One-pot NHC-assisted access to 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones

Mingxing Liu, Jiarong Li, Shu Chen, Danfei Huang, Hongxin Chai, Qi Zhang and Daxin Shi*
School of Chemical Engineering and Environment, Beijing Institute of Technology, 100081, Beijing, China. E-mail: shidaxin@bit.edu.cn

Received 5th June 2014 , Accepted 31st July 2014

First published on 1st August 2014


Abstract

An efficient N-heterocyclic carbene-assisted one-pot reaction for the synthesis of 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones from 2-(ethoxymethylene)malononitrile, guanidines (or amidines) and ketones (or aldehydes) has been developed. This highly efficient method includes a series of conversions such as Michael addition, cyclisation, isomerization, aromatization, then nucleophilic attack and Dimroth rearrangement. And it avoids complicated reagents and multiple steps.


Introduction

Pyrimidine and fused cyclic compounds are widely present in many natural and biologically active compounds.1 As a subtype, pyrimidopyrimidinones possess a wide range of biological activities such as anti-inflammatory,1 antitumor,2 inhibition of dihydrofolate reductase,3 type-II kinase inhibition,4 tyrosine kinase inhibition,5 and as a surrogate for both T and A in duplex DNA.6 The traditional approaches relay on multiple steps reactions,6a,7 such as the condensation of aldehyde and acid anhydride with 4-aminopyrimidine-5-carboxamides, which are always hydrolyzed from the corresponding o-aminonitriles,8 or with the 5-aminopyrimidine-4-carbonitriles,9 the cyclization of ethyl 5-aminopyrimidine-4-carboxylates with acrylamides,10 the treatment of 6-aminouracil/6-amino-5,6-dihydropyrimidin-4(3H)-one with phosphorus oxychloride in DMF under the Vilsmeier reaction conditions.3,6 However, they usually suffer from drawbacks such as multistep sequences,11 complicated reagents,12 longer reaction time and lower yields.3,13

One-pot reaction improves the efficiency of reaction. It saves time and resources, and avoids the lengthy separation and purification process of intermediate compounds.14 N-hetero-cyclic carbenes (NHCs) as the small organic molecular catalysts have been used widely as powerful tool for the construction of complex compounds.15 NHCs can catalyze the Benzoin condensation,16 Stetter reaction,17 transesterification/acylation reactions,19c,18 nucleophilic substitution reaction,19 and domino reaction.20 In our previous studies, NHC-PPIm was easily prepared via concentration of a 1,3-dipropylimidazolium hydroxide aqueous solution and excellent catalytic activity was found in the cyclocondensation of cyclohexanone and 2-aminobenzonitrile.21 Inspired by this good result, especially taking into account both the synthesis of dihydropyrimidinone through PDF conversion22 and the synthesis of 4-amino-5-cyanopyrimidine in the catalyst of base,23 we designed a novel one-pot NHC-PPIm assisted three component heterocyclization of 2-(ethoxymethylene)malononitrile, guanidines and ketones for the synthesis of dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (Scheme 1). To the best of our knowledge, this is a first convenient method for the construction of pyrimido[4,5-d]pyrimidin-4(1H)-one core by NHC-PPIm assisted three components cyclization, and this one-pot approach is mild, inexpensive, energy efficient and avoids transition metal catalyst.


image file: c4ra05346j-s1.tif
Scheme 1 The retrosynthetic design of reaction.

Results and discussion

To find the appropriate reaction conditions, we chose the reaction of 2-(ethoxymethylene)malononitrile (1.2 mmol), guanidine (1 mmol) and cyclohexanone as the model. Different reaction conditions were evaluated, and the results were summarized in Table 1. It is shown that inorganic bases and organic weak bases didn't promote this reaction (Table 1, entries 1–4). However, organic strong base could promote it easily (Table 1, entries 5–7). NHC-PPIm could promote this reaction under mild conditions, and the yield is higher in ethanol (Table 1, entries 8–11). Although higher temperature improved the reaction, NHC-PPIm was unstable at this case, so the appropriate temperature was 40 °C (Table 1, entries 12–14). The amount of NHC-PPIm has a little effect on the reaction when it is more than 0.4 equivalent. So 0.4 equivalent amount of NHC-PPIm was an appropriate choice (Table 1, entries 15–18).
Table 1 Optimization of reaction conditionsa

image file: c4ra05346j-u1.tif

Entry Solvent NHC-PPIm (eqiv.) Time (h) Temp (°C) Yieldb (%)
a Reactions conditions: 1 (1.2 mmol), 2 (1 mmol), 3a (1.2 mmol) and catalyst in solvent (10 ml).b Isolated yields.
1 EtOH NaOH (1.0) 7 Reflux Trace
2 EtOH Na2CO3 (1.0) 7 Reflux 0
3 EtOH DBU (1.0) 7 Reflux 0
4 EtOH pyridine (1.0) 7 Reflux 0
5 EtOH NaOMe (1.0) 7 Reflux 79
6 EtOH NaOEt (1.0) 7 Reflux 80
7 EtOH KOBu-t (1.0) 7 Reflux 70
8 EtOH NHC-PPIm (1.0) 2 25 75
9 PhMe NHC-PPIm (1.0) 2 25 60
10 (CH2)5CO NHC-PPIm (1.0) 2 25 72
11 H2O NHC-PPIm (1.0) 2 40 72
12 EtOH NHC-PPIm (1.0) 2 40 84
13 EtOH NHC-PPIm (1.0) 2 60 70
14 EtOH NHC-PPIm (1.0) 2 80 49
15 EtOH NHC-PPIm (0) 2 40 0
16 EtOH NHC-PPIm (0.2) 2 40 42
17 EtOH NHC-PPIm (0.4) 2 40 85
18 EtOH NHC-PPIm (0.8) 2 40 84


With the optimal conditions in hand, a series of ketones (or benzaldehyde) and guanidines (or amidines) were investigated, and the results were summarized in Table 2. Theoretically, different carbonyl compounds had effect on this reaction because of the steric hindrance and ring tension, but all carbonyl compounds reacted with guanidine were in good yields (Table 2, entries 1–9), and partially the N,N-dimethylguanidine also gave the corresponding compounds in good yields (Table 2, entries 10–14). To expand the scope of this one-pot reaction methodology, a set of guanidines and amidines were selected and the corresponding compounds were obtained in good to excellent yields (Table 2, entries 15–19). These results illustrated the universality of NHC-PPIm and the advantages of one-pot method.

Table 2 NHC-PPIm-assisted three-component one-pot synthesis of 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-onesa

image file: c4ra05346j-u2.tif

Entry R1 R2 R3 Time (h) Product Yieldb (%)
a Reactions conditions: 1 (1.2 mmol), 2 (1 mmol), 3a (1.2 mmol) and NHC-PPIm (0.4 mmol) in ethanol (10 ml).b Isolated yields.
1 R1 + R2[double bond, length as m-dash](CH2)5 NH2 2 4a 85
2 R1 + R2[double bond, length as m-dash](CH2)6 NH2 3 4b 81
3 CH3 CH3 NH2 3 4c 88
4 CH3 CH3CH2 NH2 5 4d 87
5 CH3 CH3CH2CH2 NH2 4 4e 92
6 CH3CH2 CH3CH2 NH2 5 4f 90
7 CH3 (CH3)2CH NH2 6 4g 82
8 CH3 Ph NH2 4.5 4h 78
9 H Ph NH2 5 4i 75
10 R1 + R2[double bond, length as m-dash](CH2)5 (CH3)2N 2.5 4j 82
11 CH3 CH3 (CH3)2N 3 4k 86
12 CH3 CH3CH2 (CH3)2N 6 4l 85
13 CH3 CH3CH2CH2 (CH3)2N 5 4m 86
14 CH3 (CH3)2CH (CH3)2N 5.5 4n 79
15 R1 + R2[double bond, length as m-dash](CH2)5 PhNH 2 4o 91
16 R1 + R2[double bond, length as m-dash](CH2)6 CH3NH 4 4p 81
17 R1 + R2[double bond, length as m-dash](CH2)5 C2H5NH 4 4q 86
18 CH3 CH3 Ph 4.5 4r 81
19 CH3 CH3 CH3 6 4s 75


To rationalize the above results, a possible reaction mechanism is envisioned as depicted in Scheme 2. It is proposed that the 2-(ethoxymethylene)malononitrile undergoes a Michael addition reaction with guanidines (or amidines), then followed by cyclisation, isomerization and aromatization to afford intermediate 4-aminopyrimidine-5-carbonitrile 5. The Breslow intermediate 6 nucleophilic attacks the cyano of the 5 to provide 7. Then 7 releases NHC-PPIm and 3,1-oxazine 8 is formed, which subsequently rearranges to afford the final product 4 (Dimroth rearrangement24).


image file: c4ra05346j-s2.tif
Scheme 2 The possible mechanism of the formation of 4.

In order to prove this mechanism, we tried to seperate the intermediate 5j, and fortunately, 4-amino-2-dimethylamino-pyrimidine-5-carbonitrile (5j) was detected by LC after 10 minutes. As the reaction proceeded, the final product 4j increased and the intermediate 5j decreased (Fig. 1). The product 4j was also obtained by the condensation of the seperated intermediate 5j with cyclohexanone in the same conditions in 83% yield.


image file: c4ra05346j-f1.tif
Fig. 1 Percentage of intermediate and product: (●)5j, (▼)4j.

All products were characterized by IR, 1H NMR, 13C NMR, ESI spectra, and elemental analysis. And the structure 4b was undoubtedly confirmed by X-ray crystallographic analysis (Fig. 2).25


image file: c4ra05346j-f2.tif
Fig. 2 ORTEP representation of 4b.

Conclusions

In summary, an efficient method for combining two fairly well-known reactions into one-pot reaction and synthesizing 2,3-dihydropyrimido[4,5-d]pyrimidin4(1H)-ones was developed. It is a highly efficient method for synthesizing pyrimido[4,5-d]pyrimidine ring without starting from any nitrogen-containing heterocyclic compound. The reaction conducted under mild conditions and the most products deposited from the solvent when the reaction completed.

Experimental section

General methods

The starting materials including 2-(ethoxymethylene)malononitrile (1), guanidines/amidines (2) and ketones (3) are commercially available. Melting points were determined using XT4 microscope melting point apparatus (uncorrected). Infrared (IR) spectra were recorded on a Perkin Elmer FT-IR spectrophotometer with KBr pellets. 1H and 13C NMR spectra were recorded at a Bruker 400 or 500 MHz spectrometer with TMS as the internal standard. Mass spectra were recorded on a ZAB-HS mass spectrometer using ESI ionization. Elemental analyses were performed on an Elementar Vario EL. The percentage of intermediate and product were determined by HPLC using an Shimadzu LC-20AT instrument with Hanbon column YWG C18.

General procedure for the synthesis of 4

2-(Ethoxymethylene)malononitrile (1, 1.2 mmol) and guanidine/amidine (2, 1 mmol) were mixed in ethanol at room temperature, then ketone (3, 1.2 mmol) and NHC-PPIm (0.4 mmol) was added. The mixture was warmed to 40 °C. At the end of the reaction (TLC monitoring), the reaction mixture was cooled to room temperature. The solid was filtered and recrystallized from methanol or purified by column chromatography on silica gel (200–300 mesh silica gels) to afford pure 4a.
4-Amino-2-(dimethylamino)pyrimidine-5-carbonitrile (5j). White solid; m.p. 217–219 °C; IR (KBr, v, cm−1): 3424, 3390, 3336, 3203, 2215, 1661, 1602, 1555, 1529, 1487; 1H NMR (400 MHz, CDCl3) (δ, ppm): 8.22 (s, 1H), 5.17 (s, 2H), 3.19 (s, 3H), 3.14 (s, 3H); 13C NMR (100 MHz, CDCl3) (δ, ppm): 162.6, 161.6, 161.4, 117.6, 77.7, 36.4; ESI-MS (m/z) = 164 ([M + H]+).
7′-Amino-1'H-spiro[cyclohexane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4a). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3315, 3180, 2935, 2851, 1662, 1609, 1472, 1446, 1421; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.18 (s, 1H), 7.79 (s, 1H), 7.73 (s, 1H), 6.64 (s, 2H), 1.66–1.64 (m, 5H), 1.60–1.55 (m, 5H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.2, 161.1, 156.7, 97.6, 67.7, 38.1, 24.5, 20.7; ESI-MS (m/z) = 232 ([M − H]). Anal. calcd for C11H15N5O: C, 56.64; H, 6.48; N, 30.02%. Found: C, 56.44; H, 6.58; N, 30.07%.
7′-Amino-1′'H-spiro[cycloheptane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4b). Light yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3413, 3339, 3173, 2933, 2845, 1659, 1624, 1600, 1473, 1408; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.17 (s, 1H), 7.89 (s, 1H), 7.88 (s,1H), 6.61 (s, 2H), 1.87–1.84 (m, 4H), 1.4 (s, 8H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.0, 161.0, 156.7, 97.4, 71.8, 42.0, 29.4, 20.7; ESI-MS (m/z) = 248 ([M + H]+); Anal. calcd for C12H17N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 58.28; H, 6.93; N, 28.32%. Found: C, 58.14; H, 6.76; N, 28.62%.
7-Amino-2,2-dimethyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4c). Yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3464, 3229, 3148, 2943, 1663, 1615, 1482, 1455, 1418; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.18 (s, 1H), 7.77 (s, 1H), 7.75 (s, 1H), 6.68 (s, 2H), 1.37 (s, 6H);13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.9, 162.0, 161.0, 156.8, 97.2, 66.7, 29.9; ESI-MS (m/z) = 216 ([M + Na]+); Anal. calcd. for C8H11N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 49.73; H, 5.74; N, 36.25%. Found: C, 49.55; H, 5.70; N, 36.36%.
7-Amino-2-ethyl-2-methyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4d). Yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3228, 2969, 1648, 1611, 1447; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.14 (s, 1H), 7.67 (s, 2H), 6.60 (s, 2H), 1.62–1.59 (m, 2H), 1.33 (s, 3H), 0.81 (t, J = 6.8 Hz 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.0, 161.3, 156.4, 96.9, 69.2, 34.6, 29.0, 7.9; ESI-MS (m/z) = 206 ([M − H]); Anal. calcd for C9H13N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 52.16; H, 6.32; N, 33.79%. Found: C, 52.22; H, 6.52; N, 33.66%.
7-Amino-2-methyl-2-propyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4e). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3336, 3225, 3142, 2962, 1678, 1608, 1574, 1474, 1415; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.13 (s, 1H), 7.69 (s, 2H), 6.62 (s, 2H), 1.60–1.55 (m, 2H), 1.33 (s, 3H), 1.28 (t, J = 8 Hz, 2H), 0.83 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.0, 161.0, 156.4, 97.0, 68.9, 44.5, 29.2, 16.4, 13.9; ESI-MS (m/z) = 220 ([M − H]); Anal. calcd for C10H15N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 54.28; H, 6.83; N, 31.65%. Found: C, 54.38; H, 6.78; N, 31.58%.
7-Amino-2,2-diethyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4f). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3156, 2970, 2936, 1671, 1600, 1477, 1419; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.11 (s, 1H), 7.54 (s, 1H), 7.49 (s,1H), 6.54 (s, 2H), 1.60–1.53 (m, 4H), 0.81 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.3, 161.5, 156.1, 96.5, 79.2, 72.1, 34.2, 7.5; ESI-MS (m/z) = 244 ([M + Na]+); Anal. calcd for C10H15N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 54.28; H, 6.83; N, 31.65%. Found: C, 54.55; H, 6.72; N, 31.59%.
7-Amino-2-isopropyl-2-methyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4g). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3416, 3173, 2970, 1657, 1605, 1566, 1482, 1414; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.12 (s, 1H), 7.75 (s, 1H), 7.72 (s,1H), 6.58 (s, 2H), 1.77–1.86 (m, 1H), 1.32 (s, 3H), 0.85 (d, J = 1.6 Hz, 3H), 0.83 (d, J = 2.0 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 161.8, 161.0, 156.2, 97.1, 71.3, 38.9, 25.9, 16.6; ESI-MS (m/z) = 244 ([M + Na]+); Anal. calcd for C10H15N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 54.28; H, 6.83; N, 31.65%. Found: C, 54.42; H, 6.93; N, 31.50%.
7-Amino-2-methyl-2-phenyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4h). Yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3453, 3329, 1665, 1577, 1444; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.58 (s, 1H), 8.52 (s, 1H), 8.12 (s,1H), 7.45 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.22 (t, J = 7.8 Hz, 1H), 6.72 (s, 2H), 1.65 (s, 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.6, 163.0, 161.8, 157.2, 147.6, 128.2, 127.4, 124.7, 98.2, 69.6, 30.1; ESI-MS (m/z) = 254 ([M − H]); Anal. calcd for C13H13N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 61.17; H, 5.13; N, 27.43%. Found: C, 61.34; H, 5.33; N, 27.16%.
7-Amino-2-phenyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4i). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3464, 3299, 3090, 2938, 1673, 1643, 1606, 1565, 1475, 1420; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.21 (s, 1H), 8.20 (s, 1H), 8.16 (s, 1H), 7.39–7.38 (m, 4H), 7.33 (q, J = 4.4 Hz, 1H), 6.78 (s, 2H), 5.73 (s, 1H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.7, 162.2, 161.5, 156.9, 142.5, 128.4, 128.3, 126.0, 98.0, 64.9; ESI-MS (m/z) = 264 ([M + Na]+); Anal. calcd for C12H11N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 59.74; H, 4.60; N, 29.03%. Found: C, 59.62; H, 4.33; N, 29.23%.
7′-(Dimethylamino)-1′H-spiro[cyclohexane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4j). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3170, 3055, 2930, 2860, 1647, 1606, 1547, 1503, 1448; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.25 (s, 1H), 7.85 (s, 1H), 7.80 (s, 1H), 3.00 (s, 6H), 1.68–1.57 (m, 8H), 1.34–1.25 (m, 2H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 163.6, 163.1, 161.4, 156.7, 97.5, 66.6, 38.7, 37.4, 25.3, 21.3; ESI-MS (m/z) = 262 ([M + H]+); Anal. calcd for C13H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 59.75; H, 7.33; N, 26.80%. Found: C, 59.81; H, 7.30; N, 26.68%.
7-(Dimethylamino)-2,2-dimethyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4k). Light yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3251, 3139, 2973, 1737, 1633, 1607, 1575, 1440; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.27 (s, 1H), 7.90 (s, 1H), 7.84 (s, 1H), 3.10 (s, 6H), 1.39 (s, 6H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 162.9, 162.1, 160.5, 156.1, 96.4, 66.7, 36.6, 29.8; ESI-MS (m/z) = 222 ([M + H]+); Anal. calcd for C10H15N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 54.28; H, 6.83; N, 31.65%. Found: C, 54.41; H, 6.81; N, 31.58%.
7-(Dimethylamino)-2-ethyl-2-methyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4l). White solid; m.p. 257–259 °C; IR (KBr, v, cm−1): 3207, 2979, 2924, 1635, 1608, 1583, 1542, 1517, 1459; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.26 (s, 1H), 7.78 (s, 1H), 7.72 (s, 1H), 3.10 (s, 6H), 1.67–1.62 (m, 2H), 1.36 (s, 3H), 0.83 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 162.9, 162.3, 160.7, 155.8, 96.1, 69.3, 36.6, 34.9, 29.2, 7.9; ESI-MS (m/z) = 236 ([M + H]+); Anal. calcd for C11H17N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 56.15; H, 7.28; N, 29.77%. Found: C, 55.99; H, 7.32; N, 29.81%.
7-(Dimethylamino)-2-methyl-2-propyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4m). White solid; m.p. 252–254 °C; IR (KBr, v, cm−1): 3202, 2958, 2934, 2873, 1638, 1608, 1583, 1542, 1519, 1459; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.24 (s, 1H), 7.79 (s, 1H), 7.72 (s, 1H), 3.10 (s, 6H), 1.63–1.57 (m, 2H), 1.35 (s, 3H), 1.32–1.28 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 162.9, 162.1, 160.6, 155.7, 96.1, 69.0, 44.6, 36.6, 29.4, 16.5, 13.9; ESI-MS (m/z) = 250 ([M + H]+); Anal. calcd for C12H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 57.81; H, 7.68; N, 28.09%. Found: C, 57.75; H, 7.72; N, 28.21%.
7-(Dimethylamino)-2-isopropyl-2-methyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4n). Light yellow solid; m.p. 279–281 °C; IR (KBr, v, cm−1): 3242, 3180, 2967, 2935, 1641, 1606, 1577, 1541, 1515, 1449, 1389; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.23 (s, 1H), 7.83 (s, 1H), 7.75 (s, 1H), 3.10 (s, 6H), 1.89–1.82 (m, 1H), 1.35 (s, 3H), 0.86 (d, J = 6 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 162.9, 162.0, 160.5, 155.6, 96.3, 71.5, 36.6, 26.1, 16.6; ESI-MS (m/z) = 250 ([M + H]+); Anal. calcd for C12H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 57.81; H, 7.68; N, 28.09%. Found: C, 57.61; H, 7.75; N, 28.18%.
7′-(Phenylamino)-1′H-spiro[cyclohexane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4o). White solid; m.p. 292–294 °C; IR (KBr, v, cm−1): 3200, 2923, 1647, 1594, 1574, 1531, 1498, 1443; 1H NMR (500 MHz, DMSO-d6) (δ, ppm): 9.53 (s, 1H), 8.35 (s, 1H), 8.02 (s, 1H), 7.99(s, 1H), 7.81 (d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 6.97 (t, J = 8.5 Hz, 1H), 1.75–1.61 (m, 8H), 1.39–1.29 (m, 2H); 13C NMR (500 MHz, DMSO-d6) (δ, ppm): 162.5, 161.9, 161.2, 156.7, 140.7, 128.9, 122.1, 120.0, 99.2, 66.6, 38.6, 24.9, 21.0; ESI-MS (m/z) = 310 ([M + H]+); Anal. calcd for C17H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C,66.00; H, 6.19; N, 22.64%. Found: C, 66.11; H, 6.17; N, 22.58%.
7′-(Methylamino)-1′H-spiro[cycloheptane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4p). Yellow solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3253, 2929, 1655, 1595, 1530, 1461, 1380; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.17 (s, 1H), 8.00 (s, 1H), 7.84 (s, 1H), 7.18 (s, 1H), 2.78 (s, 3H), 1.88–1.82 (m, 4H), 1.50 (s, 8H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 164.6, 162.6, 161.2, 156.7, 96.9, 72.3, 31.2, 30.0, 28.5, 21.3; ESI-MS (m/z) = 262 ([M + H]+); Anal. calcd for C13H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 59.75; H, 7.33; N, 26.80%. Found: C, 59.88; H, 7.31; N, 26.74%.
7′-(Ethylamino)-1′H-spiro[cyclohexane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (4q). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3195, 2935, 1633, 1587, 1517, 1454, 1432, 1389; 1H NMR (500 MHz, DMSO-d6) (δ, ppm): 8.18 (s, 1H), 7.81 (s, 1H), 7.76 (s, 1H), 7.26 (s, 1H), 3.26 (m, 2H), 1.67–1.58 (m, 8H), 1.36–1.24 (m, 2H), 1.09 (t, J = 5.4 Hz, 3H); 13C NMR (500 MHz, DMSO-d6) (δ, ppm): 164.0, 162.3, 161.3, 157.0, 97.2, 68.0, 38.6, 35.8, 25.1, 21.1, 15.3; ESI-MS (m/z) = 262 ([M + H]+); Anal. calcd for C13H19N5O[thin space (1/6-em)]:[thin space (1/6-em)]C, 59.75; H, 7.33; N, 26.80%. Found: C, 59.68; H, 7.32; N, 26.84%.
2,2-Dimethyl-7-phenyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4r). White solid; m.p. 282–284 °C; IR (KBr, v, cm−1): 3234, 3061, 2960, 1674, 1611, 1592, 1448, 1440; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.65 (s, 1H), 8.61 (s, 1H), 8.34 (s, 1H), 8.32 (d, J = 2 Hz, 2H), 7.52–7.50 (m, 3H), 1.48 (s, 6H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 166.9, 160.9, 160.3, 154.9, 137.1, 131.1, 128.5, 128.0, 104.2, 67.2, 30.1; ESI-MS (m/z) = 255 ([M + H]+); Anal. calcd for C14H14N4O[thin space (1/6-em)]:[thin space (1/6-em)]C, 66.13; H, 5.55; N, 22.03%. Found: C, 66.27; H, 5.53; N, 21.98%.
2,2,7-Trimethyl-2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-one (4s). White solid; m.p. > 300 °C; IR (KBr, v, cm−1): 3190, 3050, 2923, 1684, 1613, 1555, 1424; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 8.43 (s, 1H), 8.42 (s, 1H), 8.27 (s, 1H), 2.37 (s, 3H), 1.41 (s, 6H); 13C NMR (100 MHz, DMSO-d6) (δ, ppm): 170.6, 161.0, 159.9, 154.4, 103.3, 67.0, 30.0, 25.8; ESI-MS (m/z) = 193 ([M + H]+); Anal. calcd for C9H12N4O[thin space (1/6-em)]:[thin space (1/6-em)]C, 56.24; H, 6.29; N, 29.15%. Found: C, 56.12; H, 6.31; N, 29.21%.

Acknowledgements

This work was supported by the grant of Beijing Institute of Technology. We are grateful for analytical help of Institute of Chemistry, Chinese Academy of Sciences and Beijing Normal University.

Notes and references

  1. M. W. Martin, J. Newcomb, J. J. Nunes, C. Boucher, L. Chai, L. F. Epstein, T. Faust, S. Flores, P. Gallant, A. Gore, Y. Gu, F. Hsieh, X. Huang, J. L. Kim, S. Middleton, K. Morgenstern, A. Oliveira-dos-Santos, V. F. Patel, D. Powers, P. Rose, Y. Tudor, S. M. Turci, A. A. Welcher, D. Zack, H. L. Zhao, L. Zhu, X. T. Zhu, C. Ghiron, M. Ermann and D. Johnston, J. Med. Chem., 2008, 51, 1637 CrossRef CAS PubMed .
  2. (a) H. T. Abdel-Mohsen, F. A. F. Ragab, M. M. Ramla and H. I. E. Diwani, Eur. J. Med. Chem., 2010, 45, 2336 CrossRef CAS PubMed ; (b) P. Palanisamy, S. J. Jenniefer, P. T. Muthiah and S. Kumaresan, RSC Adv., 2013, 3, 19310 Search PubMed .
  3. M. G. Gebauer, C. Mckinlay and J. E. Gready, Eur. J. Med. Chem., 2003, 38, 719 CrossRef CAS .
  4. H. G. Choi, P. D. Ren, F. Sun, F. X. Sun, H. S. Lee, X. Wang, Q. Ding, G. B. Zhang, Y. P. Xie, J. M. Zhang, Y. Liu, T. Tuntland, M. Warmuth, P. W. Manley, J. Mestan, N. S. Gray and T. Sim, J. Med. Chem., 2010, 53, 5439 CrossRef CAS PubMed .
  5. L. A. McDermott, B. Higgins and M. Simcox, Bioorg. Med. Chem. Lett., 2006, 16, 1950 CrossRef CAS PubMed .
  6. (a) D. Shin and Y. Tor, J. Am. Chem. Soc., 2011, 133, 6926 CrossRef CAS PubMed ; (b) H. Zhao, S. L. He, M. L. Yang, X. R. Guo, G. Xin, C. Y. Zhang, L. Ye, L. Y. Chu, Z. H. Xing, W. Huang, Q. M. Chen and Y. He, Chem. Commun., 2013, 49, 3742 RSC .
  7. Y. P. Patil, P. J. Tambade, K. M. Deshmukh and B. M. Bhanage, Catal. Today, 2009, 148, 355 CrossRef CAS PubMed .
  8. (a) A. R. Arthur and N. Y. Middleport, US Pat. 3830812, 1974 ; (b) E. C. Taylor, R. J. Knopf and R. F. Meyer, J. Am. Chem. Soc., 1960, 82, 5711 CrossRef CAS .
  9. S. B. Katiyar, A. Kumar and P. M. S. Chauhan, Synth. Commun., 2006, 36, 2963 CrossRef CAS .
  10. M. Dymicky and W. T. Caldwell, J. Org. Chem., 1962, 27, 4211 CrossRef CAS .
  11. L. Rachel, J. A. Beingessner, U. D. Diaz and H. Fenniri, Tetrahedron Lett., 2011, 52, 661 CrossRef PubMed .
  12. (a) A. C. Basel, H. D. Loerrach, U. G. Efringen-Kirchen, N. A. K. Sool, H. K. Loerrach, R. N. Saint-Louis, C. G. P. Bottmingen, J. U. P. Grenzach-Wyhlen and F. R. Hombourg, US Pat. 0234277, 2008 ; (b) M. Kidwai and K. Singhal, J. Heterocycl. Chem., 2007, 44, 1253 CrossRef CAS PubMed .
  13. L. Y. Zheng, F. Z. Yang, Q. Dang and X. Bai, Org. Lett., 2008, 10, 889 CrossRef CAS PubMed .
  14. R. Robinson, J. Chem. Soc., Trans., 1917, 111, 762 RSC .
  15. (a) D. Enders, O. Niemeier and A. Henseler, Chem. Rev., 2007, 107, 5606 CrossRef CAS PubMed ; (b) J. L. Moore and T. Rovis, Top. Curr. Chem., 2009, 291, 77 CrossRef ; (c) E. M. Phillips, A. Chan and K. A. Scheidt, Aldrichimica Acta, 2009, 42, 55 CAS ; (d) P. C. Chiang and J. W. Bode, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, ed. S.Díez-González, Royal Society of Chemistry, Cambridge, 2011, ch. 14, pp. 339–435 Search PubMed ; (e) C. D. Campbell, K. B. Ling and A. D. Smith, in N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis, ed. C. S. J.Cazin, Springer, Dortrecht, 2011, vol. 32, ch. 12, pp. 263–297 Search PubMed ; (f) X. Bugaut and F. Glorius, Chem. Soc. Rev., 2012, 41, 3511 RSC ; (g) K. Thai, E. Sánchez-Larios and M. Gravel, in Comprehensive Enantioselective Organocatalysis, ed. P. I. Dalko, Wiley-VCH, 2013, ch. 18, pp. 495–522 Search PubMed ; (h) N. Marion, S. Díez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed., 2007, 46, 2988 CrossRef CAS PubMed ; (i) V. Nair, S. Vellalath and B. P. Babu, Chem. Soc. Rev., 2008, 37, 2691 RSC .
  16. K. A. Scheidt and E. A. O'Bryan, in Comprehensive Organic Synthesis II, eds. P.Knochel and G. A.Molander, Elsevier, Amsterdam, 2nd edn, 2014, vol. 3, ch. 12, pp. 621–655 Search PubMed .
  17. (a) H. Stetter, Angew. Chem., Int. Ed., 1976, 15, 639 CrossRef PubMed ; (b) H. Stetter and H. Kuhlmann, Org. React., 1991, 40, 407 CAS ; (c) J. Read de Alaniz and T. Rovis, Synlett, 2009, 8, 1189 Search PubMed ; (d) M. Gravel and J. M. Holmes, in Comprehensive Organic Synthesis II, ed. P.Knochel and G. A.Molander, Elsevier, Amsterdam, 2nd edn, 2014, vol. 4, ch. 23, pp. 1384–1406 Search PubMed ; (e) Y. S. Jiang, W. Z. Chen and W. M. Lu, RSC Adv., 2012, 2, 1540 RSC .
  18. I. Chiarotto, M. Feroci, G. Sotgiu and A. Inesi, Eur. J. Org. Chem., 2013, 2013, 326 CrossRef CAS PubMed .
  19. (a) Y. Suzuki, S. Ota and Y. Fukuta, J. Org. Chem., 2008, 73, 2420 CrossRef CAS PubMed ; (b) C. Fischer, S. W. Smith, D. A. Powell and G. C. Fu, J. Am. Chem. Soc., 2006, 128, 1472 CrossRef CAS PubMed ; (c) S. J. Ryan, L. Candish and D. W. Lupton, Chem. Soc. Rev., 2013, 42, 4906 RSC .
  20. (a) A. Grossmann and D. Enders, Angew. Chem., Int. Ed., 2012, 51, 314 CrossRef CAS PubMed ; (b) C. S. Yao, W. H. Jiao, Z. X. Xiao, Y. W. Xie, T. J. Li, X. S. Wang, R. Liu and C. X. Yu, RSC Adv., 2013, 3, 10801 RSC .
  21. B. Zhen, Q. Z. J, Y. P. Zhang, Q. Wu, H. S. Li, D. X. Shi and J. R. Li, Catal. Commun., 2013, 32, 1 CrossRef CAS PubMed .
  22. J. R. Li, L. J. Zhang, D. X. Shi, Q. Li, D. Wang, C. X. Wang, Q. Zhang, L. Zhang and Y. Q. Fan, Synlett, 2008, 2, 233 CrossRef PubMed .
  23. (a) K. Helmut and R. Marianne, Z. Chem., 1981, 21, 101 Search PubMed ; (b) P. C. Wyss, P. Gerber, P. G. Hartman, C. Hubschwerlen, H. Locher, H. P. Marty and M. Stahl, J. Med. Chem., 2003, 46, 2304 CrossRef CAS PubMed ; (c) T. Karoli, S. K. Mamidyala, J. Zuegg, S. R. Fry, E. H. L. Tee, T. A. Bradford, P. K. Madala, J. X. Huang, S. Ramu, M. S. Butler and M. A. Cooper, Bioorg. Med. Chem. Lett., 2012, 22, 2428 CrossRef CAS PubMed .
  24. (a) O. Dimroth, Ann. Chem., 1909, 364, 183 CrossRef CAS PubMed ; (b) D. J. Brown and J. S. Harper, J. Chem. Soc., 1963, 1276 RSC .
  25. ESI..

Footnote

Electronic supplementary information (ESI) available. CCDC 896461. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra05346j

This journal is © The Royal Society of Chemistry 2014