Synthesis of amides through an oxidative amidation of tetrazoles with aldehydes under transition-metal-free conditions

Juan Du, Kai Luo and Xiuli Zhang*
Department of Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China. E-mail: zhxiuli@163.com; Tel: +86-551-6578-6791

Received 26th July 2014 , Accepted 29th September 2014

First published on 29th September 2014


Abstract

A simple, inexpensive and efficient one-pot synthesis of amides was achieved in good yields via the direct oxidative amidation of tetrazoles with aldehydes under transition-metal-free conditions.


Amides have attracted considerable attention not only because of their remarkable biological and pharmacological activity, but also because of they are useful functional groups for the preparation of various organic compounds.1,2 To our knowledge, more than 50% of known drugs contain an amide group.3 Amide formation reaction is one of the key cornerstone reactions in organic chemistry.4 Typically, amide bond is synthesized by acylation of amines with carboxylic acid derivatives (acid chloride, anhydride, active esters, etc.).5 It is estimated that amide formation accounts for 16% of all reactions are used in the synthesis of current pharmaceuticals.3 However, these strategies have several innate drawbacks, such as using highly hazardous reagents, poor atom-efficiency. To circumvent these problems, alternative methods for the synthesis of amide were developed, such as Staudinger reaction,6 Schmidt reaction,7 Beckmann rearrangement,8 aminocarbonylation of haloarenes,9 iodonium-promoted α-halo nitroalkane amine coupling,10 direct amide synthesis from alcohols with amines or nitroarenes,11 hydroamination of alkynes,12 amidation of thioacids with azides,13 and trans-amidation of primary amides.14 Unfortunately, most of the methods outlined above have not been applied in industry due to drawbacks such as the use of expensive transition metal catalysis,15 limited substrate scope, harsh reaction conditions, and growing focus on green chemistry,16 etc. Hence, the development of efficient and practical amide formation reactions remains a great challenge. In the past decades, great efforts have been made to develop environmentally and friendly methods to amides synthesis.17 Among the emerging amide formation methods, transition-metal-free oxidative amidation is an attractive method with potential industrial applications.

Apart from the wide applications of 1-aryltetrazoles in rocket propellants and explosives, they are also used for the organic transformation via their C–H bond functionalizations.18 To the best of our knowledge, there are no examples using tert-butyl hydroperoxide system for the direct oxidative amidation with aldehydes under transition-metal-free conditions. It can overcome the drawbacks of the expensive, poisonous, and air-sensitive properties of metals or organometallics. Herein, the reaction of tetrazoles with aldehydes for direct synthesis of amides in the presence of tert-butyl hydroperoxide (TBHP) will be described, which generated the desired products in good yields (Scheme 1).


image file: c4ra07658c-s1.tif
Scheme 1 The amidation of tetrazoles with aldehydes.

In our initial attempt, we chose the reaction of 1-phenyltetrazole with benzaldehyde as the model substrates. The results on the reaction conditions screening were shown in Table 1. It could be found that tert-butyl hydroperoxide (TBHP, 70% aqueous solution, 2.0 equiv.) was favored as the best oxidant for the model reaction in DMF (N,N-dimethylformamide), providing desired product 3aa in 82% yield (Table 1, entry 1). Other oxidants, such as CHP (cumene hydroperoxide), DTBP (di-tert-butyl peroxide), H2O2 and PhI(OAc)2 were less effective and gave 3aa in 48–62% yields (Table 1, entries 2–5). However, it was found that K2S2O8, (NH4)2S2O8, and I2 obviously shut down the transformation completely (Table 1, entries 6–8). The solvent is also plays an important role in the reaction. Among the tested solvents, DMF (N,N-dimethylformamide) was the best one in the model reaction (Table 1, entry 1). On performing the model reaction in DCE (1,2-dichloroethane) and THF (tetrahydrofuran) afforded 3aa in 40% and 32% yield, respectively (Table 1, entries 9 and 10). However, the reaction did not work in DMSO (dimethyl sulfoxide), NMP (N-methylpyrrolidone), CH3NO2, toluene, CH3CN, EtOH, CH2Cl2, acetone, EtOAc, DMAC (dimethylacetamide), 1,4-dioxane, or H2O (Table 1, entries 11–22).

Table 1 Optimization of the reaction conditions for the oxidative amidation of 1a with 2aa

image file: c4ra07658c-u1.tif

Entry Oxidant Solvent T/oC Yieldb (%)
a Reaction conditions: 1a (0.50 mmol), 2a (1.0 mmol), oxidant (2.0 equiv.), sealed tube, solvent (2.0 mL) at the temperature indicated in Table 1 for 12 h, unless otherwise noted, TBHP (70% aqueous) was used. N. R. = no reaction.b Isolated yield.c 35% wt in H2O.d 2a (0.75 mmol, 1.5 equiv.) was used.e 2a (0.50 mmol, 1.0 equiv.) was used.f 2a (0.25 mmol, 0.50 equiv.) was used.
1 TBHP DMF 130 82
2 CHP DMF 130 62
3 DTBP DMF 130 59
4 H2O2 DMF 130 55c
5 PhI(OAc)2 DMF 130 48
6 K2S2O8 DMF 130 N. R.
7 (NH4)2S2O8 DMF 130 N. R.
8 I2 DMF 130 N. R.
9 TBHP DCE 80 40
10 TBHP THF 70 32
11 TBHP DMSO 130 N. R.
12 TBHP NMP 130 N. R.
13 TBHP CH3NO2 100 N. R.
14 TBHP Toluene 110 N. R.
15 TBHP CH3CN 80 N. R.
16 TBHP EtOH 80 N. R.
17 TBHP CH2Cl2 50 N. R.
18 TBHP Acetone 60 N. R.
19 TBHP EtOAc 80 N. R.
20 TBHP DMAC 130 N. R.
21 TBHP 1,4-Dioxane 100 N. R.
22 TBHP H2O 100 N. R.
23 TBHP DMF 130 61d
24 TBHP DMF 130 45e
25 TBHP DMF 130 27f


For the investigation of the molar ratio between 1a and 2a, we found that the molar ratio of 2a/1a more than 2.0 gave the best yield of 3aa. When the molar ratio of 2a/1a is less than 2.0, the reaction generated the poor yields of product 3aa (Table 1, entries 23–25). During the course of further optimization of the reaction conditions, the reaction was generally completed within 12 h when it was performed in DMF at 130 °C by using TBHP (70% aqueous solution, 2.0 equiv.) as sole oxidant.

After the optimized reaction conditions had been established, the methodology on the reaction of an array of substituted tetrazoles and commercially available aldehydes was examined (Table 2). As shown in Table 2, we found that a wide range of substituted tetrazoles were suitable for the reaction. 1-Aryltetrazoles with both electron-donating groups (Me, Et, i-Pr, MeO, EtO) and an electron-withdrawing group (F) on the benzene rings could react with benzaldehyde smoothly to generate the desired products 3aa–3ma in 53–82% yields (Table 2). Furthermore, substituents at different positions of the benzene rings in 1-aryltetrazoles (para-, meta-, or ortho-position) did not affect the efficiency of the reaction obviously (Table 2, 3ba–3da, 3ka–3ma). The scope of this metal-free amidation was further expanded to a variety of aldehydes. Arylaldehydes attached with electron-donating groups (Me, MeO) or an electron-withdrawing group (Cl) on the benzene rings reacted with 1-aryltetrazoles to afford the corresponding products 3ab–3gd in 44–81% yields (Table 2). It should be noted that an obvious ortho-position effect was observed in the reaction of arylaldehydes with tetrazoles (Table 2, 3ab, 3ae, 3ag, 3db, 3gb). For example, ortho-methylbenzaldehyde reacted with 1-phenyltetrazole to give the anticipated product 3ab in 58% yield; but para-methylbenzaldehyde reacted with 1-phenyltetrazole to afford the desired product 3ad in 81% yield. It is important to note that the reactions of 1-(naphthalen-1-yl)-1H-tetrazole with benzaldehyde, and 1-phenyltetrazole with 2-naphthaldehyde underwent to generate the corresponding products 3na and 3ah in 47% and 55% yield, respectively. Meanwhile, 2-(1H-tetrazol-1-yl)pyridine reacted with benzaldehyde, providing the product 3oa in 51% yield. Heterocyclic aldehydes, such as quinoline-2-carbaldehyde and thiophene-2-carbaldehyde also reacted with 1-phenyltetrazole to form the desired products 3ai and 3aj in 49%, 38% yield, respectively (Table 2). However, when aliphatic aldehyde, such as butyraldehyde or heptanal reacted with 1-phenyl-1H-tetrazole under the standard reaction conditions, no desired product was detected. When aliphatic 1H-tetrazole, such as 1-cyclohexyl-1H-tetrazole or 1-(tert-butyl)-1H-tetrazole was used in the reaction with benzaldehyde, only trace amount of product was observed.

Table 2 Oxidative amidation of tetrazoles with aldehydesa

image file: c4ra07658c-u2.tif

a Reaction conditions: 1 (0.50 mmol), 2 (1.0 mmol), TBHP (70% aqueous solution, 2.0 equiv.), DMF (2.0 mL), 130 °C, 12 h.b Isolated yields.
image file: c4ra07658c-u3.tif


In order to investigate the reaction mechanism, the related control experiments were carried out, shown in Scheme 2. When 1-phenyl-1H-tetrazole (1a) was treated with benzoic acid (5a) under the standard reaction conditions in the absence of TBHP, the reaction resulted in the formation of desired N-phenylbenzamide (3aa) in 85% yield (Scheme 2, eqn (1)). Meanwhile, 1a reacted with benzaldehyde (2a) in the absence of TBHP, only trace amount of 3aa was detected (Scheme 2, eqn (2)). Thus, the function of TBHP was probably as an oxidant to transform benzaldehyde 2a into benzoic acid 5a, which was also confirmed (Scheme 2, eqn (3)). On the other hand, 1-phenyl-1H-tetrazole (1a) was transformed into N-phenylcyanamide 4a in 48% yield without TBHP (Scheme 2, eqn (4)). Simultaneously, treatment of 4a with 2a in the absence of TBHP, expected product 3aa was isolated only in 25% yield (Scheme 2, eqn (5)). When 4a reacted with 2a in the presence of TBHP, the desired product 3aa was obtained 81% yield (Scheme 2, eqn (6)). Importantly, the reaction of 4a with 5a in the absence of TBHP provided 3aa in 89% yield (Scheme 2, eqn (7)).


image file: c4ra07658c-s2.tif
Scheme 2 The control experiments.

Based on our results and literature, a plausible mechanism for this reaction was proposed in Scheme 3. Firstly, 1-phenyl-1H-tetrazole (1a) was transformed into N-phenylcyanamide 4a with losing of N2.18d,18f The obtained 4a then reacted with benzoic acid (5a), generated from the oxidation of benzaldehyde (2a) by TBHP, to form the intermediate 6a. Finally, 6a underwent intramolecular elimination of cyano group by the reaction with H2O in the system to give the desired product 3aa and carbamic acid.


image file: c4ra07658c-s3.tif
Scheme 3 Proposal reaction mechanism.

Conclusion

In summary, we have described an environmentally and friendly system for the synthesis of amides through the directly oxidative amidation of tetrazoles with aldehydes in the presence of TBHP as oxidant under transition-metal free conditions. A series of tetrazoles and aldehydes with different substituent afforded the desired products in good yields. The findings prove that the tetrazoles can serve as an amine equivalent in organic synthesis. It offers a novel, simple and mild method for the synthesis of amide derivatives. The detailed mechanistic study is currently underway.

Experimental section

General remarks

All 1H NMR and 13C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz and 100 MHz respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). The chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China. All the tetrazole substrates were synthesized according to the reported procedure in the literature.19 Products were purified by flash chromatography on 100–200 mesh silica gels, SiO2.

Typical procedure for the reaction

A sealable reaction flask equipped with a magnetic stirrer bar was charged with 1-phenyltetrazole (0.50 mmol), benzaldehyde (1.0 mmol), tert-butyl hydroperoxide (TBHP, 1.0 mmol) and DMF (2.0 mL). The mixture was stirred at 130 °C for 12 h [Caution: an Ace pressure tube is highly recommended to be employed for safety considerations]. After the reaction was finished, cooled to room temperature and diluted with ethyl acetate, washed with water and brine. And the organic phase was dried over MgSO4. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (eluant: petroleum ether with EtOAc in appropriate ratio) to afford the corresponding product.

Characterization data for all products


image file: c4ra07658c-u4.tif
N-Phenylbenzamide (3aa)20. 80.8 mg, 82% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.00 (br, 1H), 7.87 (d, J = 7.3 Hz, 2H), 7.67–7.65 (m, 2H), 7.55–7.53 (m, 1H), 7.49–7.45 (m, 2H), 7.39–7.35 (m, 2H), 7.18–7.14 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 165.81, 137.94, 135.00, 131.76, 129.03, 128.72, 127.02, 124.54, 120.29.
image file: c4ra07658c-u5.tif
N-o-Tolylbenzamide (3ba)11j. 76.0 mg, 72% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.27 (br, s, 1H), 7.86–7.84 (m, 2H), 7.52–7.48 (m, 2H), 7.46–7.44 (m, 1H), 7.42–7.39 (m, 2H), 7.23–7.19 (m, 1H), 6.97–6.95 (m, 1H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.94, 138.76, 137.85, 134.92, 131.54, 128.67, 128.50, 127.01, 125.23, 121.05, 117.51, 21.32.
image file: c4ra07658c-u6.tif
N-m-Tolylbenzamide (3ca)21. 77.0 mg, 73% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.92 (br, s, 1H), 7.89–7.87 (m, 2H), 7.85–7.83 (m, 1H), 7.57–7.53 (m, 1H), 7.48–7.45 (m, 2H), 7.23–7.22 (m, 2H), 7.15–7.11 (m, 1H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.72, 135.69, 134.82, 131.65, 130.44, 129.87, 128.63, 127.02, 126.65, 125.40, 123.54, 17.71.
image file: c4ra07658c-u7.tif
N-p-Tolylbenzamide (3da)20. 69.6 mg, 66% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.17 (br, s, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.55–7.53 (m, 2H), 7.51–7.49 (m, 1H), 7.43–7.40 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.83, 135.38, 134.98, 134.07, 131.52, 129.40, 128.53, 127.01, 120.47, 20.80.
image file: c4ra07658c-u8.tif
N-(4-Ethylphenyl)benzamide (3ea)22. 73.1 mg, 65% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.14 (br, s, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.53–7.50 (m, 1H), 7.44–7.41 (m, 2H), 7.19–7.17 (m, 2H), 2.65 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.86, 140.58, 135.53, 134.99, 131.56, 128.57, 128.26, 127.01, 120.56, 28.26, 15.55.
image file: c4ra07658c-u9.tif
N-(4-iso-Propylphenyl)benzamide (3fa)23. 69.3 mg, 58% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.06 (br, s, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.53–7.51 (m, 1H), 7.47–7.43 (m, 2H), 7.23–7.21 (m, 2H), 2.95–2.88 (m, 1H), 1.27 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 165.87, 145.30, 135.56, 135.01, 131.63, 128.64, 127.01, 126.88, 120.54, 33.58, 23.96.
image file: c4ra07658c-u10.tif
N-(3-iso-Propylphenyl)benzamide (3ga). 63.3 mg, 53% yield, yellow solid, m. p. 107–108 °C. 1H NMR (400 MHz, CDCl3) δ: 8.15 (br, s, 1H), 7.89–7.87 (m, 2H), 7.55 (s, 1H), 7.53–7.50 (m, 2H), 7.46–7.43 (m, 2H), 7.30–7.26 (m, 1H), 7.05–7.03 (m, 1H), 2.94–2.87 (m, 1H), 1.27 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 165.92, 149.94, 137.88, 134.99, 131.66, 128.88, 128.63, 127.01, 122.70, 118.50, 117.90, 34.07, 23.83. IR (KBr, cm−1): 1650 (νC[double bond, length as m-dash]O). HRMS (ESI) [M + H]+: calcd for C16H17NO: 240.1388. Found 240.1391.
image file: c4ra07658c-u11.tif
N-(4-Methoxyphenyl)benzamide (3ha)20. 69.2 mg, 61% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.92 (br, s, 1H), 7.87 (d, J = 7.4 Hz, 2H), 7.56–7.52 (m, 3H), 7.48–7.45 (m, 2H), 6.91–6.89 (m, 2H), 3.81 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.66, 156.63, 135.03, 131.63, 131.02, 128.68, 126.98, 122.15, 114.22, 55.48.
image file: c4ra07658c-u12.tif
N-(4-Ethoxyphenyl)benzamide (3ia)24. 67.5 mg, 56% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.87–7.85 (m, 3H), 7.54–7.52 (m, 3H), 7.48–7.45 (m, 2H), 6.90–6.88 (m, 2H), 4.04 (q, J = 6.8 Hz, 2H), 1.42 (t, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.63, 155.98, 135.05, 131.62, 130.88, 128.69, 126.96, 122.10, 114.84, 63.70, 14.81.
image file: c4ra07658c-u13.tif
N-(4-Fluorophenyl)benzamide (3ja)11j. 76.3 mg, 71% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.88–7.87 (m, 2H), 7.83 (br, s, 1H), 7.63–7.59 (m, 2H), 7.57–7.55 (m, 1H), 7.52–7.48 (m, 2H), 7.10–7.06 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 165.68, 159.58 (d, JC–F = 242.5 Hz), 134.77, 133.91 (d, JC–F = 2.9 Hz), 131.94, 128.83, 126.99, 122.09 (d, JC–F = 7.8 Hz), 115.76 (d, JC–F = 22.4 Hz).
image file: c4ra07658c-u14.tif
N-(2,3-Dimethylphenyl)benzamide (3ka)25. 67.5 mg, 60% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.91–7.89 (m, 2H), 7.77 (br, s, 1H), 7.59–7.55 (m, 2H), 7.51–7.48 (m, 2H), 7.17–7.13 (m, 1H), 7.08–7.06 (m, 1H), 2.34 (s, 3H), 2.22 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.89, 137.49, 135.33, 134.91, 131.72, 129.65, 128.73, 127.59, 127.09, 125.95, 122.24, 20.58, 13.85.
image file: c4ra07658c-u15.tif
N-(2,5-Dimethylphenyl)benzamide (3la)26. 60.8 mg, 54% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.98 (br, s, 1H), 7.88 (d, J = 7.4 Hz, 2H), 7.62 (s, 1H), 7.56–7.52 (m, 1H), 7.46–7.43 (m, 2H), 7.11–7.09 (m, 1H), 6.95–6.93 (m, 1H), 2.32 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.71, 136.18, 135.37, 134.74, 131.50, 130.14, 128.50, 127.02, 126.97, 126.18, 124.27, 20.89, 17.19.
image file: c4ra07658c-u16.tif
N-(3,4-Dimethylphenyl)benzamide (3ma)27. 77.6 mg, 69% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.23 (br, s, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.51–7.48 (m, 1H), 7.45 (s, 1H), 7.41–7.38 (m, 3H), 7.08–7.06 (m, 1H), 2.24 (s, 3H), 2.22 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.83, 137.02, 135.63, 134.98, 132.71, 131.41, 129.81, 128.44, 127.00, 121.83, 118.03, 19.68, 19.06.
image file: c4ra07658c-u17.tif
2-Methyl-N-phenylbenzamide (3ab)11j. 61.2 mg, 58% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.78 (br, s, 1H), 7.63–7.61 (m, 2H), 7.44–7.42 (m, 1H), 7.37–7.33 (m, 3H), 7.25–7.22 (m, 2H), 7.17–7.14 (m, 1H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 168.15, 137.99, 136.37, 136.26, 131.10, 130.11, 128.96, 126.59, 125.75, 124.41, 119.91, 19.69.
image file: c4ra07658c-u18.tif
3-Methyl-N-phenylbenzamide (3ac)11j. 69.6 mg, 66% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.93 (br, s, 1H), 7.69 (s, 1H), 7.67–7.65 (m, 3H), 7.39–7.35 (m, 4H), 7.17–7.14 (m, 1H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 166.34, 138.24, 138.02, 134.73, 132.22, 128.72, 128.24, 127.79, 124.23, 124.01, 120.46, 21.09.
image file: c4ra07658c-u19.tif
4-Methyl-N-phenylbenzamide (3ad)11j. 85.5 mg, 81% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.18 (br, s, 1H), 7.76 (d, J = 7.9 Hz, 2H), 7.66 (d, J = 7.3 Hz, 2H), 7.35–7.32 (m, 2H), 7.23–7.21 (m, 2H), 7.15–7.12 (m, 1H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.88, 142.13, 138.07, 132.04, 129.23, 128.88, 127.05, 124.29, 120.33, 21.35.
image file: c4ra07658c-u20.tif
2-Methoxy-N-phenylbenzamide (3ae)28. 54.5 mg, 48% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 9.81 (br, s, 1H), 8.31–8.29 (m, 1H), 7.71–7.69 (m, 2H), 7.51–7.47 (m, 1H), 7.39–7.35 (m, 2H), 7.15–7.12 (m, 2H), 7.04–7.02 (m, 1H), 4.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 163.17, 157.15, 138.35, 133.16, 132.43, 128.90, 124.07, 121.76, 121.59, 120.38, 111.50, 56.16.
image file: c4ra07658c-u21.tif
3,4-Dimethoxy-N-phenylbenzamide (3af)29. 65.5 mg, 51% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.16 (br, s, 1H), 7.65 (d, J = 7.9 Hz, 2H), 7.47 (s, 1H), 7.42–7.40 (m, 1H), 7.35–7.32 (m, 2H), 7.14–7.11 (m, 1H), 6.83–6.81 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.43, 151.97, 149.06, 138.12, 128.93, 127.46, 124.29, 120.25, 119.58, 110.73, 110.28, 55.93, 55.89.
image file: c4ra07658c-u22.tif
2-Chloro-N-phenylbenzamide (3ag)30. 50.8 mg, 44% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.10 (br, s, 1H), 7.69–7.63 (m, 3H), 7.43–7.33 (m, 5H), 7.19–7.15 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 164.57, 137.55, 135.20, 131.52, 130.58, 130.25, 130.08, 129.01, 127.14, 124.75, 120.11.
image file: c4ra07658c-u23.tif
2-Methyl-N-p-tolylbenzamide (3db)31. 66.4 mg, 59% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.64 (br, s, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.45–7.43 (m, 1H), 7.37–7.33 (m, 1H), 7.26–7.22 (m, 2H), 7.17–7.16 (m, 2H), 2.48 (s, 3H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 167.99, 136.49, 136.28, 135.41, 134.08, 131.10, 130.06, 129.47, 126.57, 125.75, 119.93, 20.84, 19.73.
image file: c4ra07658c-u24.tif
3-Methyl-N-p-tolylbenzamide (3dc)31. 69.8 mg, 62% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.17 (br, s, 1H), 7.66 (s, 1H), 7.63–7.62 (m, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.31–7.27 (m, 2H), 7.14 (d, J = 7.6 Hz, 2H), 2.37 (s, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 166.00, 138.38, 135.43, 134.93, 133.93, 132.25, 129.36, 128.37, 127.75, 123.94, 120.38, 21.22, 20.80.
image file: c4ra07658c-u25.tif
4-Methyl-N-p-tolylbenzamide (3dd)20. 78.8 mg, 70% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.14 (br, s, 1H), 7.75 (d, J = 7.9 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 165.74, 141.96, 135.48, 133.86, 132.07, 129.35, 129.17, 127.01, 120.38, 21.35, 20.80.
image file: c4ra07658c-u26.tif
N-(3-iso-Propylphenyl)-2-methylbenzamide (3gb). 73.4 mg, 58% yield, yellow liquid. 1H NMR (400 MHz, CDCl3) δ: 7.91 (br, s, 1H), 7.52–7.49 (m, 2H), 7.42–7.40 (m, 1H), 7.36–7.32 (m, 1H), 7.30–7.27 (m, 1H), 7.24–7.18 (m, 2H), 7.06–7.04 (m, 1H), 2.95–2.88 (m, 1H), 2.47 (s, 3H), 1.29 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 168.09, 149.85, 138.01, 136.45, 136.17, 130.99, 129.96, 128.82, 126.59, 125.65, 122.42, 118.03, 117.41, 34.03, 23.81, 19.65. IR (KBr, cm−1): 1654 (νC[double bond, length as m-dash]O). HRMS (ESI) [M + H]+: calcd for C17H19NO: 254.1545. Found 254.1544.
image file: c4ra07658c-u27.tif
N-(3-iso-Propylphenyl)-3-methylbenzamide (3gc). 82.2 mg, 65% yield, yellow liquid. 1H NMR (400 MHz, CDCl3) δ: 8.27 (br, s, 1H), 7.70 (s, 1H), 7.67–7.65 (m, 1H), 7.57 (s, 1H), 7.54–7.52 (m, 1H), 7.31–7.29 (m, 2H), 7.27–7.25 (m, 1H), 7.04–7.02 (m, 1H), 2.95–2.86 (m, 1H), 2.37 (s, 3H), 1.26 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 166.04, 149.79, 138.39, 138.00, 134.95, 132.29, 128.77, 128.39, 127.77, 123.97, 122.46, 118.41, 117.81, 34.02, 23.80, 21.20. IR (KBr, cm−1): 1649 (νC[double bond, length as m-dash]O). HRMS (ESI) [M + H]+: calcd for C17H19NO: 254.1545. Found 254.1543.
image file: c4ra07658c-u28.tif
N-(3-iso-Propylphenyl)-4-methylbenzamide (3gd). 88.5 mg, 70% yield, yellow liquid. 1H NMR (400 MHz, CDCl3) δ: 8.24 (br, s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.57 (s, 1H), 7.53–7.51 (m, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 7.7 Hz, 2H), 7.03–7.01 (m, 1H), 2.94–2.84 (m, 1H), 2.40 (s, 3H), 1.26 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 165.80, 149.79, 142.01, 138.06, 132.11, 129.18, 128.76, 127.03, 122.39, 118.41, 117.81, 34.03, 23.80, 21.33. IR (KBr, cm−1): 1649 (νC[double bond, length as m-dash]O). HRMS (ESI) [M + H]+: calcd for C17H19NO: 254.1545. Found 254.1541.
image file: c4ra07658c-u29.tif
N-(Naphthalen-1-yl)benzamide (3na)21. 58.0 mg, 47% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.40 (br, s, 1H), 7.96–7.94 (m, 2H), 7.89–7.87 (m, 3H), 7.74–7.72 (m, 1H), 7.58–7.55 (m, 1H), 7.52–7.45 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 166.37, 134.64, 134.05, 132.36, 131.80, 128.68, 128.64, 127.62, 127.17, 126.25, 126.11, 125.94, 125.61, 121.52, 120.91.
image file: c4ra07658c-u30.tif
N-(Pyridin-2-yl)benzamide (3oa)32. 50.5 mg, 51% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 9.53 (br, s, 1H), 8.42–8.40 (m, 1H), 8.03–8.02 (m, 1H), 7.92–7.91 (m, 2H), 7.72–7.68 (m, 1H), 7.53–7.50 (m, 1H), 7.44–7.43 (m, 2H), 6.97–6.96 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 166.11, 151.77, 147.61, 138.32, 134.37, 131.69, 128.56, 127.30, 119.63, 114.35.
image file: c4ra07658c-u31.tif
N-Phenyl-2-naphthamide (3ah)33. 67.9 mg, 55% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 8.37 (s, 1H), 8.12 (br, s, 1H), 7.93–7.88 (m, 4H), 7.71 (d, J = 7.9 Hz, 2H), 7.61–7.54 (m, 2H), 7.42–7.38 (m, 2H), 7.20–7.16 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 165.92, 137.95, 134.84, 132.58, 132.13, 129.10, 128.94, 128.72, 127.88, 127.78, 127.53, 126.91, 124.62, 123.52, 120.32.
image file: c4ra07658c-u32.tif
N-Phenylquinoline-2-carboxamide (3ai)34. 60.8 mg, 49% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 10.24 (br, s, 1H), 8.43–8.36 (m, 2H), 8.21–8.19 (m, 1H), 7.93–7.91 (m, 1H), 7.88–7.86 (m, 2H), 7.84–7.80 (m, 1H), 7.68–7.64 (m, 1H), 7.45–7.42 (m, 2H), 7.21–7.17 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 162.13, 149.65, 146.27, 137.81, 137.78, 130.28, 129.64, 129.40, 129.08, 128.12, 127.78, 124.31, 119.74, 118.72.
image file: c4ra07658c-u33.tif
N-Phenylthiophene-2-carboxamide (3aj)29. 38.6 mg, 38% yield, colorless solid. 1H NMR (400 MHz, CDCl3) δ: 7.91 (br, s, 1H), 7.66–7.65 (m, 1H), 7.63–7.61 (m, 2H), 7.54–7.53 (m, 1H), 7.37–7.33 (m, 2H), 7.16–7.13 (m, 1H), 7.10 (t, J = 4.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 160.03, 139.28, 137.58, 130.72, 129.03, 128.47, 127.77, 124.58, 120.31.

Acknowledgements

This work was financially supported by the National Science Foundation of China (No. 21372095) and the Department of Education, Anhui Province (No. KJ2013A122).

Notes and references

  1. For the amides used in pharmacy, see: (a) A. Sood and R. Panchagnula, Chem. Rev., 2001, 101, 3275 CrossRef CAS PubMed ; (b) A. Punkvang, P. Saparpakorn, S. Hannongbua, P. Wolschann, H. Berner and P. Pungpo, Monatsh. Chem., 2010, 141, 1029 CrossRef CAS  ; For the amides used in organic synthesis, see; (c) S. Son and B. A. Lewis, J. Agric. Food Chem., 2002, 50, 468 CrossRef CAS PubMed ; (d) S. J. Cho, J. S. Roh, W. S. Sun, S. H. Kim and K. D. Park, Bioorg. Med. Chem. Lett., 2006, 16, 2682 CrossRef CAS PubMed ; (e) A. K. Ghose, V. N. Viswanadhan and J. J. Wendoloski, J. Comb. Chem., 1999, 1, 55 CrossRef CAS ; (f) S. Vishnoi, V. Agrawal and V. K. Kasana, J. Agric. Food Chem., 2009, 57, 3261 CrossRef CAS PubMed ; (g) Y.-C. Yang, S.-G. Lee, H.-K. Lee, M. K. Kim, S. H. Lee and H. S. Lee, J. Agric. Food Chem., 2002, 50, 3765 CrossRef CAS PubMed ; (h) T. C. Castral, A. P. Matos, J. L. Monteiro, F. M. Araujo, T. M. Bondancia, L. G. Batista-Pereira, J. B. Fernandes, P. C. Vieira, M. F. G. F. da Silva and A. G. Correa, J. Agric. Food Chem., 2011, 59, 4822 CrossRef CAS PubMed .
  2. M. B. Smith and J. March, Advanced Organic Chemistry, Wiley, Weinheim, Germany, 6th edn, 2007 Search PubMed .
  3. S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54, 3451 CrossRef CAS PubMed .
  4. E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606 RSC .
  5. M. B. Smith, Compendium of Organic Synthetic Methods, Wiley, New York, 2001 Search PubMed .
  6. (a) E. Saxo and C. Z. Bertozzi, Science, 2000, 287, 2007 CrossRef ; (b) F. Damkaci and D. P. Shong, J. Am. Chem. Soc., 2003, 125, 4408 CrossRef CAS PubMed ; (c) Y. G. Gololobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353 CrossRef CAS .
  7. (a) T. Ribelin, C. E. Katz, D. G. English, S. Smith, A. K. Manukyan, V. W. Day, B. Neuenswander, J. L. Poutsma and J. Aube, Angew. Chem., Int. Ed., 2008, 47, 6233 CrossRef CAS PubMed ; (b) S. Lang and J. A. Murphy, Chem. Soc. Rev., 2006, 35, 146 RSC .
  8. (a) N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett., 2007, 9, 3599 CrossRef CAS PubMed ; (b) M. Hashimoto, Y. Obora, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2008, 73, 2894 CrossRef CAS PubMed .
  9. (a) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday and S. L. Buchwald, Angew. Chem., Int. Ed., 2007, 46, 8460 CrossRef CAS PubMed ; (b) P. Nanayakkara and H. Alper, Chem. Commun., 2003, 2384 RSC .
  10. B. Shen, D. M. Makley and J. N. Johnston, Nature, 2010, 465, 1027 CrossRef CAS PubMed .
  11. (a) C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007, 317, 790 CrossRef CAS PubMed ; (b) L. U. Nordstom, H. Vogt and R. Madsen, J. Am. Chem. Soc., 2008, 130, 17672 CrossRef PubMed ; (c) T. Zweifel, J. V. Naubron and H. Grutzmacher, Angew. Chem., Int. Ed., 2009, 48, 559 CrossRef CAS PubMed ; (d) S. C. Ghosh, S. Muthaiah, Y. Zhang, X. Xu and S. H. Homg, Adv. Synth. Catal., 2009, 351, 2643 CrossRef CAS ; (e) Y. Zhang, C. Chen, S. C. Ghosh, Y. Li and S. H. Hong, Organometallics, 2010, 29, 1374 CrossRef CAS ; (f) C. Cheng and S. H. Hong, Org. Biomol. Chem., 2011, 9, 20 RSC ; (g) Y. Wang, D. Zhu, L. Tang, S. Wang and Z. Wang, Angew. Chem., Int. Ed., 2011, 50, 8917 CrossRef CAS PubMed ; (h) J. F. Soulé, H. Miyamura and S. Kobayashi, J. Am. Chem. Soc., 2011, 133, 18550 CrossRef PubMed ; (i) S. Kegnaes, J. Mielby, U. V. Mentzel, T. Jensen, P. Fristrup and A. Riisager, Chem. Commun., 2012, 48, 2427 RSC ; (j) F. Xiao, Y. Liu, C. Tang and G. Deng, Org. Lett., 2012, 14, 984 CrossRef CAS PubMed ; (k) H. Zeng and Z. Guan, J. Am. Chem. Soc., 2011, 133, 1159 CrossRef CAS PubMed ; (l) K. Yamaguchi, H. Kobayashi, T. Oishi and N. Mizuno, Angew. Chem., Int. Ed., 2012, 51, 544 CrossRef CAS PubMed .
  12. (a) S. Cho, E. Yoo, I. Bae and S. Chang, J. Am. Chem. Soc., 2005, 127, 16046 CrossRef CAS PubMed ; (b) Z. Chen, H. Jiang, X. Pan and Z. He, Tetrahedron, 2011, 67, 5920 CrossRef CAS PubMed .
  13. (a) R. V. Kolakowski, N. Shangguan, R. R. Sauers and L. J. Williams, J. Am. Chem. Soc., 2006, 128, 5695 CrossRef CAS PubMed ; (b) X. Zhang, F. Li, X. Lu and C. Liu, Bioconjugate Chem., 2009, 20, 197 CrossRef CAS PubMed .
  14. (a) T. A. Dineen, M. A. Zajac and A. G. Myers, J. Am. Chem. Soc., 2006, 128, 16046 CrossRef PubMed ; (b) C. L. Allen, B. N. Atkinson and J. M. J. Williams, Angew. Chem., Int. Ed., 2012, 51, 1383 CrossRef CAS PubMed ; (c) M. Tamura, T. Tonomura, K. I. Shimizu and A. Satsuma, Green Chem., 2012, 14, 717 RSC ; (d) M. Zhang, S. Imm, S. Bahn, L. Neubart, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2012, 51, 3905 CrossRef CAS PubMed .
  15. (a) W. Wei, X.-Y. Hu, X.-W. Yan, Q. Zhang, M. Cheng and J.-X. Ji, Chem. Commun., 2012, 48, 305 RSC ; (b) C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3464 RSC ; (c) S. Gaspa, A. Porcheddu and L. D. Luca, Org. Biomol. Chem., 2013, 11, 3803 RSC ; (d) M. Pilo, A. Porcheddu and L. D. Luca, Org. Biomol. Chem., 2013, 11, 8241 RSC .
  16. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411 RSC .
  17. For reviews, see: (a) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405 RSC ; (b) P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301 RSC  ; For selected examples of amidation reactions, see; (c) P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. B. Kent, Science, 1994, 266, 776 CAS ; (d) N. Shangguan, S. Katukojvala, R. Greenerg and L. J. Williams, J. Am. Chem. Soc., 2003, 125, 7754 CrossRef CAS PubMed ; (e) R. Merkx, A. J. Brouwer, D. T. S. Rijkers and R. M. J. Liskamp, Org. Lett., 2005, 7, 1125 CrossRef CAS PubMed ; (f) Y. Uenoyama, T. Fukuyama, O. Nobuta, H. Matsubara and I. Ryu, Angew. Chem., Int. Ed., 2005, 44, 1075 CrossRef CAS PubMed ; (g) M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154 CrossRef CAS PubMed ; (h) H. Vora and T. Rovis, J. Am. Chem. Soc., 2007, 129, 13796 CrossRef CAS PubMed ; (i) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 2007, 129, 13798 CrossRef CAS PubMed ; (j) R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem., Int. Ed., 2008, 47, 2876 CrossRef CAS PubMed ; (k) X. Yang, X. Zeng, Y. Zhao, X. Wang, Z. Pan, L. Li and H. Zhang, J. Comb. Chem., 2010, 12, 307 CrossRef CAS PubMed ; (l) H. Charville, D. Jackson, G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813 RSC ; (m) H. Jiang, B. Liu, Y. Li, A. Wang and H. Huang, Org. Lett., 2011, 13, 1028 CrossRef CAS PubMed .
  18. (a) M. Brown, US Pat., 3, 338, 915, 1967, Chem. Abstr., 1968, 87299 ; (b) V. A. Ostrovskii, M. S. Pevzner, T. P. Kofmna, M. B. Shcherbinin and I. V. Tselinskii, Targets Heterocycl. Syst., 1999, 3, 467 CAS ; (c) M. Hiskey, D. E. Chavez, D. L. Naud, S. F. Son, H. L. Berghout and C. A. Bome, Proc. Int. Pyrotech. Semin., 2000, 27, 3 Search PubMed ; (d) M. Špulák, R. Lubojacký, P. Šenel, J. Kuneš and M. Pour, J. Org. Chem., 2010, 75, 241 CrossRef PubMed ; (e) K. Luo, L. Meng, Y. Zhang, X. Zhang and L. Wang, Adv. Synth. Catal., 2013, 355, 765 CrossRef CAS ; (f) J. Zhang, L. Meng, P. Li and L. Wang, RSC Adv., 2013, 3, 6807 RSC .
  19. D. Habibi, M. Nasrollahzadeha and T. A. Kamalib, Green Chem., 2011, 13, 3499 RSC .
  20. J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei, Angew. Chem., Int. Ed., 2014, 53, 502 CrossRef CAS PubMed .
  21. J. Wang, X. Yin, J. Wu, D. Wu and Y. Pan, Tetrahedron, 2013, 69, 10463 CrossRef CAS PubMed .
  22. L. Huang, H. Guo, L. Pan and C. Xie, Eur. J. Org. Chem., 2013, 6027 CrossRef CAS .
  23. J. Kuneš, V. Balšánek, M. Pour, K. Waisser and J. Kaustová, Il Farmaco, 2002, 57, 777 CrossRef .
  24. S. Ueda and H. Nagasawa, J. Org. Chem., 2009, 74, 4272 CrossRef CAS PubMed .
  25. Y. Li, Z. Li, T. Xiong, Q. Zhang and X. Zhang, Org. Lett., 2012, 14, 3522 CrossRef CAS PubMed .
  26. B. P. Fors, K. Dooleweerdt, Q. Zeng and S. Buchwald, Tetrahedron, 2009, 65, 6576 CrossRef CAS PubMed .
  27. Y. Yuan, D. Chen and X. Wang, Adv. Synth. Catal., 2011, 353, 3373 CrossRef CAS .
  28. L. Zhang, S. Su, H. Wu and S. Wang, Tetrahedron, 2009, 65, 10022 CrossRef CAS PubMed .
  29. K. N. Kumar, K. Sreeramamurthy, S. Palle, K. Mukkanti and P. Das, Tetrahedron Lett., 2010, 51, 899 CrossRef CAS PubMed .
  30. M. Hosseini-Sarvari, E. Sodagar and M. M. Doroodmand, J. Org. Chem., 2011, 76, 2853 CrossRef CAS PubMed .
  31. S. Hwang, S. Y. Choi, J. H. Lee, S. Kim, J. In, S. K. Ha, E. Lee, T. Kimd, S. Y. Kimb, S. Choi and S. Kima, Bioorg. Med. Chem., 2010, 18, 5602 CrossRef CAS PubMed .
  32. S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron, 2013, 69, 6431 CrossRef CAS PubMed .
  33. V. Štrukil, B. Bartolec, T. Portada, I. Đilović, I. Halasz and D. Margetić, Chem. Commun., 2012, 48, 12100 RSC .
  34. Q. Li, S. Zhang, G. He, Z. Ai, W. A. Nack and G. Chen, Org. Lett., 2014, 16, 1764 CrossRef CAS PubMed .

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra07658c

This journal is © The Royal Society of Chemistry 2014