Synthesis of benzil derivatives via oxidation of alkynes catalyzed by Pd–Fe3O4 heterodimer nanocrystals

Sangmoon Byun, Jooyoung Chung, Taehyun Lim, Jungmin Kwon and B. Moon Kim*
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. E-mail: kimbm@snu.ac.kr; Fax: +82-2-872-7505; Tel: +82-2-880-6644

Received 22nd May 2014 , Accepted 28th July 2014

First published on 29th July 2014


Abstract

An efficient, iterative, catalytic, Wacker-type oxidation of alkynes to 1,2-diketones using a Pd–Fe3O4 heterodimer nanocrystalline catalyst has been developed. This process has a wide substrate scope and affords 1,2-diketo compounds in excellent yields under atmospheric conditions. The operational procedure using the Pd–Fe3O4 nanocatalyst is extremely easy, and the catalyst can be recovered by employing simple magnetic separation, enabling the recycling of the catalyst five times without loss of catalytic activity.


1,2-Dicarbonyl derivatives are valuable structural motifs often embedded in many natural products1 and biologically active compounds.2 Among these derivatives, benzil derivatives are employed for a number of interesting applications, such as corrosion inhibitors of mild steel,3 photosensitive agents in photocurable coatings,4 and carboxylesterase (CE) inhibitors.5 Moreover, 1,2-dicarbonyl derivatives can be used as precursors to many biologically active compounds or as building blocks for the synthesis of quinoxalines, triazines, and imidazoles.6

In light of their usefulness, the development of convenient synthetic pathways for 1,2-diketones has attracted much attention, and several synthetic methods have been reported, including substitutions of keto acid chloride or oxalyl chloride7 and oxidations of hydroxyketone derivatives.8 Among several other methods,9 oxidation of 1,2-diarylalkynes10 can be a very straightforward approach to the synthesis of diketones. The 1,2-diarylalkynes are easily prepared by standard Sonogashira coupling reactions of aryl alkynes and aryl halides.11 A variety of reagents have been employed to oxidize 1,2-diarylalkynes for the synthesis of benzil compounds, such as manganese12 and chromium reagents,13 sulfur trioxide–dioxane complexes,14 ozone,15 dioxiranes,16 iodo- or bromo-succinimide,17 and orthoperiodic acid.18 However, these reagents are highly toxic, and the procedures associated with their use are expensive, low yielding, limited in terms of functional group tolerance, poorly chemoselective, and produce environmentally hazardous wastes.

Recently, in response to these drawbacks, new alkyne oxidation reactions have been developed that utilize homogenous catalysts such as iron(III) bromide,19 palladium(II) sources with copper co-catalyst,20 and gold-catalyzed transformations.21 The use of a heterogeneous palladium source such as palladium on carbon (Pd/C) has been reported for the synthesis of benzil derivatives with DMSO and molecular oxygen as dual oxidants.22 There has been increased interest in the use of magnetically recyclable palladium nanoparticles and nanomaterials23 for the development of sustainable, efficient, heterogeneous catalysts for practical organic synthesis. Iron oxide-based catalysts have many advantages including their facile recovery by an external neodymium magnet, thus obviating complicated separation/filtration processes. Thus, magnetically recoverable iron oxide catalysts offer great potential for industrial applications.

In our laboratory, we have been interested in utilizing efficient, heterobimetallic catalysts based on the magnetically recyclable iron oxide nanoparticles for many synthetic organic applications. We have thus reported the efficient synthesis of Pd– and Rh–Fe3O4 bimetallic nanocrystals and their applications to Suzuki couplings,24 nitroarene reductions,25 Heck and Sonogashira cross-couplings,26 direct catalytic C–H arylations,27 Wacker oxidations of terminal olefins,28 and Suzuki polycondensations for the synthesis of conjugated polymers.29 We have also reported the synthesis and applications of nanoflake-shaped iron oxide/Pt toward highly efficient hydrogenation reactions.30

Herein, we report the efficient synthesis of benzil derivatives from 1,2-diarylalkynes under oxygen atmosphere using Pd–Fe3O4 heterodimer nanocrystals as a reusable and durable catalyst system.

Our first attempt at the Pd–Fe3O4-catalyzed oxidation of an acetylene derivative was carried out using diphenylacetylene (1a) and 1 mol% catalyst in DMSO under 1 atm oxygen in the presence of 10 mol% CuBr2. This reaction afforded the corresponding benzil (2a) in 62% yield after 28 h at 95 °C (Table 1, entry 1). We then carried out an extensive screening of solvents, such as DMSO, DMF, H2O, toluene and 1,4-dioxane with 10 mol% CuBr2 under otherwise identical reaction conditions (Table 1, entries 1–5). Among the solvents examined, 1,4-dioxane was identified as most effective for the Wacker-type oxidation. The addition of a Cu(II) salt was absolutely necessary since no product formation was observed in its absence (Table 1, entry 7). Replacing CuBr2 by CuCl2, Cu(OAc)2, or CuI resulted in decreased reactivity in each case (Table 1, entries 8–10). In fact, no reaction was observed with CuI. Finally, optimal conditions were identified by employing 1 mol% of Pd–Fe3O4 and 10 mol% of CuBr2 in dioxane/H2O under 1 atm of O2 in a balloon, which yielded 98% of the desired product (Table 1, entry 5). When the reaction temperature decrease to 75 °C, the yield was decreased slightly under otherwise the same conditions (Table 1, entry 6).

Table 1 Optimization of Wacker-type oxidationa

image file: c4ra04833d-u1.tif

Entry Solvent Additive Temp. (°C) Time (h) Yieldb (%)
a Reaction conditions: compound 1 (0.5 mmol), Pd–Fe3O4 (1.0 mol%), additive (0.05 mmol), solvent (5.0 mL), H2O (1.0 mL), O2 balloon.b Yield of isolated product.
1 DMSO CuBr2 95 28 62
2 DMF CuBr2 95 28 3
3 H2O CuBr2 95 28 6
4 Toluene CuBr2 95 28
5 1,4-Dioxane CuBr2 95 28 98
6 1,4-Dioxane CuBr2 75 28 85
7 1,4-Dioxane 95 28
8 1,4-Dioxane CuCl2 95 28 87
9 1,4-Dioxane Cu(OAc)2 95 28 8
10 1,4-Dioxane CuI 95 28


With the optimized reaction conditions, the substrate scope was then examined. As shown in Table 2, good to excellent product yields were obtained for a variety of diaryl-substituted alkyne derivatives. Reactions of substrates equipped with electron-donating substituents, such as p-methyl, o-, m-and p-methoxy groups, provided excellent yields of the desired products (Table 2, entries 2–5). Sterically hindered, o-substituted substrate also gave good yield of the desired product (entry 5). Reactions of diphenylacetylenes with two p-substitutions, such as 1,2-bis(4-methoxyphenyl)ethyne and 1-ethyl-4-((4-methoxyphenyl)ethynyl)benzene gave good yield to the corresponding diketo products (Table 2, entries 6 and 7). A trimethylsilyl-substitution was also well tolerated under the reaction conditions (Table 2, entry 8). In addition, reactions of substrates having one or two halide substitutions at the para position(s) also gave rise to good to excellent yields (Table 2, entries 9–11). Reactions of substrates having other electron-withdrawing groups, such as p-acetyl and p-nitro groups proceeded with good yields (Table 2, entries 12 and 13). The only reaction that provided a moderate yield (77%) was that employing p-cyano-substituted diphenylacetylene (Table 2, entry 14).

Table 2 Substrate scope of the Wacker-type oxidation using Pd–Fe3O4a

image file: c4ra04833d-u2.tif

Entry Substrate Yieldb (%)
a Reaction conditions: substrate (0.5 mmol), Pd–Fe3O4 (1.0 mol%), CuBr2 (0.05 mmol), 1,4-dioxane (5.0 mL), H2O (1.0 mL), O2 balloon 95 °C.b Yield of isolated product.
1 image file: c4ra04833d-u3.tif 98
2 image file: c4ra04833d-u4.tif 92
3 image file: c4ra04833d-u5.tif 90
4 image file: c4ra04833d-u6.tif 88
5 image file: c4ra04833d-u7.tif 86
6 image file: c4ra04833d-u8.tif 86
7 image file: c4ra04833d-u9.tif 92
8 image file: c4ra04833d-u10.tif 85
9 image file: c4ra04833d-u11.tif 82
10 image file: c4ra04833d-u12.tif 94
11 image file: c4ra04833d-u13.tif 86
12 image file: c4ra04833d-u14.tif 91
13 image file: c4ra04833d-u15.tif 83
14 image file: c4ra04833d-u16.tif 77


The recyclability of the Pd–Fe3O4 nanocatalyst was confirmed by its ability to repeatedly catalyze the oxidation of diphenylacetylene. After the reaction, the catalyst from the reaction mixture was simply collected using an external neodymium magnet. Then, without filtration, the catalyst was washed five times with EtOAc, twice with water, and was dried in vacuo for 2 h. The recovered catalyst could then be reused immediately in the next reaction. In this experiment, more than 99% of the nanocrystals could be recovered through the use of an external magnet and through catalyst purification by dispersion and collection cycles. The results are presented in Table 3. The reactivity of the catalyst consistently remained unchanged up to the fourth recycling experiment. After the fifth run, however, the yield of the product was slightly diminished to 83%, indicating a slight decrease in the activity of the Pd–Fe3O4 catalyst.

Table 3 Recyclability of the Pd–Fe3O4 catalyst for the Wacker-type oxidationa

image file: c4ra04833d-u17.tif

Entry Yieldb (%)
a Reaction conditions: 1 (0.5 mmol), Pd–Fe3O4 (1.0 mol%), CuBr2 (0.05 mmol), 1,4-dioxane (5.0 mL), H2O (1.0 mL), O2 balloon 95 °C.b Yield of isolated product.
1 98
2 96
3 96
4 92
5 83


As shown in Fig. 1, the Pd–Fe3O4 nanocrystals exhibited very good dispersion during and after the oxidation reaction. After the reaction was complete, the nanocrystals could be gathered easily using an external magnet. The transmission electron microscope (TEM) image of the Pd–Fe3O4 nanocrystals after five oxidation cycles showed that the size and morphology of the nanocrystals had not changed (Fig. S2 and S3). Moreover, the powder X-ray diffraction (XRD) pattern of the catalyst did not show any noticeable change from those of the catalyst before use (Fig. S4 and S5). In addition, when the catalyst system was analyzed after the first and fifth reaction by inductively coupled plasma atomic emission spectroscopy (ICP-AES), the nanoparticles showed 1.9 and 1.2 wt% of Pd, respectively. About 37% of palladium was lost after 5 cycles. This observation indicates that a small amount of Pd might have leached out from the original catalyst system upon each recycling experiment. However, there was no detectable change in Fe content.


image file: c4ra04833d-f1.tif
Fig. 1 Magnetic separation of Pd–Fe3O4 after the reaction.

Conclusions

In summary, a convenient, heterogeneous, Wacker-type oxidation of alkynes to benzils under aerobic conditions using 1 mol% of Pd–Fe3O4 nanocatalyst was developed. This transformation showed high efficiency with a variety of substrates and excellent functional group tolerance. Moreover, owing to its magnetic property, the catalyst could be conveniently recovered using an external permanent magnet, obviating the need for filtration before reuse. The nanocatalyst was recycled five times without loss of its catalytic activity. Further studies to understand the detailed reaction mechanism and exact reacting species of the Pd–Fe3O4 catalyst system are in progress. Under the optimized reaction conditions, high yields, good functional group tolerance, and efficient recyclability of the Pd–Fe3O4 nanocrystals indicate that this system exhibits great applicability for large scale applications. Further research into various Pd–Fe3O4-catalyzed reactions is currently under progress in our laboratory.

Acknowledgements

B.M.K. thanks the BRL (Basic Research Laboratory) program of the NRF (National Research Foundation), Republic of Korea.

Notes and references

  1. (a) L. Re, B. Maurer and G. Ohloff, Helv. Chim. Acta, 1973, 56, 1882–1894 CrossRef CAS PubMed; (b) M. D. Rozwadowska and M. Chrzanowska, Tetrahedron, 1985, 41, 2885–2890 CrossRef CAS; (c) W. Mahabusarakam, S. Deachathai, S. Phongpaichit, C. Jansakul and W. C. Taylor, Phytochemistry, 2004, 65, 1185–1191 CrossRef CAS PubMed.
  2. (a) M. D. Rozwadowska and M. Chrzanowska, Tetrahedron, 1985, 41, 2885–2890 CrossRef CAS; (b) M. R. Angelastro, S. Mehdi, J. P. Burkhart, N. P. Peet and P. Bey, J. Med. Chem., 1990, 33, 11–13 CrossRef CAS; (c) R. Maurya, R. Singh, M. Deepak, S. S. Handa, P. P. Yadav and P. K. Mishra, Phytochemistry, 2004, 65, 915–920 CrossRef CAS PubMed; (d) K. C. Nicolaou, D. L. Gray and J. Tae, J. Am. Chem. Soc., 2004, 126, 613–627 CrossRef CAS PubMed; (e) R. M. Wadkins, J. L. Hyatt, X. Wei, K. J. Yoon, M. Wierdl, C. C. Edwards, C. L. Morton, J. C. Obenauer, K. Damodaran, P. Beroza, M. K. Danks and P. M. Potter, J. Med. Chem., 2005, 48, 2906–2915 CrossRef CAS PubMed.
  3. B. I. Ita and O. E. Offiong, Mater. Chem. Phys., 2001, 70, 330–335 CrossRef CAS.
  4. Matsushita Electric Industrial Co. Ltd. Jpn. Kokai Tokkyo Koho, 1981, 203, 8198; Chem. Abstr., 1981, 95, 188163u.
  5. (a) T. Harada, Y. Nakagawa, R. M. Wadkins, P. M. Potter and C. E. Wheelock, Bioorg. Med. Chem., 2009, 17, 149–164 CrossRef CAS PubMed; (b) C. D. Fleming, S. Bencharit, C. C. Edwards, J. L. Hyatt, L. Tsurkan, F. Bai, C. Fraga, C. L. Morton, E. L. Howard-Williams, P. M. Potter and M. R. Redinbo, J. Mol. Biol., 2005, 352, 165–177 CrossRef CAS PubMed.
  6. (a) S. E. Wolkenberg, D. D. Wisnoski, W. H. Leister, Y. Wang, Z. Zhao and C. W. Lindsley, Org. Lett., 2004, 6, 1453–1456 CrossRef CAS PubMed; (b) W. D. Shipe, F. Yang, Z. Zhao, S. E. Wolkenberg, M. B. Nolt and C. W. Lindsley, Heterocycles, 2006, 70, 655 CrossRef CAS; (c) X. Deng and N. S. Mani, Org. Lett., 2006, 8, 269–272 CrossRef CAS PubMed; (d) H. Zipse, I. Held and S. Xu, Synthesis, 2007, 8, 1185–1196 CrossRef PubMed; (e) F. Rong, S. Chow, S. Yan, G. Larson, Z. Hong and J. Wu, Bioorg. Med. Chem. Lett., 2007, 17, 1663–1666 CrossRef CAS PubMed; (f) A. J. Herrera, M. Rondon and E. Suarez, J. Org. Chem., 2008, 73, 3384–3391 CrossRef CAS PubMed; (g) G. R. Boyce and J. S. Johnson, Angew. Chem., Int. Ed., 2010, 49, 8930–8933 CrossRef CAS PubMed.
  7. (a) R. Sanz, M. P. Castroviejo, V. Guilarte, A. Perez and F. J. Fananas, J. Org. Chem., 2007, 72, 5113–5118 CrossRef CAS PubMed; (b) J. J. Maresh, L. A. Giddings, A. Friedrich, E. A. Loris, S. Panjikar, B. L. Trout, J. Stockigt, B. Peters and S. E. O'Connor, J. Am. Chem. Soc., 2008, 130, 710–723 CrossRef CAS PubMed; (c) T. Kashiwabara and M. Tanaka, J. Org. Chem., 2009, 74, 3958–3961 CrossRef CAS PubMed.
  8. (a) M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata and H. Nemoto, Chem. Commun., 1999, 1387–1388 RSC; (b) S. A. Tymonko, B. A. Nattier and R. S. Mohan, Tetrahedron Lett., 1999, 40, 7657–7659 CrossRef CAS; (c) M. Okimoto, Y. Takahashi, Y. Nagata, G. Sasaki and K. Numata, Synthesis, 2005, 705–707 CrossRef CAS PubMed; (d) C. Joo, S. Kang, S. M. Kim, H. Han and J. W. Yang, Tetrahedron Lett., 2010, 51, 6006–6007 CrossRef CAS PubMed.
  9. (a) J. Rodriguez, T. Constantieux and C. Allais, Synthesis, 2009, 2523–2530 Search PubMed; (b) N. Tada, M. Shomura, H. Nakayama, T. Miura and A. Itoh, Synlett, 2010, 1979–1983 CAS; (c) M. Bouma, G. Masson and J. Zhu, J. Org. Chem., 2010, 75, 2748–2751 CrossRef CAS PubMed; (d) R. Mossetti, T. Pirali, G. C. Tron and J. Zhu, Org. Lett., 2010, 12, 820–823 CrossRef CAS PubMed.
  10. (a) A. R. Katritzky, D. Zhang and K. Kirichenko, J. Org. Chem., 2005, 70, 3271–3274 CrossRef CAS PubMed; (b) S. Mori, M. Takubo, T. Yanase, T. Maegawa, Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2010, 352, 1630–1634 CrossRef CAS PubMed; (c) Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu and T. Y. Zhang, J. Org. Chem., 2006, 71, 826–828 CrossRef CAS PubMed; (d) C. Mousset, O. Provot, A. Hamze, J. Bignon, J.-D. Brion and M. Alami, Tetrahedron, 2008, 64, 4287–4294 CrossRef CAS PubMed; (e) H. Fu, M. Niu, Y. Jiang and Y. Zhao, Synthesis, 2008, 2879–2882 CrossRef PubMed; (f) K. J. Tan and U. Wille, Chem. Commun., 2008, 6239–6624 RSC; (g) M.-J. Wu, J.-H. Chu and Y.-J. Chen, Synthesis, 2009, 2155–2162 CrossRef PubMed; (h) W. Ren, Y. Xia, S. J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841–1844 CrossRef CAS PubMed; (i) W. Ren, J. Liu, L. Chen and X. Wan, Adv. Synth. Catal., 2010, 352, 1424–1428 CrossRef CAS PubMed.
  11. (a) H. Doucet and J. C. Hierso, Angew. Chem., Int. Ed., 2007, 46, 834–871 CrossRef CAS PubMed; (b) R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874–922 CrossRef CAS PubMed.
  12. (a) D. G. Lee and V. S. Chang, Synthesis, 1978, 462–463 CrossRef CAS; (b) N. S. Srinivasan and G. Lee Donald, J. Org. Chem., 1979, 44, 1574 CrossRef CAS; (c) D. G. Lee and V. S. Chang, J. Org. Chem., 1979, 44, 2726–2730 CrossRef CAS.
  13. (a) H. Firouzabadi, A. R. Sardarian, H. Moosavipour and G. M. Afshari, Synthesis, 1986, 285–288 CrossRef CAS; (b) B. Rihter and J. Masnovi, J. Chem. Soc., Chem. Commun., 1988, 35 RSC.
  14. V. O. Rogatchov, V. D. Filimonov and M. S. Yusubov, Synthesis, 2001, 1001–1003 CrossRef CAS PubMed.
  15. L. Re, B. Maurer and G. Ohloff, Helv. Chim. Acta, 1973, 56, 1882–1894 CrossRef CAS PubMed.
  16. (a) R. Curci, M. Fiorentino, C. Fusco, R. Mello, F. P. Ballistreri, S. Failla and G. A. Tomaselli, Tetrahedron Lett., 1992, 33, 7929–7932 CrossRef CAS; (b) Z. F. Al-Rashid, W. L. Johnson, R. P. Hsung, Y. Wei, P. Y. Yao, R. Liu and K. Zhao, J. Org. Chem., 2008, 73, 8780–8784 CrossRef CAS PubMed.
  17. H. Fu, M. Niu, Y. Jiang and Y. Zhao, Synthesis, 2008, 2879–2882 CrossRef PubMed.
  18. G. Gebeyehu and E. McNelis, J. Org. Chem., 1980, 45, 4280–4283 CrossRef CAS.
  19. A. Giraud, O. Provot, J.-F. Peyrat, M. Alami and J.-D. Brion, Tetrahedron, 2006, 62, 7667–7673 CrossRef CAS PubMed.
  20. (a) W. Ren, Y. Xia, S. J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841–1844 CrossRef CAS PubMed; (b) M. S. Yusubov, G. A. Zholobova, S. F. Vasilevsky, E. V. Tretyakov and D. W. Knight, Tetrahedron, 2002, 58, 1607–1610 CrossRef CAS; (c) A. Gao, F. Yang, J. Li and Y. Wu, Tetrahedron, 2012, 68, 4950–4954 CrossRef CAS PubMed.
  21. C. F. Xu, M. Xu, Y. X. Jia and C. Y. Li, Org. Lett., 2011, 13, 1556–1559 CrossRef CAS PubMed.
  22. S. Mori, M. Takubo, T. Yanase, T. Maegawa, Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2010, 352, 1630–1634 CrossRef CAS PubMed.
  23. (a) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J. M. Basset, Chem. Rev., 2011, 111, 3036–3075 CrossRef CAS PubMed; (b) C. W. Lim and I. S. Lee, Nano Today, 2010, 5, 412–434 CrossRef CAS PubMed; (c) R. L. Oliveira, P. K. Kiyohara and L. M. Rossi, Green Chem., 2010, 12, 144–149 RSC; (d) X. B. Zhang, J. M. Yan, S. Han, H. Shioyama and Q. Xu, J. Am. Chem. Soc., 2009, 131, 2778–2779 CrossRef CAS PubMed; (e) T. Hara, T. Kaneta, K. Mori, T. Mitsudome, T. Mizugaki, K. Ebitani and K. Kaneda, Green Chem., 2007, 9, 1246–1251 RSC; (f) V. Polshettiwar, B. Baruwati and R. S. Varma, Green Chem., 2009, 11, 127–131 RSC; (g) M. B. Gawande, H. Z. Guo, A. K. Rathi, P. S. Branco, Y. Z. Chen, R. S. Varma and D. L. Peng, RSC Adv., 2013, 3, 1050–1054 RSC; (h) M. B. Gawande, A. K. Rathi, P. S. Branco, I. D. Nogueira, A. Velhinho, J. J. Shrikhande, U. U. Indulkar, R. V. Jayaram, C. A. Ghumman, N. Bundaleski and O. M. Teodoro, Chem.–Eur. J., 2012, 18, 12628–12632 CrossRef CAS PubMed; (i) V. Polshettiwar and R. S. Varma, Org. Biomol. Chem., 2009, 7, 37–40 RSC; (j) A. M. Balu, B. Baruwati, E. Serrano, J. Cot, J. Garcia-Martinez, R. S. Varma and R. Luque, Green Chem., 2011, 13, 2750–2758 RSC; (k) H. Yoon, S. Ko and J. Jang, Chem. Commun., 2007, 43, 1468–1470 RSC; (l) M. S. Kwon, I. S. Park, J. S. Jang, J. S. Lee and J. Park, Org. Lett., 2007, 9, 3417–3419 CrossRef CAS PubMed; (m) K. Mori, Y. Kondo and H. Yamashita, Phys. Chem. Chem. Phys., 2009, 11, 8949–8954 RSC; (n) M. L. Kantam, J. Yadav, S. Laha, P. Srinivas, B. Sreedhar and F. Figueras, J. Org. Chem., 2009, 74, 4608–4611 CrossRef CAS PubMed; (o) Q. Du, W. Zhang, H. Ma, J. Zheng, B. Zhou and Y. Li, Tetrahedron, 2012, 68, 3577–3584 CrossRef CAS PubMed; (p) J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo and Q. Wang, J. Catal., 2005, 229, 114–118 CrossRef CAS PubMed; (q) Y. W. Jun, J. S. Choi and J. Cheon, Chem. Commun., 2007, 1203–1214 RSC; (r) S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick and D. Thompsett, Angew. Chem., Int. Ed., 2004, 43, 5645–5649 CrossRef CAS PubMed; (s) J. Kim, J. E. Lee, J. Lee, Y. Jang, S. W. Kim, K. An, J. H. Yu and T. Hyeon, Angew. Chem., Int. Ed., 2006, 45, 4789–4793 CrossRef CAS PubMed; (t) D. K. Yi, S. S. Lee and J. Y. Ying, Chem. Mater., 2006, 18, 2459–2461 CrossRef CAS; (u) C. H. Jun, Y. J. Park, Y. R. Yeon, J. R. Choi, W. R. Lee, S. J. Ko and J. Cheon, Chem. Commun., 2006, 1619–1621 RSC; (v) P. D. Stevens, J. Fan, H. M. Gardimalla, M. Yen and Y. Gao, Org. Lett., 2005, 7, 2085–2088 CrossRef CAS PubMed; (w) D. Guin, B. Baruwati and S. V. Manorama, Org. Lett., 2007, 9, 1419–1421 CrossRef CAS PubMed.
  24. Y. Jang, J. Chung, S. Kim, S. W. Jun, B. H. Kim, D. W. Lee, B. M. Kim and T. Hyeon, Phys. Chem. Chem. Phys., 2011, 13, 2512–2516 RSC.
  25. Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, B. M. Kim and T. Hyeon, Chem. Commun., 2011, 47, 3601–3603 RSC.
  26. J. Chung, J. Kim, Y. Jang, S. Byun, T. Hyeon and B. M. Kim, Tetrahedron Lett., 2013, 54, 5192–5196 CrossRef CAS PubMed.
  27. J. Lee, J. Chung, S. M. Byun, B. M. Kim and C. Lee, Tetrahedron, 2013, 69, 5660–5664 CrossRef CAS PubMed.
  28. S. Byun, J. Chung, Y. Jang, J. Kwon, T. Hyeon and B. M. Kim, RSC Adv., 2013, 3, 16296–16299 RSC.
  29. I. H. Bae, I.-H. Lee, S. Byun, J. Chung, B. M. Kim and T.-L. Choi, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 1526–1528 CrossRef PubMed.
  30. Y. Liu, J. Chung, Y. Jang, S. Mao, B. M. Kim, Y. Wang and X. Guo, ACS Appl. Mater. Interfaces, 2014, 6, 1887–1892 CAS.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra04833d

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.