An expedient osmium(VI)/K3Fe(CN)6-mediated selective oxidation of benzylic, allylic and propargylic alcohols

Rodney A. Fernandes* and Venkati Bethi
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India. E-mail: rfernand@chem.iitb.ac.in; Fax: +91-22-25767152; Tel: +91-22-25767174

Received 23rd July 2014 , Accepted 19th August 2014

First published on 19th August 2014


Abstract

A chemoselective osmium(VI) catalyzed oxidation of benzylic, allylic and propargylic alcohols using K3Fe(CN)6 as a secondary oxidant is described. This protocol is operationally simple and exhibits excellent chemoselectivity favouring the oxidation of benzylic alcohols over the aliphatic alcohols. A larger scale reaction was also found to be compatible.


Introduction

Oxidation of alcohols is an important method for functional group transformations in synthetic organic chemistry1 as well as in industry.2 Many methods have been developed to accomplish this elementary reaction. Some of the notable methods involve the use of chromium reagents,3 manganese(IV)oxide,4 (COCl)2/DMSO (Swern oxidation),5 hypervalent iodine reagents,6 TEMPO,7 etc. An alternative and even more practical approach using metal complexes as catalyst in combination with terminal oxidants has been reported. Examples include Cu,8 Pd,9 Ru,10 Au,11 W,12 Mn,13 Fe,14 Co,15 V,16 etc. An attractive alternative is the use of O2 as primary oxidant in transition metal catalyzed alcohol oxidations.17 In addition, Iwabuchi and co-workers reported an elegant method, in which the oxidation of various primary and secondary alcohols into corresponding carbonyl compounds is mediated by a novel alkoxyamine-type organocatalyst, 3-methyl-4-oxa-5-azahomoadamantane with NaOCl as the primary oxidant.18 However, the organocatalyst shows high reactivity and is not suitable for chemoselective oxidation of allylic, benzylic, and propargylic alcohols. Recently, Stahl and co-workers showed that Cu(I)/ABNO or TEMPO catalytic system exhibits high chemoselectivity for unhindered primary alcohols.19 A few reports are documented to address the chemoselective oxidation of allylic and benzylic alcohols. Notable examples include DDQ/NaNO2,20 DDQ/Mn(OAc)3,21 NBS/thiourea,22 vanadium complexes,23 Pd-catalyst/α-bromo sulphoxide,24 Pt black/H2O2,25 Fe-catalyst/Na2CO3[thin space (1/6-em)]26 and N-hydroxyindole/CuCl.27

While many methods are known in literature for alcohol oxidation, the selectivity issue is still a concern and there is scope for developing newer methods, particularly for chemoselective oxidation of allylic, benzylic, and propargylic alcohols. Although osmium(IV) is frequently used for the dihydroxylation of olefins,28 Beller and co-workers for the first time reported Os(IV)/DABCO catalyzed oxidation of alcohols using O2 as a primary oxidant.29 However, this protocol is not suitable for chemoselective oxidation of allylic and benzylic alcohols. Later Brown and co-workers achieved a practical Os/Cu co-catalyzed air oxidation of allylic and benzylic alcohols.30 Recently Shah and co-workers developed osmium/chloramine-T catalyzed oxidation of allylic and benzylic alcohols.31 Working on similar lines we explored the K2OsO4·2H2O/K3[Fe(CN)6]-mediated chemoselective oxidation of various allylic, benzylic and propargylic alcohols to carbonyl compounds in good to excellent yields. Primary and secondary unactivated alcohols are unreactive towards this oxidation system (Scheme 1).


image file: c4ra07500e-s1.tif
Scheme 1 Oxidation of benzylic, allylic and propargylic alcohols.

Results and discussion

To begin this study, 4-methoxy benzyl alcohol (1) was chosen as a model substrate to optimize the reaction conditions (Table 1). Initially, 1 was added to a well stirred solution of K2OsO4·2H2O (0.4 mol%), K3[Fe(CN)6] (3.0 equiv.), K2CO3, (3.0 equiv.), pyridine (2.0 mol%), and MeSO2NH2 (2.0 equiv.) in a mixture of tBuOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1). The reaction was performed in a closed vessel and stirred for 72 h at room temperature. The desired product 4-methoxy benzaldehyde (2a) was isolated in 67% yield (Table 1, entry 1). When we increased the catalyst loading to 0.6 mol% and 0.8 mol% (Table 1, entries 2 and 3), after 48 h, under similar conditions the yield of 2a was improved to 73% and 78% respectively. With the increase in the amount of secondary oxidant, K3[Fe(CN)6] and K2CO3 to 6.0 equiv. each, 87% of 2a was isolated (Table 1, entry 4). However to our delight, increasing the Os(VI) catalyst loading to 1.0 mol%, after 13 h, 2a was obtained quantitatively (entry 5). To improve the oxidation efficiency, we kept the Os(VI) loading to 1 mol%, and decreased the amount of secondary oxidant and K2CO3 to 3.0 equiv. each. This resulted in 2a in 93% yield (entry 6). Further decrease in the amount of oxidant and K2CO3 (2.0 equiv. each) required longer reaction time and gave lower yield (Table 1, entry 7). The requirement of additives like pyridine and MeSO2NH2 was further investigated. With no MeSO2NH2 added, the reaction was completed in 18 hours giving 2a in 96% yield (entry 8). Similarly, with no pyridine added, 2a was obtained also in 96% yield (entry 9). Gratifyingly, in the absence of both pyridine and MeSO2NH2, the reaction yielded 2a quantitatively (entry 10). With no primary oxidant K2OsO4·2H2O there was no reaction (entry 11). Similarly, with no K3[Fe(CN)6] or no K2CO3, the reaction did not work (entries 12 and 13). This strongly indicated the need of secondary oxidants.
Table 1 Optimization of alcohol oxidation varying the amounts of Os catalyst, Fe complex, K2CO3 and additivesa

image file: c4ra07500e-u1.tif

Entry K2OsO4·2H2O (X mol%) K3[Fe(CN)6] (Y equiv.) K2CO3 (Z equiv.) Pyridine (mol%) MeSO2NH2 (equiv.) t (h) Yieldb (%)
a Reaction conditions: substrate (0.5 mmol), K2OsO4·2H2O (X mol%), K3[Fe(CN)6] (Y equiv.), K2CO3 (Z equiv.), pyridine, MeSO2NH2, in tBuOH (1.5 mL) and H2O (1.5 mL) at room temperature.b Isolated yields. NR = no reaction.
1 0.4 3.0 3.0 2.0 2.0 72 67
2 0.6 3.0 3.0 2.0 2.0 48 73
3 0.8 3.0 3.0 2.0 2.0 48 78
4 0.8 6.0 6.0 2.0 2.0 48 87
5 1.0 6.0 6.0 2.0 2.0 13 Quant.
6 1.0 3.0 3.0 2.0 2.0 18 93
7 1.0 2.0 2.0 2.0 2.0 72 62
8 1.0 3.0 3.0 2.0 18 96
9 1.0 3.0 3.0 2.0 15 96
10 1.0 3.0 3.0 15 Quant.
11 3.0 3.0 15 NR
12 1.0 3.0 15 2
13 1.0 3.0 15 NR


Encouraged by these results, we carried out the screening of solvent and temperature conditions (Table 2) using the optimum requirement from Table 1, entry 10. Of the solvent mixtures (with water, Table 2, entries 1–7) tested we found CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) was the best combination which delivered aldehyde 2a quantitatively, with substantially reduced reaction time (entry 6, 1.5 h). Further, from the temperature study (Table 2, entries 8–12) the reaction in CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) at 60 °C reduced the reaction time to just 15 min, producing aldehyde 2a quantitatively. The oxidation of 1a on gram scale (1 g, 7.23 mmol) gave 2a without much change in reaction time and yield (98%, entry 13). Thus, with the optimized condition which include the use of K2OsO4·2H2O (1.0 mol%), K3[Fe(CN)6] (3.0 equiv.), K2CO3 (3.0 equiv.) in CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) at 60 °C, we explored the scope and limitations of this oxidation protocol (Table 3).

Table 2 Optimization of alcohol oxidation varying solvent and temperaturea

image file: c4ra07500e-u2.tif

Entry Solvent (1[thin space (1/6-em)]:[thin space (1/6-em)]1) T °C t % yieldb
a Reaction conditions: substrate (0.5 mmol), K2OsO4·2H2O (0.005 mmol), K3[Fe(CN)6] (1.5 mmol), K2CO3 (1.5 mmol) in solvent (1.5 mL) and H2O (1.5 mL).b Isolated yields.c Reaction on 1 g, 7.23 mmol of 1.
1 tBuOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 15 h Quant.
2 DMF[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 5 h 78
3 DMSO[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 4 h 88
4 THF[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 27 h 67
5 Toluene[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 15 h 73
6 CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 1.5 h Quant.
7 (CH3)2CO[thin space (1/6-em)]:[thin space (1/6-em)]H2O rt 6 h 92
8 tBuOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O 45 13 h 97
9 tBuOH[thin space (1/6-em)]:[thin space (1/6-em)]H2O 60 12 h 95
10 CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O 45 30 min Quant.
11 CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O 60 15 min Quant.
12 CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O 80 12 min Quant.
13 CH3CN[thin space (1/6-em)]:[thin space (1/6-em)]H2O 60 20 min 98c


Table 3 Oxidation of various aryl alcohols by K2[OsO4·2H2O]/K3[Fe(CN)6] systema

image file: c4ra07500e-u3.tif

Entry Product t Yieldb (%)
a Reaction conditions: substrate (0.5 mmol), K2OsO4·2H2O (0.005 mmol), K3[Fe(CN)6] (1.5 mmol), K2CO3 (1.5 mmol) in CH3CN (1.5 mL) and H2O (1.5 mL) at 60 °C.b Isolated yields.
1 4-MeO-benzaldehyde 2a 15 min Quant.
2 4-Me-benzaldehyde 2b 20 min 98
3 2,5-Dimethoxybenzaldehyde 2c 45 min Quant.
4 3,4-Dimethoxybenzaldehyde 2d 30 min Quant.
5 4-NO2-benzaldehyde 2e 10 min Quant.
6 3-NO2-benzaldehyde 2f 15 min 98
7 4-Cl-benzaldehyde 2g 45 min 87
8 2-Cl-benzaldehyde 2h 45 min 81
9 α-Napthaldehyde 2i 20 min 96
10 Piperonal 2j 25 min Quant.
11 2-OH-benzaldehyde 2k 45 min 65
12 4-OH-3-methoxy benzaldehyde 2l 45 min 88
13 Thiophene-2-carbaldehyde 2m 2 h 78
14 1H-Indole-3-carbaldehyde 2n 2 h 78
15 Furfural 2o 2 h 82
16 Pyridine-3-carbaldehyde 2p 6 h 36
17 Pyridine-2-carbaldehyde 2q 10 h 38
18 Quinoline-4-carbaldehyde 2r 18 h 40
19 3-Methyl-1-phenyl-1H-pyrazole-4-carbaldehyde 2s 18 h 42
20 1H-Imidazole-4-carbaldehyde 2t 18 h 51
21 image file: c4ra07500e-u4.tif 2u 4 h 73
22 Acetophenone 2v 15 min Quant.
23 Benzophenone 2w 15 min Quant.
24 image file: c4ra07500e-u5.tif 2x 30 min Quant.
25 image file: c4ra07500e-u6.tif 2y 8 h 91


Various benzyl alcohols with aryl substitution involving electron donating and withdrawing groups like methoxy, methyl, nitro, chloro and hydroxyl were compatible with the reaction conditions, delivering the desired aryl aldehydes 2a–l in good to quantitative yields within the short reaction times of 10–45 min (Table 3, entries 1–12). Benzyl alcohols with strong electron withdrawing nitro groups exhibited higher reactivity compared to benzyl alcohols having the electron donating groups (Table 3, e.g. entry 5 vs. 3). In some cases a mere filtration of the reaction mixture and concentration of the filtrate afforded virtually pure products. α-Hetero aryl methyl alcohols delivered the corresponding aldehydes 2m–u (entries 13–21) in good yields with the exception of N-based heterocycles like 2p–t obtained in moderate 36–51% yields (entries 16–20). It appears that N-based heterocycles are poor substrates with the exception of 1H-indole-3ylmethanol giving 2n in good yields (78%, entry 14, Table 3). The dibenzofuran based aldehyde 2u was obtained in good yield (73%, entry 21) after 4 h reaction. Secondary benzylic alcohols were also oxidized under the present oxidation protocol delivering aryl ketones 2v–y in good to quantitative yields (entries 22–25).

The method was further explored towards oxidation of benzylic and/or allylic and propargylic alcohols (Table 4). With the optimized conditions, the primary allyl alcohols delivered the unsaturated aldehydes 4a and b in good yields (Table 4, entries 1 and 2). The secondary allyl alcohols provided the unsaturated ketones 4c–f in moderate to good yields (entries 3–6). Similarly, the primary propargyl alcohols afforded the alkynals 4g and h in good yields (entries 7 and 8). The benzylic and secondary propargyl alcohols gave the corresponding ketones 4i–l in good to excellent yields (entries 9–12). The selective oxidation of benzylic over unactivated primary aliphatic alcohols resulted in only benzylic alcohol oxidation delivering the β-hydroxyalkyl aryl ketones 4m–p in good yields (entries 13–16). The oxidation of unactivated primary or secondary alcohols failed to deliver the corresponding carbonyl compounds 4q–t (entries 17–20) indicating that the present protocol is mild and selective towards oxidation of benzylic, allylic and propargylic alcohols.

Table 4 Oxidation of allylic, benzylic and propargylic alcoholsa

image file: c4ra07500e-u7.tif

Entry Product T (h) Yieldb (%)
a Reaction conditions: substrate (0.5 mmol), K2OsO4·2H2O (0.005 mmol), K3[Fe(CN)6] (1.5 mmol), K2CO3(1.5 mmol) in CH3CN (1.5 mL) and H2O (1.5 mL) at 60 °C.b Isolated yields. NF = not formed.
1 image file: c4ra07500e-u8.tif 4a 3 87
2 image file: c4ra07500e-u9.tif 4b 14 88
3 image file: c4ra07500e-u10.tif 4c 18 77
4 image file: c4ra07500e-u11.tif 4d 18 58
5 image file: c4ra07500e-u12.tif 4e 18 47
6 image file: c4ra07500e-u13.tif 4f 18 68
7 image file: c4ra07500e-u14.tif 4g 3 85
8 image file: c4ra07500e-u15.tif 4h 18 65
9 image file: c4ra07500e-u16.tif 4i 10 88
10 image file: c4ra07500e-u17.tif 4j 10 68
11 image file: c4ra07500e-u18.tif 4k 10 76
12 image file: c4ra07500e-u19.tif 4l 10 64
13 image file: c4ra07500e-u20.tif 4m 10 84
14 image file: c4ra07500e-u21.tif 4n 12 85
15 image file: c4ra07500e-u22.tif 4o 12 69
16 image file: c4ra07500e-u23.tif 4p 12 77
17 Dodecanal 4q 48 NF
18 Phenylacetaldehyde 4r 48 NF
19 image file: c4ra07500e-u24.tif 4s 48 NF
20 image file: c4ra07500e-u25.tif 4t 48 NF


Conclusions

In conclusion, we have developed an efficient method for the selective oxidation of benzylic, allylic and propargylic alcohols with catalytic Os(VI) and using K3[Fe(CN)6] as secondary oxidant. The method is mild, operationally simple and can be carried out in a closed flask. High yields of aryl and unsaturated aldehydes and good chemoselectivity are other advantages of this method.

Experimental section

General information

Solvents and reagents were purified by standard methods. Thin-layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO4 or under UV lamp. 1H and 13C NMR were recorded with a Bruker, AVANCE III 500 or 400 spectrometer and the chemical shifts are based on TMS peak at δ = 0.00 pm for proton NMR and CDCl3 peak at δ = 77.00 ppm (t) in carbon NMR. IR spectra were obtained on Perkin Elmer Spectrum One FT–IR spectrometer and samples were prepared by evaporation from CHCl3 on CsBr plates. High-resolution mass spectra (HRMS) were obtained using positive electrospray ionization by TOF method.

General procedure for oxidation of alcohols

To a well stirred solution of K2OsO4·2H2O (1.8 mg, 0.005 mmol, 1.0 mol%), K3[Fe(CN)6] (554 mg, 1.5 mmol, 3.0 equiv.), K2CO3, (207 mg, 1.5 mmol, 3.0 equiv.) in CH3CN (1.5 mL) and H2O (1.5 mL) was added the substrate alcohol (0.5 mmol) at room temperature. The reaction mixture was warmed to 60 °C and stirred for specified time (see Tables 3 and 4). It was then quenched with aq. saturated solution of. Na2SO3 (1.0 mL) and the solvent partially evaporated. The reaction mixture was then filtered through a small pad of silica gel and washed with EtOAc (3 × 10 mL). The filtrate was concentrated and the residue in some cases contained virtually pure compound and no further purification was necessary. In other cases the residue was purified by silica gel column chromatography using petroleum ether/EtOAc as an eluent to afford the carbonyl compounds.
4-Methoxybenzaldehyde (2a). Isolated yield of 2a, (68 mg, quant.). Colorless oil; 1H NMR (400 MHz, CDCl3/TMS) δ 9.89 (s, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 190.6, 164.4, 131.8, 129.7, 114.1, 55.4.
4-Methylbenzaldehyde (2b). Isolated yield of 2b, (59 mg, 98%). Colorless oil; 1H NMR (400 MHz, CDCl3/TMS) δ 9.96 (s, 1H), 7.77 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 191.9, 145.4, 134.1, 129.7, 129.6, 21.7.
2,5-Dimethoxybenzaldehyde (2c). Isolated yield of 2c, (83 mg, quant.). Yellow crystalline solid, mp 44–46 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 10.43 (s, 1H), 7.32 (d, J = 3.3 Hz, 1H), 7.13 (dd, J = 9.0, 3.3 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 189.6, 156.7, 153.6, 124.9, 123.5, 113.3, 110.4, 56.1, 55.8.
3,4-Dimethoxybenzaldehyde (2d). Isolated yield of 2d, (83.0 mg, quant.). White solid, mp 41–42 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 9.84 (s, 1H), 7.45 (dd, J = 8.2, 2.0 Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 190.9, 154.4, 149.6, 130.1, 126.8, 110.3, 108.9, 56.1, 56.0.
4-Nitrobenzaldehyde (2e). Isolated yield of 2e, (75.5 mg, quant.). Yellow solid, mp 102–104 °C; 1H NMR (500 MHz, CDCl3/TMS) δ 10.16 (s, 1H), 8.40 (d, J = 8.6 Hz, 2H), 8.07 (d, J = 8.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 190.3, 151.1, 140.0, 130.5, 124.3.
3-Nitrobenzaldehyde (2f). Isolated yield of 2f, (74 mg, 98%). Yellow solid, mp 54–56 °C; 1H NMR (500 MHz, CDCl3/TMS) δ 10.12 (s, 1H), 8.73–8.71 (m, 1H), 8.49 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.77 (t, J = 7.90 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 189.7, 148.7, 137.3, 134.6, 130.3, 128.5, 124.3.
4-Chlorobenzaldehyde (2g). Isolated yield of 2g, (61.1 mg, 87%). White solid, mp 45–47 °C; 1H NMR (500 MHz, CDCl3/TMS) δ 9.98 (s, 1H), 7.83 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 190.8, 140.9, 134.6, 130.8, 129.4.
2-Chlorobenzaldehyde (2h). Isolated yield of 2h, (56.9 mg, 81%). Colorless oil; 1H NMR (400 MHz, CDCl3/TMS) δ 10.50 (s, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.54–7.51 (m, 1H), 7.47–7.45 (m, 1H), 7.40 (t, J = 7.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 189.9, 137.9, 135.1, 132.3, 130.5, 129.3, 127.2.
1-Naphthaldehyde (2i). Isolated yield of 2i, (75 mg, 96%). Colorless oil; 1H NMR (400 MHz, CDCl3/TMS) δ 10.41 (s, 1H), 9.26 (d, J = 8.6 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.72–7.70 (m, 1H), 7.68–7.58 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 193.6, 138.9, 136.7, 135.3, 133.7, 131.4, 130.5, 129.1, 128.5, 126.9, 124.9.
Piperonal (2j). Isolated yield of 2j, (75 mg, quant.). White solid, mp 35–37 °C; 1H NMR (500 MHz, CDCl3/TMS) δ 9.81 (s, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 1.5 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 6.07 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 190.2, 153.0, 148.6, 131.8, 128.6, 108.3, 106.8, 102.0.
2-Hydroxybenzaldehyde (2k). Isolated yield of 2k, (39.7 mg, 65%). Colorless oil; 1H NMR (500 MHz, CDCl3/TMS) δ 11.02 (s, 1H), 9.89 (s, 1H), 7.57–7.50 (m, 2H), 7.04–6.98 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 196.6, 161.6, 137.0, 133.7, 120.6, 119.8, 117.6.
4-Hydroxy-3-methoxybenzaldehyde (2l). Isolated yield of 2l, (66.9 mg, 88%). White solid, mp 81–82 °C; 1H NMR (500 MHz, CDCl3/TMS) δ 9.83 (s, 1H), 7.44–7.42 (m, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.21 (s, 1H), 3.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 191.0, 151.8, 147.2, 129.7, 127.5, 114.4, 108.8, 56.0.
Thiophene-2-carbaldehyde (2m). Isolated yield of 2m, (43.7 mg, 78%). Pale yellow oil; 1H NMR (400 MHz, CDCl3/TMS) δ 9.95 (s, 1H), 7.80–7.77 (m, 2H), 7.24–7.21 (m, 1H); 13C NMR (100 MHz, CDCl3) δ = 183.0, 144.0, 136.3, 135.1, 128.3.
1H-Indole-3-carbaldehyde (2n). Isolated yield of 2n, (56.6 mg, 78%). Brown solid, mp 193–195 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.89 (s, 1H), 8.23 (s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.27–7.19 (m, 2H); 13C NMR (100 MHz, DMSO-d6) δ 186.0, 139.2, 137.5, 124.4, 124.1, 122.8, 121.3, 118.6, 112.9.
Furfural (2o). Isolated yield of 2o, (39.4 mg, 82%). Yellow oil; 1H NMR (500 MHz, CDCl3/TMS) δ 9.69 (s, 1H), 7.72–7.71 (m, 1H), 7.27 (d, J = 0.4 Hz, 1H), 6.63 (dd, J = 3.6, 1.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 177.7, 152.8, 148.0, 121.0, 112.5.
Pyridine-3-carbaldehyde (2p). Isolated yield of 2p, (19.3 mg, 36%). Yellow oil; 1H NMR (400 MHz, CDCl3/TMS) δ 10.11 (s, 1H), 9.07 (d, J = 1.2 Hz, 1H), 8.84 (dd, J = 4.8, 1.4 Hz, 1H), 8.16 (td, J = 6.0, 2.0 Hz, 1H), 7.48 (dd, J = 7.8, 4.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 190.7, 154.7, 152.0, 135.8, 131.4, 124.1.
Pyridine-2-carbaldehyde (2q). Isolated yield of 2q, (20.4 mg, 38%). Yellow oil; 1H NMR (400 MHz, CDCl3/TMS) δ 10.10 (s, 1H), 8.80 (d, J = 4.4 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.88 (td, J = 7.6, 0.7 Hz, 1H), 7.55–7.52 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 193.1, 152.5, 149.9, 136.9, 127.7, 121.5.
Quinoline-4-carbaldehyde (2r). Isolated yield of 2r, (31.4 mg, 40%). White solid, mp 45–47 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 10.53 (s, 1H), 9.20 (d, 4.2 Hz, 1H), 9.02 (dd, J = 8.5, 1.0 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.85–7.80 (m, 2H), 7.74 (td, J = 7.7, 1.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 192.9, 150.4, 149.2, 136.8, 130.2, 130.0, 129.4, 125.8, 124.4, 123.9.
3-Methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (2s). Isolated yield of 2s, (39.1 mg, 42%). White solid, mp 57–59 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 9.99 (s, 1H), 8.34 (s, 1H), 7.68 (dd, J = 8.6, 1.1 Hz, 2H), 7.49 (t, J = 7.9 Hz, 2H), 7.38–7.34 (m, 1H), 2.59 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 184.3, 151.9, 139.0, 131.7, 129.6, 127.6, 122.9, 119.5, 13.0.
1H-Imidazole-4-carbaldehyde (2t). Isolated yield of 2t, (24.5 mg, 51%). Pale yellow solid, mp 174–176 °C; 1H NMR (400 MHz, CD3OD) δ 9.77 (s, 1H), 7.93 (s, 1H), 7.90 (s, 1H); 13C NMR (100 MHz, CD3OD) δ 183.4, 138.8, 134.9, 129.5.
Dibenzo[b,d]furan-4-carbaldehyde (2u). Isolated yield of 2u, (71.6 mg, 73%). White solid, mp 94–96 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 10.6 (s, 1H), 8.21 (dd, J = 7.6, 1.2 Hz, 1H), 8.01–7.95 (m, 2H), 7.70 (d, J = 8.1 Hz, 1H), 7.54 (td, J = 7.8, 1.1 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 188.4, 156.6, 155.9, 128.1, 127.5, 126.6, 126.0, 123.5, 122.9, 122.8, 121.2, 120.8, 112.1.
Acetophenone (2v). Isolated yield of 2v, (60 mg, quant.). Colorless oil; 1H NMR (400 MHz, CDCl3/TMS) δ 7.97–7.92 (m, 2H), 7.57–7.51 (m, 1H), 7.48–7.41 (m, 2H), 2.59 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 198.1, 137.0, 133.0, 128.5, 128.2, 26.5.
Benzophenone (2w). Isolated yield of 2w, (91.1 mg, quant.). White solid, mp 47–49 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 7.81 (d, J = 7.0 Hz, 4H), 7.61–7.57 (m, 2H), 7.49 (t, J = 7.8 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 196.7, 137.5, 132.4, 130.0, 128.2.
9H-Fluoren-9-one (2x). Isolated yield of 2x, (90.1 mg, quant.). Yellow solid, mp 80–82 °C; 1H NMR (400 MHz, CDCl3/TMS) δ 7.66 (d, J = 7.4 Hz, 2H), 7.53–7.46 (m, 4H), 7.31–7.27 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 193.7, 144.3, 134.5, 134.0, 128.9, 124.1, 120.2.
1-(Benzo[d][1,3]dioxol-5-yl)butan-1-one (2y). Isolated yield of 2y, (87.5 mg, 91%). Colorless oil; IR (CHCl3, cm−1): ν 3079, 2964, 2928, 2906, 2873, 2784, 1674, 1605, 1504, 1488, 1443, 1359, 1303, 1248, 1141, 1114, 1089, 1039, 998, 935, 911, 807, 648, 620, 577; 1H NMR (400 MHz, CDCl3/TMS) δ 7.56 (dd, J = 8.2, 1.6 Hz, 1H), 7.44 (d, J = 1.7 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.03 (s, 2H), 2.86 (t, J = 7.3 Hz, 2H), 1.77–1.71 (m, 2H), 0.99 (t, J = 7.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 198.1, 151.3, 147.9, 131.7, 123.9, 107.54, 107.50, 101.6, 40.0, 17.7, 13.6; HRMS (ESI-TOF) calcd for [C11H12O3 + Na]+ 215.0679, found 215.0677.
Cinnamaldehyde (4a). Isolated yield of 4a, (57.5 mg, 87%). Colorless oil; 1H NMR (500 MHz, CDCl3/TMS) δ 9.71 (d, J = 7.7 Hz, 1H), 7.57 (dd, J = 7.0, 2.4 Hz, 2H), 7.49 (d, J = 16.0 Hz, 1H), 7.45–7.43 (m, 3H), 6.57 (dd, J = 16.0, 7.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 193.7, 152.8, 134.0, 131.3, 129.1, 128.6, 128.5.
(E)-Oct-2-enal (4b). Isolated yield of 4b, (55.5 mg, 88%). Colorless oil; IR (CHCl3, cm−1): ν 2956, 2930, 2862, 1688, 1635, 1465, 1382, 1146, 1097, 976, 909, 650; 1H NMR (400 MHz, CDCl3/TMS) δ 9.50 (d, J = 7.9 Hz, 1H), 6.89–6.81 (m, 1H), 6.15–6.08 (m, 1H), 2.36–2.30 (m, 2H), 1.55–1.47 (m, 2H), 1.36–1.25 (m, 4H), 0.90 (t, J = 6.9, 3H); 13C NMR (100 MHz, CDCl3) δ 194.2, 159.1, 132.9, 32.7, 31.3, 27.5, 22.4, 13.9; HRMS (ESI-TOF) calcd for [C8H14O + K]+ 165.0676, found 165.0681.
1-Phenylprop-2-en-1-one (4c). Isolated yield of 4c, (50.9 mg, 77%). Colorless oil; IR (CHCl3, cm−1): ν 3065, 3020, 1733, 1672, 1609, 1580, 1448, 1404, 1286, 1233, 1180, 1072, 994, 698; 1H NMR (400 MHz, CDCl3/TMS) δ 7.95 (d, J = 7.1 Hz, 2H), 7.58–7.56 (m, 1H), 7.45 (t, J = 7.1 Hz, 2H), 7.16 (dd, J = 17.1, 10.6 Hz, 1H), 6.44 (dd, J = 17.1, 1.6 Hz, 1H), 5.94 (dd, J = 10.6, 1.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 191.0, 137.2, 132.9, 132.3, 130.1, 128.6, 128.5; HRMS (ESI-TOF) calcd for [C9H8O + Na]+ 155.0467, found 155.0473.
Dec-1-en-3-one (4d). Isolated yield of 4d, (44.7 mg, 58%). Colorless oil; IR (CHCl3, cm−1): ν 2980, 2929, 2857, 1703, 1684, 1616, 1466, 1402, 1478, 1263, 1184, 1081, 985, 962, 911; 1H NMR (400 MHz, CDCl3/TMS) δ 6.35 (dd, J = 17.7, 10.5 Hz, 1H), 6.21 (dd, J = 17.6, 1.2 Hz, 1H), 5.81 (dd, J = 10.5 Hz, 1H), 2.57 (t, J = 7.5 Hz, 2H), 1.61–1.57 (m, 2H), 1.32–1.26 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 200.8, 136.4, 127.6, 39.5, 31.5, 29.0, 28.9, 23.8, 22.4, 13.9; HRMS (ESI-TOF) calcd for [C10H18O + Na]+ 177.1250, found 177.1245.
2-Methyl-5-(prop-1-en-2-yl)cyclohex-2-enone (4e). Isolated yield of 4e, (35.3 mg, 47%). Colorless oil; 1H NMR (500 MHz, CDCl3/TMS) δ 6.75–6.74 (m, 1H), 4.76 (d, J = 19.8 Hz, 2H), 2.71–2.63 (m, 1H), 2.59–2.54 (m, 1H), 2.46–2.07 (m, 3H), 1.77 (d, J = 1.2 Hz, 3H), 1.73 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 199.8, 146.7, 144.7, 135.4, 110.4, 43.1, 42.4, 31.2, 20.5, 15.7.
Cyclohex-2-en-1-one (4f). Isolated yield of 4f, (32.7 mg, 68%). Colorless oil; 1H NMR (500 MHz, CDCl3/TMS) δ 6.98 (td, J = 10.1, 4.2 Hz, 1H), 6.00 (td, J = 10.1, 2.0 Hz, 1H), 2.43–2.39 (m, 2H), 2.36–2.32 (m, 2H), 2.04–1.98 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 199.8, 150.7, 129.9, 38.1, 25.6, 22.7.
3-Phenylpropiolaldehyde (4g). Isolated yield of 4g, (55.3 mg, 85%). Colorless oil; IR (CHCl3, cm−1): ν 2926, 2855, 2738, 2240, 2189, 1660, 1596, 1489, 1444, 1388, 1283, 1260, 1178, 1160, 1070, 1027, 1002, 978, 922, 688, 617; 1H NMR (400 MHz, CDCl3/TMS) δ 9.41 (s, 1H), 7.59 (dd, J = 8.3, 1.1 Hz, 2H), 7.51–7.46 (m, 1H), 7.39–7.37 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 176.8, 133.2, 131.2, 128.7, 119.3, 95.1, 88.4; HRMS (ESI-TOF) calcd for [C9H6O + H]+ 131.0491, found 131.0494.
Oct-2-ynal (4h). Isolated yield of 4h, (40.3 mg, 65%). Colorless oil; IR (CHCl3, cm−1): ν 3022, 2959, 2934, 2862, 2740, 2284, 2201, 1669, 1466, 1424, 1387, 1341, 1327, 1139, 1106, 1064, 1028, 976, 929, 908, 882, 812, 668; 1H NMR (400 MHz, CDCl3/TMS) δ 9.18 (s, 1H), 2.41 (t, J = 7.1 Hz, 2H), 1.62–1.57 (m, 2H), 1.42–1.33 (m, 4H), 0.91 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 177.3, 99.4, 81.6, 30.9, 27.2, 22.0, 19.0, 13.8.
1-(Benzo[d][1,3]dioxol-5-yl)-3-phenylprop-2-yn-1-one (4i). Isolated yield of 4i, (110 mg, 88%). Pale yellow solid, mp 92–93 °C; IR (CHCl3, cm−1): ν 3018, 2904, 2785, 2208, 1732, 1630, 1600, 1504, 1485, 1447, 1373, 1359, 1251, 1140, 1107, 1097, 1043, 1014, 997, 936, 908, 885, 822, 688, 668; 1H NMR (400 MHz, CDCl3/TMS) δ 7.90 (dd, J = 8.2, 1.6 Hz, 1H), 7.68–7.63 (m, 3H), 7.48–7.40 (m, 3H), 6.92 (d, J = 8.2 Hz, 1H), 6.09 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 176.1, 152.8, 148.2, 132.9, 132.0, 130.6, 128.6, 127.2, 120.1, 108.2, 108.0, 102.1, 92.3, 86.7; HRMS (ESI-TOF) calcd for [C16H10O3 + Na]+ 273.0522, found 273.0523.
1-(Benzo[d][1,3]dioxol-5-yl)oct-2-yn-1-one (4j). Isolated yield of 4j, (83.7 mg, 68%). Colorless oil; IR (CHCl3, cm−1): ν 3076, 2961, 2932, 2791, 2210, 1742, 1637, 1602, 1503, 1487, 1444, 1359, 1319, 1275, 1260, 1226, 1157, 1116, 1077, 1038, 934, 913, 888, 853, 806, 677, 648; 1H NMR (400 MHz, CDCl3/TMS) δ 7.79 (dd, J = 8.2, 1.7 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.06 (s, 2H), 2.47 (t, J = 7.2 Hz, 2H), 1.67 (q, J = 7.3 Hz, 2H), 1.48–1.32 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (100 MHz, CDCl3) δ 176.2, 152.5, 147.9, 131.9, 126.9, 108.1, 107.7, 101.9, 95.9, 79.3, 30.9, 27.3, 21.9, 18.9, 13.7; HRMS (ESI-TOF) calcd for [C15H16O3 + Na]+ 267.0992, found 267.0991.
1-(Benzo[d][1,3]dioxol-5-yl)-4-(benzyloxy)but-2-yn-1-one (4k). Isolated yield of 4k, (111.8 mg, 76%). Pale yellow solid, mp 69–70 °C; IR (CHCl3, cm−1): ν 3066, 3032, 2903, 2787, 2250, 2229, 1638, 1601, 1504, 1486, 1445, 1360, 1262, 1227, 1155, 1105, 1091, 1039, 932, 910, 857, 822, 806, 648, 605; 1H NMR (400 MHz, CDCl3/TMS) δ 7.82 (dd, J = 8.1, 1.7 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.40–7.31 (m, 5H), 6.88 (d, J = 8.2 Hz, 1H), 6.08 (s, 2H), 4.69 (s, 2H), 4.44 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 175.6, 153.1, 148.3, 136.7, 131.6, 128.6, 128.1, 127.5, 126.8, 108.2, 108.0, 102.1, 89.3, 84.1, 72.2, 57.2; HRMS (ESI-TOF) calcd for [C18H14O4 + Na]+ 317.0784, found 317.0785.
1-(Benzyloxy)dec-2-yn-4-one (4l). Isolated yield of 4l, (82.7 mg, 64%). Colorless oil; IR (CHCl3, cm−1): ν 3032, 2950, 2929, 2214, 1676, 1496, 1455, 1399, 1351, 1256, 1228, 1154, 1092, 1028, 907, 698; 1H NMR (400 MHz, CDCl3/TMS) δ 7.39–7.31 (m, 5H), 4.62 (s, 2H), 4.33 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.69–1.57 (m, 2H), 1.34–1.27 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 187.4, 136.7, 128.4, 128.2, 128.0, 87.3, 85.3, 72.0, 56.8, 45.3, 31.4, 28.5, 23.8, 22.3, 13.9; HRMS (ESI-TOF) calcd for [C17H22O2 + Na]+ 281.1512, found 281.1509.
1-(Benzo[d][1,3]dioxol-5-yl)-3-hydroxypropan-1-one (4m). Isolated yield of 4m, (81.6 mg, 84%). White solid, mp 85–87 °C; IR (CHCl3, cm−1): ν 3447, 3019, 2971, 2896, 1670, 1604, 1506, 1490, 1444, 1355, 1257, 1109, 1097, 1041, 936, 878, 669; 1H NMR (400 MHz, CDCl3/TMS) δ 7.57 (dd, J = 8.2, 1.7 Hz, 1H), 7.43 (d, J = 1.7 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.06 (s, 2H), 4.02–3.98 (m, 2H), 3.15 (t, J = 5.3 Hz, 2H), 2.71 (t, J = 6.4 Hz, OH); 13C NMR (100 MHz, CDCl3) δ 198.4, 152.0, 148.2, 131.4, 124.5, 107.9, 107.6, 101.9, 58.1, 40.0; HRMS (ESI-TOF) calcd for [C10H10O4 + Na]+ 217.0471, found 217.0472.
1-(2,5-dimethoxyphenyl)-3-hydroxypropan-1-one (4n). Isolated yield of 4n, (89.3 mg, 85%). Colorless oil; IR (CHCl3, cm−1): ν 3436, 3000, 2946, 2906, 2837, 1669, 1610, 1582, 1496, 1465, 1443, 1414, 1358, 1280, 1223, 1182, 1165, 1049, 1017, 912, 815, 648; 1H NMR (500 MHz, CDCl3/TMS) δ 7.32 (d, J = 3.2 Hz, 1H), 7.05 (dd, J = 8.9, 3.2 Hz, 1H), 6.92 (d, J = 8.9 Hz, 1H), 3.97 (t, J = 5.3 Hz, 2H), 3.87 (s, 3H), 3.79 (s, 3H), 3.26 (t, J = 5.3 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 201.4, 153.3, 153.1, 127.2, 120.4, 113.5, 112.9, 58.1, 55.7, 55.5, 45.8; HRMS (ESI-TOF) calcd for [C11H14O4 + Na]+ 233.0784, found 233.0791.
3-Hydroxy-1-(4-nitrophenyl)propan-1-one (4o). Isolated yield of 4o, (67.3 mg, 69%). Yellow solid, mp 88–90 °C; IR (CHCl3, cm−1): ν 3415, 2923, 2851, 1679, 1642, 1599, 1514, 1404, 1341, 1212, 1102, 1048, 912, 598; 1H NMR (500 MHz, CDCl3/TMS) δ 8.35 (d, J = 9.0 Hz, 2H), 8.15 (d, J = 8.9 Hz, 2H), 4.10 (q, J = 5.7 Hz, 2H), 3.30 (t, J = 5.3 Hz, 2H), 2.42 (t, J = 6.5 Hz, 1H, OH) ppm; 13C NMR (125 MHz, CDCl3) δ 198.6, 150.5, 140.9, 129.1, 123.9, 57.7, 41.1; HRMS (ESI-TOF) calcd for [C9H9NO4 + Na]+ 218.0424, found 218.0428.
1-(4-Chlorophenyl)-3-hydroxypropan-1-one (4p). Isolated yield of 4p, (71.1 mg, 77%). Yellow oil; IR (CHCl3, cm−1): ν 3437, 2945, 2891, 1681, 1591, 1569, 1488, 1465, 1401, 1361, 1250, 1209, 1175, 1093, 1063, 1014, 998, 976, 909, 876, 818, 649; 1H NMR (500 MHz, CDCl3/TMS) δ 7.91 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 4.03 (t, J = 5.3 Hz, 2H), 3.20 (t, J = 5.3 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 198.8, 139.7, 134.8, 129.3, 128.8, 57.6, 40.4; HRMS (ESI-TOF) calcd for [C9H9ClO2 + Na]+ 207.0183, found 207.0190.

Acknowledgements

We thank the Department of Science and Technology, New Delhi, India (Grant no. SB/S1/OC-42/2013) and Department of Chemistry, IIT-Bombay for financial support. V. B. thank the Council of Scientific and Industrial Research (CSIR) New Delhi, India for research fellowships.

Notes and references

  1. (a) M. Hudlicky, Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990 Search PubMed; (b) R. C. Larock, Comprehensive Organic Transformations, Wiley-VCH, New York, 2nd edn, 1999, p. 1234 Search PubMed; (c) I. W. C. E. Arends and R. A. Sheldon, in Modern Oxidation Methods, ed. J.-E. Backvall, Wiley-VCH, Weinheim, 2nd edn, 2010, p. 147 Search PubMed.
  2. (a) G. Franz and R. A. Sheldon, in Ullmann's Encyclopedia of Industrial Chemistry, ed. B. Elvers, S. Hawkins and G. Schulz, VCH, Weinheim, 5th edn, 1991, vol. A18, pp. 261–311 Search PubMed; (b) S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan and D. H. B. Ripin, Chem. Rev., 2006, 106, 2943 CrossRef CAS PubMed.
  3. (a) K. Bowden, I. M. Heilbron, E. R. H. Jones and B. C. L. Weedon, J. Chem. Soc., 1946, 39 RSC; (b) G. I. Poos, G. E. Arth, R. E. Beyler and L. H. Sarett, J. Am. Chem. Soc., 1953, 75, 422 CrossRef CAS; (c) W. M. Coates and J. R. Corrigan, Chem. Ind., 1969, 1594 CAS; (d) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 16, 2647 CrossRef; (e) G. Piancatelli, A. Scettri and M. D'Auria, Synthesis, 1982, 245 CrossRef CAS; (f) F. A. Luzzio and F. S. Guziec Jr, Org. Prep. Proced. Int., 1988, 20, 533 CrossRef CAS.
  4. (a) M. Harfenist, A. Bavley and W. A. Lazier, J. Org. Chem., 1954, 19, 1608 CrossRef CAS; (b) M. Brink, Synthesis, 1975, 253 CrossRef CAS; (c) A. J. Fatiadi, Synthesis, 1976, 65 CrossRef CAS; (d) A. J. Fatiadi, Synthesis, 1976, 133 CrossRef CAS; (e) R. J. K. Taylor, M. Reid, J. Foot and S. A. Raw, Acc. Chem. Res., 2005, 38, 851 CrossRef CAS PubMed.
  5. (a) K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 1963, 85, 3027 Search PubMed; (b) A. J. Mancuso, S.-L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480 CrossRef CAS; (c) A. J. Mancuso and D. Swern, Synthesis, 1981, 165 CrossRef CAS; (d) T. T. Tidwell, Synthesis, 1990, 857 CrossRef CAS PubMed.
  6. (a) D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155 CrossRef CAS; (b) D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277 CrossRef CAS; (c) M. Frigerio and M. Santagostino, Tetrahedron Lett., 1994, 35, 8019 CrossRef CAS; (d) S. D. Meyer and S. L. Schreiber, J. Org. Chem., 1994, 59, 7549 CrossRef CAS; (e) E. J. Corey and A. Palani, Tetrahedron Lett., 1995, 36, 3485 CrossRef CAS; (f) K. C. Nicolaou, Y.-L. Zhong and P. S. Baran, J. Am. Chem. Soc., 2000, 122, 7596 CrossRef CAS; (g) M. Uyanik and K. Ishihara, Chem. Commun., 2009, 2086 RSC.
  7. (a) W. Adam, C. R. Saha-Möller and P. A. Ganeshpure, Chem. Rev., 2001, 101, 3499 CrossRef CAS PubMed; (b) R. A. Miller and R. S. Hoerrner, Org. Lett., 2003, 5, 285 CrossRef CAS PubMed; (c) N. Jiang and A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087 CrossRef CAS PubMed; (d) N. Mase, T. Mizumori and Y. Tatemoto, Chem. Commun., 2011, 47, 2086 RSC; (e) J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901 CrossRef CAS PubMed.
  8. (a) M. F. Semmelhack, C. R. Schmid, D. A. Cortés and C. S. Chou, J. Am. Chem. Soc., 1984, 106, 3374 CrossRef CAS; (b) I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown and C. J. Urch, Science, 1996, 274, 2044 CrossRef; (c) I. A. Ansari and R. Gree, Org. Lett., 2002, 4, 1507 CrossRef CAS PubMed; (d) P. Gamez, I. W. C. E. Arends, J. Reedijk and R. A. Sheldon, Chem. Commun., 2003, 2414 RSC; (e) I. E. Markó, A. Gautier, R. Dumeunier, K. Doda, F. Philippart, S. M. Brown and C. J. Urch, Angew. Chem., Int. Ed., 2004, 43, 1588 CrossRef PubMed; (f) N. Jiang and A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087 CrossRef CAS PubMed; (g) O. Onomura, H. Arimoto, Y. Matsumura and Y. Demizu, Tetrahedron Lett., 2007, 48, 8668 CrossRef CAS PubMed; (h) C. Liu, J. Han and J. Wang, Synlett, 2007, 643 CAS; (i) P. J. Figiel, M. N. Kopylovich, J. Lasri, M. F. C. Guedes da Silva, J. J. R. Frausto da Silva and A. J. L. Pombeiro, Chem. Commun., 2010, 2766 RSC; (j) J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901 CrossRef CAS PubMed; (k) C. Han, M. Yu, W. Sun and X. Yao, Synlett, 2011, 2363 CAS; (l) S. G. Babu, P. A. Priyadarsini and R. Karvembu, Appl. Catal., A, 2011, 392, 218 CrossRef CAS PubMed.
  9. (a) K. P. Peterson and R. C. Larock, J. Org. Chem., 1998, 63, 3185 CrossRef CAS; (b) G.-J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science, 2000, 287, 1636 CrossRef CAS; (c) D. R. Jensen, J. S. Pugsley and M. S. Sigman, J. Am. Chem. Soc., 2001, 123, 7475 CrossRef CAS; (d) E. M. Ferreira and B. M. Stoltz, J. Am. Chem. Soc., 2001, 123, 7725 CrossRef CAS; (e) S. S. Stahl, J. L. Thorman, R. C. Nelson and M. A. Kozee, J. Am. Chem. Soc., 2001, 123, 7188 CrossRef CAS; (f) J. Muzart, Tetrahedron, 2003, 59, 5789 CrossRef CAS; (g) J. Liu, F. Wang, K. Sun and X. Xu, Catal. Commun., 2008, 9, 386 CrossRef CAS PubMed; (h) R. Dileep and B. R. Bhat, Appl. Organomet. Chem., 2010, 24, 663 CrossRef CAS PubMed.
  10. (a) W. P. Griffith, S. V. Ley, G. P. Whitcombe and A. D. White, J. Chem. Soc., Chem. Commun., 1987, 1625 RSC; (b) P. E. Morris and D. E. Kiely, J. Org. Chem., 1987, 52, 1149 CrossRef CAS; (c) S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639 CrossRef; (d) W.-H. Fung, W.-Y. Yu and C.-M. Che, J. Org. Chem., 1998, 63, 2873 CrossRef CAS; (e) G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin and J.-E. Bäckvall, J. Org. Chem., 2002, 67, 1657 CrossRef CAS PubMed; (f) K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2002, 41, 4538 CrossRef CAS; (g) L. Gonsalvi, I. W. C. E. Arends and R. A. Sheldon, Org. Lett., 2002, 4, 1659 CrossRef CAS PubMed; (h) B.-Z. Zhan, M. A. White, T.-K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson and T. S. Cameron, J. Am. Chem. Soc., 2003, 125, 2195 CrossRef CAS PubMed.
  11. (a) H. Tsunoyama, H. Sakurai, Y. Negishiand and T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 9374 CrossRef CAS PubMed; (b) B. Guan, D. Xing, G. Cai, X. Wan, N. Yu, Z. Fang, L. Yang and Z. Shi, J. Am. Chem. Soc., 2005, 127, 18004 CrossRef CAS PubMed; (c) J. Ni, W.-J. Yu, L. He, H. Sun, Y. Cao, H.-Y. He and K.-N. Fan, Green Chem., 2009, 11, 756 RSC.
  12. (a) O. Bortolini, V. Conte, F. D. Furia and G. Modena, J. Org. Chem., 1986, 51, 2661 CrossRef CAS; (b) K. Sato, M. Aoki, J. Takagi and R. Noyori, J. Am. Chem. Soc., 1997, 119, 12386 CrossRef CAS; (c) D. Sloboda-Rozner, P. L. Alsters and R. Neumann, J. Am. Chem. Soc., 2003, 125, 5280 CrossRef PubMed.
  13. (a) Y.-C. Son, V. D. Makwana, A. R. Howell and S. L. Suib, Angew. Chem., Int. Ed., 2001, 40, 4280 CrossRef CAS; (b) M. Bagherzadeh, Tetrahedron Lett., 2003, 44, 8943 CrossRef CAS PubMed; (c) H. R. Mardani and H. Golchoubian, Tetrahedron Lett., 2006, 47, 2349 CrossRef CAS PubMed; (d) H.-K. Kwong, P.-K. Lo, K.-C. Lau and T.-C. Lau, Chem. Commun., 2011, 4273 RSC.
  14. (a) A. J. Pearson and Y. Kwak, Tetrahedron Lett., 2005, 46, 5417 CrossRef CAS PubMed; (b) F. Shi, M. K. Tse, M.-M. Pohl, A. Brückner, S. Zhang and M. Beller, Angew. Chem., Int. Ed., 2007, 46, 8866 CrossRef CAS PubMed; (c) K. Schroder, K. Junge, B. Bitterlich and M. Beller, Top. Organomet. Chem., 2011, 33, 83 CrossRef; (d) T. Kunisu, T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2011, 133, 12937 CrossRef CAS PubMed.
  15. (a) B. S. Tovrog, S. E. Diamond, F. Mares and A. Szalkiewicz, J. Am. Chem. Soc., 1981, 103, 3522 CrossRef CAS; (b) T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2000, 65, 6502 CrossRef CAS; (c) S. Das and T. Punniyamurthy, Tetrahedron Lett., 2003, 44, 6033 CrossRef CAS; (d) N. Gunasekaran, P. Jerome, S. W. Ng, E. R. T. Tiekink and R. Karvembu, J. Mol. Catal. A: Chem., 2012, 353–354, 156 CrossRef CAS PubMed.
  16. (a) C. Li, P. Zheng, J. Li, H. Zhang, Y. Cui, Q. Shao, X. Ji, J. Zhang, P. Zhao and Y. Xu, Angew. Chem., Int. Ed., 2003, 42, 5063 CrossRef CAS PubMed; (b) V. D. Pawar, S. Bettigeri, S.-S. Weng, J.-Q. Kao and C.-T. Chen, J. Am. Chem. Soc., 2006, 128, 6308 CrossRef CAS PubMed; (c) M. Bagherzadeh and M. Amini, J. Coord. Chem., 2010, 63, 3849 CrossRef CAS; (d) K. Alagiri and K. R. Prabhu, Tetrahedron, 2011, 67, 8544 CrossRef CAS PubMed.
  17. M. J. Schultz and M. S. Sigman, Tetrahedron, 2006, 62, 8227 CrossRef CAS PubMed.
  18. Y. Sasano, K. Murakami, T. Nishiyama, E. Kwon and Y. Iwabuchi, Angew. Chem., Int. Ed., 2013, 52, 12624 CrossRef CAS PubMed.
  19. J. E. Steves and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 15742 CrossRef CAS PubMed.
  20. L. Wang, J. Li, H. Yang, Y. Lv and S. Gao, J. Org. Chem., 2012, 77, 790 CrossRef CAS PubMed.
  21. C. C. Cosner, P. J. Cabrera, K. M. Byrd, A. M. Thomas and P. Helquist, Org. Lett., 2011, 13, 2071 CrossRef CAS PubMed.
  22. C. B. Tripathi and S. Mukherjee, J. Org. Chem., 2012, 77, 1592 CrossRef CAS PubMed.
  23. S. K. Hanson, R. Wu and L. A. Silks, Org. Lett., 2011, 13, 1908 CrossRef CAS PubMed.
  24. N. Rodríguez, M. Medio-Simón and G. Asensio, Adv. Synth. Catal., 2007, 349, 987 CrossRef PubMed.
  25. Y. Kon, Y. Usui and K. Sato, Chem. Commun., 2007, 4399 RSC.
  26. B. Join, K. Möller, C. Ziebart, K. Schröder, D. Gördes, K. Thurow, A. Spannenberg, K. Junge and M. Beller, Adv. Synth. Catal., 2011, 353, 3023 CrossRef CAS PubMed.
  27. S. Shu-Su, K. Vita, S. T. Ying, D. W. Richard and N. Koichi, Tetrahedron Lett., 2012, 53, 986 CrossRef PubMed.
  28. (a) M. Schroeder, Chem. Rev., 1980, 80, 187 CrossRef CAS; (b) H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483 CrossRef CAS; (c) C. Dobler, G. Mehltretter and M. Beller, Angew. Chem., Int. Ed., 1999, 38, 3026 CrossRef CAS; (d) G. M. Mehltretter, C. Döbler, U. Sundermeier and M. Beller, Tetrahedron Lett., 2000, 41, 8083 CrossRef CAS; (e) A. S. Davis, T. Ritthiwigrom and S. G. Pyne, Tetrahedron, 2008, 64, 4868 CrossRef CAS PubMed.
  29. C. Döbler, G. M. Mehltretter, U. Sundermeier, M. Eckert, H.-C. Militzer and M. Beller, Tetrahedron Lett., 2001, 42, 8447 CrossRef.
  30. J. Muldoon and S. N. Brown, Org. Lett., 2002, 4, 1043 CrossRef CAS PubMed.
  31. S. Devari, R. Deshidi, M. Kumar, A. Kumar, S. Sharma, M. Rizvi, M. Kushwaha, A. P. Gupta and B. A. Shah, Tetrahedron Lett., 2013, 54, 6407 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Copies of 1H and 13C NMR spectra for all the compounds. See DOI: 10.1039/c4ra07500e

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.