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra09495f |
|
| This journal is © The Royal Society of Chemistry 2014 |
Click here to see how this site uses Cookies. View our privacy policy here.