Iridium–CNP complex catalyzed cross-coupling of primary alcohols and secondary alcohols by a borrowing hydrogen strategy

Dawei Wang*, Keyan Zhao, Xin Yu, Hongyan Miao and Yuqiang Ding*
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China. E-mail: wangdw@jiangnan.edu.cn; yding@jiangnan.edu.cn

Received 1st July 2014 , Accepted 29th August 2014

First published on 29th August 2014


Abstract

A highly efficient C–C bond formation has been developed through the cross-coupling of primary and secondary alcohols. The corresponding functionalized ketones were obtained with an iridium–CNP complex as a catalyst through the borrowing hydrogen strategy. The present methodology provides an easy alternative method to aldol reaction derivatives. More importantly, the complexes were also effective catalysts for the alkylation of an aromatic amine with a tertiary alkyl amine.


The borrowing hydrogen reaction has attracted considerable attention over the past ten years, emerging as a promising new catalytic transformation that provides a useful alternative method to the conventional alkylation of amines with a more atom-efficient, greener process.1,2 The borrowing hydrogen process usually involves the activation of alcohols through the removal of hydrogen to form aldehydes or ketones, which react with amines to form imines, followed by reduction using the hydrogen generated in a dehydrogenation step to obtain an N-alkylated amine product.3,4 Compared to the reactions of alcohols with amines, the development of borrowing hydrogen reactions with respect to alcohols with alcohols is slower and more difficult, as it is burdened by the problems of low efficiency and high temperature.5 The cross-coupling reaction involves the following process: (1) successive dehydrogenation of two molecules of alcohol to the corresponding carbonyl compounds; (2) aldol condensation of the foregoing to form an unsaturated carbonyl compound (Scheme 1); and (3) reduction of the C–C double bond using the borrowed H2 from one molecule of alcohol6 water and hydrogen are produced as byproducts, and the atom efficiency of this system is high.7
image file: c4ra06474g-s1.tif
Scheme 1 C–C formation using the borrowing hydrogen strategy.

We recently reported on the phosphorescent benzothienyl iridium(III) complexes8 with catalytic activity enhanced by phosphine ligand and non-coordinating anion (Scheme 2).9 These complexes provide a very efficient alternative method for the alkylation of amines. Here, in this paper we report that the functionalized ketones were obtained with iridium–CNP complexes as catalysts through the borrowing hydrogen strategy.


image file: c4ra06474g-s2.tif
Scheme 2 Benzothienyl skeleton phosphine ligand Ir(III) complexes.

In order to evaluate the influence of the various reported iridium catalysts, the reaction of benzyl alcohol (3a) with 1-phenylethanol (4a) was chosen as the model substrate for the optimization of catalytic activity and selectivity (Table 1). First, we examined the activity of those iridium complexes, whereby the results showed that the yield of the product (5a) increased with benzothienyl skeleton phosphine ligand iridium(III) complexes in the following order: 2b > 2d > 2c > 2a > 1b > 1a. It should be noted that nearly all the catalysts with non-coordinating anion gave excellent yields.

Table 1 Screening of optimized reaction conditions for benzyl alcohol (3a) with 1-phenylethanol (4a)a

image file: c4ra06474g-u1.tif

Entry Catalyst Base Solvent Yieldb (%)
a Reagents and conditions: benzyl alcohol (1.1 mmol), 1-phenylethanol (1 mmol), cat [Ir] loading (2 mol%), base (1 mmol), solvent (2 mL), 110 °C, 16 h, N2.b Isolated yield.
1 1a K2CO3 Dioxane 32
2 1b K2CO3 Dioxane 38
3 2a K2CO3 Dioxane 52
4 2b K2CO3 Dioxane 55
5 2c K2CO3 Dioxane 54
6 2d K2CO3 Dioxane 55
7 2b K2CO3 DMSO 67
8 2b K2CO3 DMF 65
9 2b K2CO3 Toluene 74
10 2b K2CO3 MeCN 64
11 2b none Toluene 45
12 2b KOH Toluene 69
13 2b Et3N Toluene 55
14 2b Na2CO3 Toluene 66
15 2b CsCO3 Toluene 89
16 2b tBuOK Toluene 87
17 2a CsCO3 Toluene 85
18 2c CsCO3 Toluene 86
19 2d CsCO3 Toluene 88


The reaction conditions were further optimized through the use of various solvents. The yield of product was significantly lower in polar solvent, toluene was found to be the most suitable among the solvents tested. The blank test showed that bases played an important role in the reaction, so a number of bases were checked. The result of the comparison of alkaline carbonates suggested that the alcohol-dehydrogenation and aldol-condensation steps demand stronger basic sites. Cs2CO3 and tBuOK efficiently provided the C–C formation reaction, but Cs2CO3 was relatively more effective. Under the optimized conditions (benzyl alcohol (1.1 mmol), 1-phenylethanol (1 mmol), [Ir] loading (2 mol%), Cs2CO3 (1 mmol), toluene (2 mL), 110 °C, 16 h, under nitrogen), phenethyl phenylketone (5a) was formed at a yield of 89% with catalyst 2b, while 3a, 3c, 3d afforded more than 85% yield of the desired product.

Given the optimized reaction conditions, we investigated the scope of the reaction with a series of secondary and primary alcohols (Table 2). The reactions of 1-phenylethanol with different types of aromatic alcohols occurred well, providing moderate to excellent yields (Table 2, entries 1–8). Chlorinated aromatic alcohol and electron-donating substituent were well tolerated in the reactions, while pyridyl-, furyl-, thienyl-heterocyclic alcohols could react under the optimal reaction conditions with the overall yield in 69–85%. Next, pyridyl heterocyclic alcohols with diverse phenylethanols were explored (Table 2, entries 9–13 and 15–16). Generally, phenylethanols possessing electron-donating groups gave the corresponding products in higher yields as compared to electron-poor ones, while benzyl alcohol with 1-[4-(trifluoromethyl)phenyl]ethanol afforded only 58% yield of the desired product. This, we believe, it is attributable to the trifluoromethyl strong electron-withdrawal (Table 2, entry 14).

Table 2 Iridium(III) complex 2b catalyzed reaction of primary and secondary alcoholsa

image file: c4ra06474g-u2.tif

Entry Primary alcohol Secondary alcohol Product Yieldb (%)
a Reagents and conditions: primary alcohol (1.1 mmol), secondary alcohol (1 mmol), cat 3b (2 mol%), Cs2CO3 (1 mmol), toluene (2 mL), 110 °C, 16 h, N2.b Isolated yield.c Primary alcohol (10–15 mmol).d Primary alcohol (5 mmol).
1 image file: c4ra06474g-u3.tif image file: c4ra06474g-u4.tif image file: c4ra06474g-u5.tif 5a, 89
2 image file: c4ra06474g-u6.tif image file: c4ra06474g-u7.tif image file: c4ra06474g-u8.tif 5b, 97
3 image file: c4ra06474g-u9.tif image file: c4ra06474g-u10.tif image file: c4ra06474g-u11.tif 5c, 81
4 image file: c4ra06474g-u12.tif image file: c4ra06474g-u13.tif image file: c4ra06474g-u14.tif 5d, 85
5 image file: c4ra06474g-u15.tif image file: c4ra06474g-u16.tif image file: c4ra06474g-u17.tif 5e, 82
6 image file: c4ra06474g-u18.tif image file: c4ra06474g-u19.tif image file: c4ra06474g-u20.tif 5f, 78
7 image file: c4ra06474g-u21.tif image file: c4ra06474g-u22.tif image file: c4ra06474g-u23.tif 5g, 74
8 image file: c4ra06474g-u24.tif image file: c4ra06474g-u25.tif image file: c4ra06474g-u26.tif 5h, 69
9 image file: c4ra06474g-u27.tif image file: c4ra06474g-u28.tif image file: c4ra06474g-u29.tif 5i, 73
10 image file: c4ra06474g-u30.tif image file: c4ra06474g-u31.tif image file: c4ra06474g-u32.tif 5j, 81
11 image file: c4ra06474g-u33.tif image file: c4ra06474g-u34.tif image file: c4ra06474g-u35.tif 5k, 79
12 image file: c4ra06474g-u36.tif image file: c4ra06474g-u37.tif image file: c4ra06474g-u38.tif 5l, 82
13 image file: c4ra06474g-u39.tif image file: c4ra06474g-u40.tif image file: c4ra06474g-u41.tif 5m, 78
14 image file: c4ra06474g-u42.tif image file: c4ra06474g-u43.tif image file: c4ra06474g-u44.tif 5n, 58
15 image file: c4ra06474g-u45.tif image file: c4ra06474g-u46.tif image file: c4ra06474g-u47.tif 5o, 63
16 image file: c4ra06474g-u48.tif image file: c4ra06474g-u49.tif image file: c4ra06474g-u50.tif 5p, 73
17c image file: c4ra06474g-u51.tif image file: c4ra06474g-u52.tif image file: c4ra06474g-u53.tif 5q, 46
18c image file: c4ra06474g-u54.tif image file: c4ra06474g-u55.tif image file: c4ra06474g-u56.tif 5r, 31
19c image file: c4ra06474g-u57.tif image file: c4ra06474g-u58.tif image file: c4ra06474g-u59.tif 5s, 62
20d image file: c4ra06474g-u60.tif image file: c4ra06474g-u61.tif image file: c4ra06474g-u62.tif 5t, 59


We were pleased that aliphatic alcohols were effective for this methodology. Of those, iso-octyl alcohol, 1-pentanol, n-propanol and isobutanol are representative (Table 2, entries 17–20). The corresponding target products were all separated smoothly, while the yields were significantly lower than those of aromatic alcohols.

In addition, we also explored the borrowing hydrogen reaction of an aromatic amine with a tertiary alkyl amine10 To our surprise, the substrate experiments showed that the reactions carried on smoothly and the desired products were separated with moderate to good yields (Table 3). When meta-substituted aniline was tried in this reaction, the product was also obtained with moderate yield (Table 3, entry 5). It should be noted that substrate containing a pyridine group showed only 58% yield (Table 3, entry 3).

Table 3 The alkylation of an aromatic amine with a tertiary alkyl amine by borrowing hydrogen strategya

image file: c4ra06474g-u63.tif

Entry Amine Product Yieldb (%)
a Conditions: 5 (1.0 mmol), triethylamine (20 mmol), 2b (2 mol%), Cs2CO3 (1.1 mmol), xylene (2 mL), 150 °C, 24 h, N2.b Isolated yield.
1 image file: c4ra06474g-u64.tif image file: c4ra06474g-u65.tif 7a, 65
2 image file: c4ra06474g-u66.tif image file: c4ra06474g-u67.tif 7b, 72
3 image file: c4ra06474g-u68.tif image file: c4ra06474g-u69.tif 7c, 58
4 image file: c4ra06474g-u70.tif image file: c4ra06474g-u71.tif 7d, 78
5 image file: c4ra06474g-u72.tif image file: c4ra06474g-u73.tif 7e, 63


Finally, a reaction pathway was proposed about this alkylation of an aromatic amine with a tertiary alkyl amine (Scheme 3). This transformation is a litter different from alkylation of two molecules of alcohols, despite the intermediate iminium ion is identical. Diethylamine is produced as a byproduct in this transformation,10a,10c while there are water and H2 as byproducts in alkylation of two molecules alcohols.


image file: c4ra06474g-s3.tif
Scheme 3 The reaction pathway of alkylation of an aromatic amine with a tertiary alkyl amine.

Conclusions

In summary, highly efficient C–C bond formation was developed through the hydrogen autotransfer cross-coupling of secondary and primary alcohols. The corresponding functionalized ketones were obtained with iridium–CNP complex as a catalyst through the borrowing hydrogen strategy, and the substrate scope was wide. The present work is providing an easy step forward for the synthesis of ketones. The borrowing hydrogen reaction of an aromatic amine with a tertiary alkyl amine also works well.

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (nos 21401080, 21371080), the Natural Science Foundation of Jiangsu Province of China (BK20130125), and MOE & SAFEA for the 111 Project (B13025).

References

  1. For recent reviews, see: (a) M. H. S. A. Hamid, P. A. Slatford and J. M. J. Williams, Adv. Synth. Catal., 2007, 349, 1555 CrossRef CAS PubMed; (b) S. Díez-González, N. Marion and S. P. Nolan, Chem. Rev., 2009, 109, 3612 CrossRef PubMed; (c) G. Guillena, D. J. Ramón and M. Yus, Chem. Rev., 2010, 110, 1611 CrossRef CAS PubMed; (d) T. Suzuki, Chem. Rev., 2011, 111, 1825 CrossRef CAS PubMed; (e) M. Stratakis and H. Garcia, Chem. Rev., 2012, 112, 4469 CrossRef CAS PubMed; (f) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234 CrossRef CAS PubMed.
  2. (a) D. Hollmann, S. Bahn, A. Tillack and M. Beller, Chem. Commun., 2008, 3199 RSC; (b) O. Saidi, A. J. Blacker, M. M. Farah, S. P. Marsden and J. M. J. Williams, Angew. Chem., Int. Ed., 2009, 48, 7375 CrossRef CAS PubMed; (c) X. Tan, B. Li, S. Xu, H. Song and B. Wang, Organometallics, 2013, 32, 3253 CrossRef CAS; (d) A. Quintard, T. Constantieux and J. Rodriguez, Angew. Chem., Int. Ed., 2013, 52, 12883 CrossRef CAS PubMed; (e) M. Zhang, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2013, 52, 597 CrossRef CAS PubMed; (f) M. Zhang, X. Fang, H. Neumann and M. Beller, J. Am. Chem. Soc., 2013, 135, 11384 CrossRef CAS PubMed; (g) C. Sun, X. Zou and F. Li, Chem.–Eur. J., 2013, 19, 14030 CrossRef CAS PubMed; (h) C. Gunanathan and D. Milstein, Science., 2013, 341, 249 CrossRef CAS PubMed; (i) P. Qu, C. Sun, J. Ma and F. Li, Adv. Synth. Catal., 2014, 356, 447 CrossRef CAS PubMed; (j) F. Xie, M. Chen, X. Wang, H. Jiang and M. Zhang, Org. Biomol. Chem., 2014, 12, 2761 RSC; (k) X. Ye, P. N. Plessow, M. K. Brinks, M. Schelwies, T. Schaub, F. Rominger, R. Paciello, M. Limbach and P. Hofmann, J. Am. Chem. Soc., 2014, 136, 5923 CrossRef CAS PubMed; (l) Y. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan and Y. Zhao, Angew. Chem., Int. Ed., 2014, 53, 1399 CrossRef CAS PubMed.
  3. For some selected recent examples, see: (a) A. Kumar, S. Sharma and R. A. Maurya, Adv. Synth. Catal., 2010, 352, 2227 CrossRef CAS PubMed; (b) A. Martínez-Asencio, D. J. Ramón and M. Yus, Tetrahedron Lett., 2010, 51, 325 CrossRef PubMed; (c) R. Cano, D. J. Ramón and M. Yus, J. Org. Chem., 2011, 76, 5547 CrossRef CAS PubMed; (d) R. Ghosh and A. Sarkar, J. Org. Chem., 2011, 76, 8508 CrossRef CAS PubMed; (e) W. He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu and Z. Yu, Chem.–Eur. J., 2011, 17, 13308 CrossRef CAS PubMed; (f) S. Agrawal, M. Lenormand and B. Martín-Matute, Org. Lett., 2012, 14, 1456 CrossRef CAS PubMed; (g) A. Bartoszewicz, R. Marcos, S. Sahoo, A. K. Inge, X. Zou and B. Martín-Matute, Chem.–Eur. J., 2012, 18, 14510 CrossRef CAS PubMed; (h) H.-Y. Kuo, Y.-H. Liu, S.-M. Peng and S.-T. Liu, Organometallics, 2012, 31, 7248 CrossRef CAS; (i) F. Xie, M. Chen, X. Wang, H. Jiang and M. Zhang, Org. Biomol. Chem., 2014, 12, 2761 RSC; (j) X. Xu, M. Zhang, H. Jiang, J. Zheng and Y. Li, Org. Lett., 2014, 16, 3540 CrossRef CAS PubMed; (k) C. Segarra, E. Mas-Marzá, J. Mata and E. Peris, Adv. Synth. Catal., 2011, 353, 2078 CrossRef CAS PubMed.
  4. (a) D. Wang, X.-Q. Guo, C.-X. Wang, Y.-N. Wang, R. Zhong, X.-H. Zhu, L.-H. Cai, Z.-W. Gao and X.-F. Hou, Adv. Synth. Catal., 2013, 355, 1117 CrossRef CAS PubMed; (b) D. Weickmann, W. Frey and B. Plietker, Chem.–Eur. J., 2013, 19, 2741 CrossRef CAS PubMed; (c) A. Wetzel, S. Wöckel, M. Schelwies, M. K. Brinks, F. Rominger, P. Hofmann and M. Limbach, Org. Lett., 2013, 15, 266 CrossRef CAS PubMed; (d) F. Santoro, R. Psaro, N. Ravasio and F. Zaccheria, RSC Adv., 2014, 4, 2596 RSC; (e) M. Ousmane, G. Perrussel, Z. Yan, J. M. Clacens, F. De Campo and M. Pera-Titus, J. Catal., 2014, 309, 439 CrossRef CAS PubMed; (f) S. Wockel, P. Plessow, M. Schelwies, M. K. Brinks, F. Rominger, P. Hofmann and M. Limbach, ACS Catal., 2014, 4, 152 CrossRef; (g) J. Kamalraja, P. Murugasan and P. T. Perumal, RSC Adv., 2014, 4, 19422 RSC; (h) M. Koohshari, M. Dabiri and P. Salehi, RSC Adv., 2014, 4, 10669 RSC; (i) R. Mudududdla, R. Sharma, S. K. Guru, M. Kushwaha, A. P. Gupta, S. S. Bharate, S. Aravinda, R. Kant, S. Bhushan, R. A. Vishwakarma and S. B. Bharate, RSC Adv., 2014, 4, 14081 RSC; (j) M. Sathishkumar and K. I. Sathiyanarayanan, RSC Adv., 2014, 4, 8808 RSC.
  5. (a) K.-I. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka and R. Yamaguchi, Org. Lett., 2005, 7, 4017 CrossRef CAS PubMed; (b) M. Viciano, M. Sanau and E. Peris, Organometallics, 2007, 26, 6050 CrossRef CAS; (c) A. Prades, M. Viciano, M. Sanau and E. Peris, Organometallics, 2008, 27, 4254 CrossRef CAS; (d) A. P. da Costa, M. Viciano, M. Sanau, S. Merino, J. Tejeda, E. Peris and B. Royo, Organometallics, 2008, 27, 1305 CrossRef; (e) P. Satyanarayana, G. M. Reddy, H. Maheswaran and M. L. Kantama, Adv. Synth. Catal., 2013, 355, 1859 CrossRef CAS PubMed; (f) D. Gelman and R. Romm, Top. Organomet. Chem., 2013, 40, 289 CrossRef CAS; (g) S. Musa, R. Romm, C. Azerraf, S. Kozuch and D. Gelman, Dalton Trans., 2011, 40, 8760 RSC; (h) K. Oded, S. Musa, D. Gelman and J. Blum, Catal. Commun., 2012, 20, 68 CrossRef CAS PubMed; (i) S. Musa, I. Shaposhnikov, S. Cohen and D. Gelman, Angew. Chem., Int. Ed., 2011, 50, 3533 CrossRef CAS PubMed; (j) S. Musa, S. Fronton, L. Vaccaro and D. Gelman, Organometallics, 2013, 32, 3069 CrossRef CAS; (k) G. R. A. Adair and J. M. J. Williams, Tetrahedron Lett., 2005, 46, 8233 CrossRef CAS PubMed; (l) L. J. Allen and R. H. Crabtree, Green Chem., 2010, 12, 1362 RSC; (m) Q. Xu, J. Chen and Q. Liu, Adv. Synth. Catal., 2013, 355, 697 CrossRef CAS PubMed; (n) S. Musa, L. Ackermann and D. Gelman, Adv. Synth. Catal., 2013, 355, 3077 CrossRef CAS PubMed.
  6. (a) L. Guo, Y. Liu, W. Yao, X. Leng and Z. Huang, Org. Lett., 2013, 15, 1144 CrossRef CAS PubMed; (b) K. Park, Angew. Chem., Int. Ed., 2005, 44, 6913 CrossRef PubMed; (c) Y. M. A. Yamada and Y. Uozumi, Org. Lett., 2006, 8, 1375 CrossRef CAS PubMed; (d) K.-I. Shimizu, R. Sato and A. Satsuma, Angew. Chem., Int. Ed., 2009, 48, 3982 CrossRef CAS PubMed; (e) X. Cui, Y. Zhang, F. Shi and Y. Deng, Chem.–Eur. J., 2011, 17, 1021 CrossRef CAS PubMed; (f) S. Gowrisankar, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2011, 50, 5139 CrossRef CAS PubMed; (g) T. Miura, O. Kose, F. Li, S. Kai and S. Saito, Chem.–Eur. J., 2011, 17, 11146 CrossRef CAS PubMed; (h) L. Guo, Y. Liu, W. Yao, X. Leng and Z. Huang, Org. Lett., 2013, 15, 1144 CrossRef CAS PubMed; (i) S. Ogawa and Y. Obora, Chem. Commun., 2014, 50, 2491 RSC; (j) L. K. M. Chan, D. L. Poole, D. Shen, M. P. Healy and T. J. Donohoe, Angew. Chem., Int. Ed., 2014, 53, 761 CrossRef CAS PubMed; (k) F.-X. Yan, M. Zhang, X.-T. Wang, F. Xie, M.-M. Chen and H. Jiang, Tetrahedron, 2014, 70, 1193 CrossRef CAS PubMed; (l) Y. Obora, S. Ogawa and N. Yamamoto, J. Org. Chem., 2012, 77, 9429 CrossRef CAS PubMed; (m) I. S. Makarov and R. Madsen, J. Org. Chem., 2013, 78, 6593 CrossRef CAS PubMed; (n) C. Xu, Y. Goh and S. A. Pullarkat, Organometallics, 2011, 30, 6499 CrossRef CAS; (o) X. Gong, H. Zhang and X. Li, Tetrahedron Lett., 2011, 52, 5596 CrossRef CAS PubMed; (p) X. Chang, L. W. Chuan, Y. Li and S. A. Pullarkat, Tetrahedron Lett., 2012, 53, 1450 CrossRef CAS PubMed; (q) S. Liao, K. Yu, Q. Li, H. Tian, Z. Zhang, X. Yu and Q. Xu, Org. Biomol. Chem., 2012, 10, 2973 RSC; (r) D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen and X. Shi, J. Am. Chem. Soc., 2012, 134, 9012 CrossRef CAS PubMed.
  7. (a) M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum, A. J. A. Watson and J. M. J. Williams, J. Am. Chem. Soc., 2009, 131, 1766 CrossRef CAS PubMed; (b) K. Yamaguchi, J. He, T. Oishi and N. Mizuno, Chem.–Eur. J., 2010, 16, 7199 CrossRef CAS PubMed; (c) H. Liu, G.-K. Chuah and S. Jaenicke, J. Catal., 2012, 292, 130 CrossRef CAS PubMed; (d) J. F. Soule, H. Miyamura and S. Kobayashi, Chem. Commun., 2013, 49, 355 RSC; (e) W. Baumann, A. Spannenberg, J. Pfeffer, T. Haas, A. Kockritz, A. Martin and J. Deutsch, Chem.–Eur. J., 2013, 19, 17702 CrossRef CAS PubMed; (f) J. A. Mata, F. E. Hahn and E. Peris, Chem. Sci., 2014, 5, 1723 RSC; (g) A. I. Carrillo, L. C. Schmidt, M. L. Marínab and J. C. Scaiano, Catal. Sci. Technol., 2014, 4, 435 RSC.
  8. (a) W. Yang, H. Fu, Q. Song, M. Zhang and Y. Ding, Organometallics, 2011, 30, 77 CrossRef CAS; (b) W. Yang, D. Wang, Q. Song, S. Zhang, Q. Wang and Y. Ding, Organometallics, 2013, 32, 4130 CrossRef CAS.
  9. D. Wang, K. Zhao, H. Wang, X. Yu and Y. Ding, RSC Adv. Search PubMed , under review.
  10. (a) O. Saidi, A. J. Blacker, M. M. Farah, S. P. Marsden and J. M. Williams, Angew. Chem., Int. Ed., 2009, 48, 7375–7378 CrossRef CAS PubMed; (b) K.-I. Shimizu, K. Shimura, K. Ohshima, M. Tamura and A. Satsuma, Green Chem., 2011, 13, 3096–3100 RSC; (c) K.-I. Shimizu, K. Ohshima, Y. Tai, M. Tamura and A. Satsuma, Catal. Sci. Technol., 2012, 2, 730–738 RSC; (d) X. Tan, B. Li, S. Xu, H. Songand and B. Wang, Organometallics, 2013, 32, 3253–3261 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available: Detailed experimental procedures, 1H NMR, 13C NMR data for 5 and 7. See DOI: 10.1039/c4ra06474g

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.