A general, simple and green process to access pyrrolo[2,1-a]isoquinolines using a KI/TBHP catalytic system

Huan-Ming Huanga, Fang Huangb, Yu-Jin Li*a, Jian-Hong Jiaa, Qing Yea, Liang Hana and Jian-Rong Gao*a
aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China. E-mail: lyjzjut@zjut.edu.cn; gdgjr@zjut.edu.cn; Fax: +86-0571-88320544; Tel: +86-0571-88320891
bDepartment of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. E-mail: huangfang@263.net.cn

Received 16th April 2014 , Accepted 10th June 2014

First published on 11th June 2014


Abstract

A novel KI/TBHP-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction provided general, efficient and green access to biologically important pyrrolo[2,1-a]isoquinolines. The product pyrrolo[2,1-a]isoquinolines were obtained from reactions between simple, readily available dipolarophiles and tetrahydroisoquinolines in moderate to excellent yields The reaction was environmentally benign in the adoption of nontoxic KI as a catalyst and IOH was generated in situ from the oxidation reaction of KI and TBHP.


Introduction

Recently, various challenging metal-free reactions have been developed via hypervalent iodine,1 molecular iodine,2 DDQ,3 strong base4 etc. as catalysts. Very recently, a novel class of iodide-based oxidation catalysts was introduced by Ishihara and co-workers,5 and the most important features of this catalytic system are that the oxidation reactions require no metals and that water or tert-butyl alcohol is the only by-product derived from the co-oxidant. Comparing to molecular iodine, iodide is cheaper, non-toxic and safe to the environment. This green and efficient method has attracted various chemists to synthesize abundant important compounds such as 2-acyl-2,3-dihydrobenzofuran derivatives,5b 2-aminobenzoxazoles,6 N-nitrosamines,7 amides,8 2-aryl benzothiazoles,9 sulfonated oxindoles,10 α-amino acid esters,11 tert-butyl peresters,12 allylic ester,13 N-sulfonyl formamidine,14 benzylic esters,15 highly functionalized [6,6,5] tricyclic frameworks16 and iodophenols17 et al.

The pyrrolo[2,1-a]isoquinoline structure occurs in lamellarin alkaloids, a newly discovered family of marine natural products that exhibit a wide spectrum of biological activities containing potent inhibitor of human topoisomerase I, inhibition of HIV integrase and potential antitumor activities (Fig. 1).18 So far, various approaches to the synthesis of this useful carbon skeleton have been developed,19 especially the powerful 1,3-dipolar cycloaddition.19m-s Very recently, iodine-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade with hydrogen peroxide as the terminal oxidant to pyrrolo[2,1-a]isoquinolines was reported by our group (Scheme 1, eqn 1).19s As part of our ongoing research program the functionalized quinone structures19s,20 and inspired by the reported iodide-based oxidation catalysts, we herein report a general, simple and green access to pyrrolo[2,1-a]isoquinolines using KI/TBHP catalytic system (Scheme 1, eqn 2). The reaction was environmentally benign in adoption of nontoxic KI as catalyst and IOH was generated in situ from the oxidation reaction of KI and TBHP.


image file: c4ra03455d-f1.tif
Fig. 1 Biologically important pyrrolo[2,1-a]isoquinoline lamellarin alkaloids.

image file: c4ra03455d-s1.tif
Scheme 1 Methods for the construction of pyrrolo[2,1-a]isoquinolines.

Results and discussion

Initially, we focused on examining the feasibility of the reaction of 1,4-naphthoquinone (1a) with ethyl 2-(3,4-dihydroisoquinolin-2(1H)-yl)acetate (2a) and optimizing the reaction conditions. Excitingly, the proposed reaction between 1a and 2a did indeed occur in the presence of KI (20 mol%) and 70% aqueous TBHP (3 equiv.) in DMF (80 °C) for 10 h to afford the corresponding product (3a) in 60% yield (Table 1, entry 1). This result was due to iodine generated in situ from the oxidation reaction of iodide with TBHP. Several other solvents were also examined, but the yield of 3a was not improved in all these tested solvents comparing with DMF (entry 2–6). The yield of 3a was still not increased when the amount of KI was up to 30 mol% (entry 7). However, the yield of 3a was increased slightly when the amount of 70% aqueous TBHP was increased to 6 equiv. (entry 8). When the amount of 2a increased to 1.5 equiv., the yield of 3a was up to 73% (entry 9). Encouraged by these results, we further increased the amount of 2a to 1.7 equiv., the yield of 3a was obtained in 87% (entry 10). However, the yield of 3a decreased slightly when the amount of 2a increased to 2 equiv. (entry 11). To further improve the economy of the reaction, the amount of KI decreased to 0.1 equiv., 3a was only obtained in 70% yield (entry 12). Another oxidant (35% aqueous H2O2) was added instead of 70% aqueous TBHP, we only obtained 3a in 50% yield (entry 13). Finally, the best yield of 3a (87%) was obtained from the reaction of 1a (1 mmol), 2a (1.7 mmol), KI (20 mol %), and 70% aqueous TBHP (3 mmol) in DMF (5 mL) at 80 °C for 9 h (entry 10).
Table 1 Optimization of reaction conditionsa

image file: c4ra03455d-u1.tif

Entry Solvent Temp (°C) Time (h) KI (equiv.) 1a[thin space (1/6-em)]:[thin space (1/6-em)]2a Yield of 3ab (%)
a Compound 1a (1.0 mmol), 2a (1.2–2.0 mmol), KI (10–30 mol%) and 70% aqueous TBHP (3–6 equiv.) in solvent (5 mL) were stirred for several hours at the specified temperature until 1a was consumed.b Isolated yield.c The amount of 70% aqueous TBHP was increased to 6 equiv.d 3 equiv. 35% aqueous H2O2 was added instead of 70% aqueous TBHP.
1 DMF 80 10 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 60
2 EtOH Reflux 15 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 57
3 CH3CN Reflux 30 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 51
4 CHCl3 Reflux 28 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 47
5 THF Reflux 17 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 54
6 1,4-Dioxane Reflux 16 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 57
7 DMF 80 10 0.3 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 57
8c DMF 80 10 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2 61
9 DMF 80 9 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.5 73
10 DMF 80 9 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.7 87
11 DMF 80 9 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]2.0 86
12 DMF 80 14 0.1 1[thin space (1/6-em)]:[thin space (1/6-em)]1.7 70
13d DMF 80 12 0.2 1[thin space (1/6-em)]:[thin space (1/6-em)]1.7 50


With the optimal reaction conditions established, we then examined the substrate scope of this KI/TBHP catalytic system to construct pyrrolo[2,1-a]isoquinolines (Scheme 2).


image file: c4ra03455d-s2.tif
Scheme 2 Reaction of different dipolarophiles with tetrahydroisoquinolines.

As the reaction of 1a, 1,4-anthraquinone (1b) was also reacted smoothly with 2a and the corresponding products (3b) was yielded in 93%. However, when N-phenyl maleimides (1c) was employed under the optimal condition, the corresponding product (3c) was only obtained in 70% yield. When the amount of TBHP was up to 6 equiv., the yield of 3c increased to 94%. Then several other N-substituted maleimides (1d–1h) reacted with 2a in the presence of 6 equiv. TBHP and the corresponding products (3d–3h) were obtained in good yields (74–94%). More importantly, other dipolarophiles, such as activated alkynes and acrylates, also reacted smoothly with 2a to afford the desired products in moderate yields 78% and 50%. To further evaluate the substrate scope, we examined various tetrahydroisoquinoline derivatives 2. Excitingly, 3k was obtained in 90% yield when ethyl 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)acetate (2b) was employed. Similarly, the desired products 3l and 3m were both obtained in 80% when 1,4-anthraquinone (1b) and N-phenylmaleimide (1c) reacted with 2b. Encouraged by these results, we prepared some tetrahydroisoquinoline derivatives containing various ester groups (methyl, ethyl, tertiary butyl, and benzyl) and allowed them to react with 1,4-naphthoquinone (1a) or N-phenylmaleimide (1c). The corresponding products 3m3r were also obtained in good yields, except the lower yield of 3p and 3q in 61% and 58% due to the steric of tert-butyl group. The yields obtained using the protocol described here were comparable to those reported in ref. 19s (Scheme 2, yields in parentheses), indicating that the products can be synthesized effectively via 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction. This approach could therefore be considered a proper alternative to the reported process catalyzed by iodine reported in ref. 19s. Moreover, the paper's merit lay in the adoption of environmentally benign catalyst (KI) which was favorable and highly pursued nowadays.

According to the above experimental results and previous reports,5,7,8b,11–14,19s,21 a plausible mechanism was proposed (Scheme 3). Initially tertiary amine (2a) was oxidized to isoquinolinium salt A by IOH, which was oxidized from KI by TBHP.22 Then 1,3-dipole B was formed by elimination of HI with 2a served as tertiary amine base, and then the 1,3-dipolar cycloaddition reaction between B and 1a to afford the addition intermediate D. Finally, 3a was formed through sequential oxidation. At the same time, intermediate C was reoxidized to IOH and 2a in the presence of excess TBHP.23


image file: c4ra03455d-s3.tif
Scheme 3 Proposed mechanism.

Conclusions

In summary, we have developed a novel protocol for the synthesis of pyrrolo[2,1-a]isoquinolines using KI/TBHP catalytic system. The reaction is environmentally benign in adoption of nontoxic KI as catalyst and IOH is generated in situ from the oxidation reaction of KI and TBHP. This novel KI/TBHP-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction provides a general, efficient and green access to biologically important pyrrolo[2,1-a]isoquinolines and more transformations by this useful catalytic system are currently underway in our laboratory.

Experimental

General information

All solvents were purified and dried using standard methods prior to use. Commercially available reagents were used without further purification. 1H NMR spectra were recorded on an NMR instrument operated at 500 MHz. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl3: δ 7.26 ppm). 13C NMR spectra were recorded on an NMR instrument operated at 125 MHz with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl3: δ 77.1 ppm). MS and HRMS were measured in EI or ESI mode and the mass analyzer of the HRMS was TOF. Thin layer chromatography was performed on pre-coated glass back plates and visualized with UV light at 254 nm. Flash column chromatography was performed on silica gel.

Representative procedure for the synthesis of 3a

A dipolarophile 1a (1.0 mmol) was added to a mixture of a tetrahydroisoquinoline 2a (1.7 mmol), 70% aqueous TBHP (3–6 mmol), and potassium iodide (0.2 mmol) in DMF (5.0 mL). The solution was stirred for 9 h at 80 °C. After 1a was completely consumed (as indicated by TLC and GC-MS), the reaction mixture was washed with aqueous Na2S2O3, dried over magnesium sulfate, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel with CH2Cl2 as the eluent provided desired products 3a.
image file: c4ra03455d-u2.tif
Ethyl 9,14-dioxo-5,6,9,14-tetrahydrobenzo[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3a)19m. Yellow solid, yield 87% (0.323 g), mp 144–145 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 9.01 (d, J = 8.0 Hz, 1H), 8.31–8.30 (m, 1H), 8.23–8.21 (m, 1H), 7.75–7.69 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 6.5 Hz, 1H), 7.29–7.27 (m, 1H), 4.56 (q, J = 7.0 Hz, 2H), 4.30 (t, J = 6.5 Hz, 2H), 3.12 (t, J = 6.5 Hz, 2H), 1.51 (t, J = 7.0 Hz, 3H); IR ν/cm−1 (KBr) 1704, 1660, 1524, 1465, 1413, 1384, 1311, 1268, 1227, 1141, 1108, 1047, 1010, 984, 790, 729, 711; GC-MS m/z 372.0 [M + 1]+, 326.7, 301.0, 243.6, 77.8, 51.0.
image file: c4ra03455d-u3.tif
Ethyl 9,16-dioxo-5,6,9,16-tetrahydronaphtho[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3b)19s. Orange solid, yield 93% (0.392 g), mp 234–235 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 9.00 (d, J = 8.0 Hz, 1H), 8.71 (s, 1H), 8.63 (s, 1H), 7.95–7.94 (m, 2H), 7.55–7.54 (m, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 4.57 (q, J = 7.0 Hz, 2H), 4.22 (t, J = 6.5 Hz, 2H), 3.06 (t, J = 6.5 Hz, 2H), 1.54 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.4, 179.2, 161.6, 135.5, 134.8, 134.6, 133.5, 132.1, 131.2, 129.9, 129.8, 129.7, 129.2, 129.0, 128.8, 128.7, 128.5, 127.3, 127.3, 126.4, 126.1, 124.0, 118.2, 62.5, 43.1, 29.1, 14.1; IR ν/cm−1 (KBr) 1665, 1461, 1267, 1016, 751; HRMS (ESI-TOF) m/z calcd for C27H20NO4 [M + H]+ 422.1392, found 422.1388.
image file: c4ra03455d-u4.tif
Ethyl 9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo[3′,4′:3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3c)19m. White solid, yield 94% (0.363 g), mp 190–191 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.59 (d, J = 8.5 Hz, 1H), 7.50 (t, J = 7.0 Hz, 2H), 7.43–7.36 (m, 5H), 7.29 (d, J = 7.5 Hz, 1H), 4.77 (q, J = 8.0 Hz, 2H), 4.44 (q, J = 7.0 Hz, 2H), 3.18 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 8.0 Hz, 3H); IR ν/cm−1 (KBr) 1759, 1709, 1551, 1482, 1421, 1384, 1341, 1301, 1279, 1198, 1155, 1111, 1090, 1051, 945, 895, 862, 823, 759; GC-MS m/z 386.8 [M + 1]+, 385.8, 339.9, 314.0, 270.1, 139.1.
image file: c4ra03455d-u5.tif
Ethyl 10-(4-methoxyphenyl)-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo-[3′,4′:3,4] pyrrolo[2,1-a]isoquinoline-8-carboxylate (3d)19n. White solid, yield 74% (0.308 g), mp 168–169 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.57 (d, J = 7.5 Hz, 1H), 7.41–7.35 (m, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.28–7.27 (m, 1H), 7.00 (d, J = 9.0 Hz, 2H), 4.75 (t, J = 7.0 Hz, 2H), 4.42 (q, J = 7.5 Hz, 2H), 3.84 (s, 3H), 3.17 (t, J = 7.0 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H); IR ν/cm−1 (KBr) 1761, 1707, 1514, 1385, 1280, 1250, 1194, 1159, 1111, 1031, 809, 743; GC-MS m/z 417.3 [M + 1]+, 385.1, 325.6, 288.2, 236.1, 156.7, 71.1.
image file: c4ra03455d-u6.tif
Ethyl 10-(4-nitrophenyl)-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo-[3′,4′:3,4] pyrrolo[2,1-a]isoquinoline-8-carboxylate (3e)19n. Yellow solid, yield 81% (0.349 g), mp 206–207 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.55 (d, J = 8.5 Hz, 1H), 8.35 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 9.5 Hz, 2H), 7.46–7.40 (m, 2H), 7.32 (d, J = 7.0 Hz, 1H), 4.80 (t, J = 6.5 Hz, 2H), 4.46 (q, J = 7.5 Hz, 2H), 3.21 (t, J = 6.5 Hz, 2H), 1.49 (t, J = 7.5 Hz, 3H); IR ν/cm−1 (KBr) 1761, 1713, 1524, 1384, 1321, 1277, 1194, 1138, 1109, 1040, 1011, 893, 853, 817, 777; GC-MS m/z 432.5 [M + 1]+, 400.2, 333.8, 263.9, 200.9, 184.5, 85.1.
image file: c4ra03455d-u7.tif
Ethyl 10-(4-trifluoromethylphenyl)-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo-[3′,4′:3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3f)19s. White solid, yield 83% (0.377 g), mp 203–204 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.49–8.47 (m, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.36–7.34 (m, 2H), 7.25 (t, J = 4.5 Hz, 1H), 4.70 (t, J = 7.0 Hz, 2H), 4.39 (q, J = 7.0 Hz, 2H), 3.13 (t, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 162.2, 160.6, 159.1, 135.8, 134.2, 133.5, 132.3, 130.3, 127.7, 127.6, 127.5, 126.8, 125.7, 125.6, 125.5, 125.1, 124.5, 122.8, 118.8, 115.6, 61.5, 43.2, 27.9, 13.9; IR ν/cm−1 (KBr) 1762, 1712, 1477, 1417, 1385, 1325, 1277, 1196, 1162, 1117, 1068, 1019, 947, 895, 845, 815; GC-MS m/z 454.7 [M + 1]+, 453.8, 371.0, 408.8, 381.8, 338.0, 139.0; HRMS (ESI-TOF) m/z calcd for C24H18F3N2O4 [M + H]+ 455.1219, found 455.1216.
image file: c4ra03455d-u8.tif
Ethyl 10-benzyl-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo-[3′,4′:3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3g)19n. White solid, yield 88% (0.352 g), mp 200–201 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.49 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.0 Hz, 2H), 7.38–7.30 (m, 3H), 7.27–7.23 (m, 1H), 7.20 (d, J = 7.0 Hz, 1H), 4.77 (s, 2H), 4.68 (t, J = 7.0 Hz, 2H), 4.43 (q, J = 7.0 Hz, 2H), 3.10 (t, J = 7.0 Hz, 2H), 1.49 (t, J = 7.0 Hz, 3H); GC-MS m/z 401.0 [M + 1]+, 400.0, 371.0, 353.9, 325.9, 224.2, 195.1.
image file: c4ra03455d-u9.tif
Ethyl 10-propyl-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo[3′,4′:3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3h)19s. White solid, yield 91% (0.321 g), mp 188–189 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.53 (d, J = 8.5 Hz, 1H), 7.42–7.39 (m, 1H), 7.38–7.34 (m, 1H), 7.27 (d, J = 8.5 Hz, 1H), 4.72 (t, J = 7.0 Hz, 2H), 4.43 (q, J = 7.0 Hz, 2H), 3.59 (t, J = 7.0 Hz, 2H), 3.15 (t, J = 7.0 Hz, 2H), 1.72–1.67 (m, 2H), 1.49 (t, J = 7.0 Hz, 3H), 0.96 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 164.2, 162.7, 159.7, 132.8, 132.4, 130.1, 127.9, 127.9, 127.6, 125.9, 125.7, 118.1, 116.7, 61.5, 43.3, 39.9, 28.4, 22.0, 14.2, 11.4; IR ν/cm−1 (KBr) 1752, 1700, 1471, 1385, 1330, 1280, 1199, 1123, 1012, 779, 746; GC-MS m/z 353.0 [M + 1]+, 352.0, 323.1, 278.1, 266.2, 222.2, 139.2, 103.0; HRMS (ESI-TOF) m/z calcd for C20H21N2O4 [M + H]+ 353.1501, found 353.1498.
image file: c4ra03455d-u10.tif
3-Ethyl 1,2-diethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,2,3-tricarboxylate (3i)19s. White solid, yield 78% (0.301 g), mp 112–113 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.20–8.18 (m, 1H), 7.32–7.30 (m, 2H), 7.25–7.24 (m, 1H), 4.54 (t, J = 7.0 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 4.34–4.30 (m, 4H), 3.00 (t, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H), 1.37–1.32 (m, 6H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 166.0, 163.4, 159.9, 136.6, 134.3, 129.2, 128.5, 127.3, 126.9, 126.9, 126.5, 119.0, 110.8, 61.4, 61.0, 60.7, 42.6, 29.4, 14.12, 14.09, 14.05; IR ν/cm−1 (KBr) 1673, 1581, 1431, 1366, 1155, 1043, 886; GC-MS m/z 385.5 [M]+, 384.7, 339.7, 312.8, 265.7, 221.9, 139.0, 129.9; HRMS (ESI-TOF) m/z calcd for C21H24NO6 [M + H]+ 386.1604, found 386.1598.
image file: c4ra03455d-u11.tif
Diethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3j)19n. Yellow solid, yield 50% (0.157 g), mp 100–101 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.45 (d, J = 8.5 Hz, 1H), 7.50 (s, 1H), 7.36–7.30 (m, 2H), 7.25 (d, J = 6.0 Hz, 1H), 4.61 (t, J = 6.5 Hz, 2H), 4.37–4.32 (m, 4H), 3.03 (t, J = 6.5 Hz, 2H), 1.41–1.38 (m, 6H); GC-MS m/z 314.2 [M + 1]+, 312.9, 283.5, 155.9, 73.5.
image file: c4ra03455d-u12.tif
Ethyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3k)19s. Orange solid, yield 90% (0.388 g), mp 194–195 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.88 (s, 1H), 8.23 (t, J = 2.0 Hz, 1H), 8.12–8.10 (m, 1H), 7.66–7.60 (m, 2H), 6.67 (s, 1H), 4.51 (q, J = 7.0 Hz, 2H), 4.21 (t, J = 7.0 Hz, 2H), 4.06 (s, 3H), 3.89 (s, 3H), 3.01 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.5, 179.4, 161.5, 150.2, 147.6, 136.2, 135.8, 134.6, 133.1, 132.7, 127.3, 126.9, 126.4, 125.9, 122.9, 119.1, 116.3, 112.4, 110.2, 62.4, 54.3, 55.9, 43.3, 28.5, 14.0; IR ν/cm−1 (KBr) 1718, 1657, 1479, 1385, 1282, 1257, 1217, 1152, 1132, 1045, 1015, 705; HRMS (ESI-TOF) m/z calcd for C25H22NO6 [M + H]+ 432.1447, found 432.1444.
image file: c4ra03455d-u13.tif
Ethyl 2,3-dimethoxy-9,16-dioxo-5,6,9,16-tetrahydronaphtho[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3l)19s. Orange solid, yield 80% (0.433 g), mp 271–272 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.98 (s, 1H), 8.80 (s, 1H), 8.68 (s, 1H), 8.04–8.00 (m, 2H), 7.63–7.61 (m, 2H), 6.73 (s, 1H), 4.57 (q, J = 7.5 Hz, 2H), 4.26 (t, J = 7.0 Hz, 2H), 4.13 (s, 3H), 3.93 (s, 3H), 3.06 (t, J = 7.0 Hz, 2H), 1.54 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.6, 179.4, 161.8, 150.2, 147.7, 136.3, 134.9, 134.6, 132.4, 131.3, 129.83, 129.77, 129.3, 128.82, 128.76, 128.4, 127.0, 126.1, 123.8, 119.3, 117.2, 112.6, 110.2, 62.5, 56.3, 56.0, 43.3, 28.6, 14.1; IR ν/cm−1 (KBr) 1719, 1659, 1479, 1384, 1271, 1240, 1222, 1186, 1133, 1038, 914, 763; HRMS (ESI-TOF) m/z calcd for C29H24NO6 [M + H]+ 482.1604, found 482.1600.
image file: c4ra03455d-u14.tif
Ethyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo[3′,4′:3,4] pyrrolo[2,1-a]isoquinoline-8-carboxylate (3m)19n. Orange solid, yield 80% (0.357 g), mp 230–231 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.24 (s, 1H), 7.49–7.47 (m, 2H), 7.40–7.36 (m, 3H), 6.75 (s, 1H), 4.73 (t, J = 7.0 Hz, 2H), 4.41 (q, J = 7.0 Hz, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.11 (t, J = 7.0 Hz, 2H), 1.46 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 163.46, 161.59, 159.59, 150.67, 148.57, 134.01, 132.60, 128.97 (2C), 127.84, 127.28 (2C), 125.55, 125.03, 118.29, 118.08, 114.75, 110.48, 110.26, 61.48, 56.14, 55.97, 43.42, 27.81, 14.12; GC-MS m/z 447.1 [M + 1]+, 445.0, 411.3, 385.4, 301.9, 254.3, 100.1, 56.4.
image file: c4ra03455d-u15.tif
Methyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3n)19s. Orange solid, yield 92% (0.329 g), mp 205–206 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.95 (s, J = 8.0 Hz, 1H), 8.27–8.25 (m, 1H), 8.17–8.16 (m, 1H), 7.71–7.65 (m, 2H), 7.42 (t, J = 6.5 Hz, 1H), 7.36–7.33 (m, 1H), 7.23 (s, J = 7.0 Hz, 1H), 4.26 (t, J = 6.5 Hz, 2H), 4.06 (s, 3H), 3.08 (t, J = 6.5 Hz, 2H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.51, 179.47, 161.8, 135.8, 135.6, 134.6, 133.7, 133.3, 132.9, 130.1, 128.9, 127.4 (2C), 127.2, 126.5, 126.3, 125.4, 123.4, 117.5, 53.0, 43.2, 29.0; IR ν/cm−1 (KBr) 1712, 1656, 1466, 1412, 1385, 1314, 1269, 1224, 1140, 1113, 1060, 1012, 799, 734; GC-MS m/z 358.1 [M + 1]+, 356.8, 333.6, 276.5, 139.8, 73.9; HRMS (ESI-TOF) m/z calcd for C22H16NO4 [M + H]+ 358.1079, found 358.1077.
image file: c4ra03455d-u16.tif
Methyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo[3′,4′:3,4] pyrrolo[2,1-a]isoquinoline-8-carboxylate (3o)19s. Orange solid, yield 71% (0.264 g), mp 217–218 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.58–8.57 (m, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.43–7.36 (m, 5H), 7.29–7.28 (m, 1H), 4.77 (t, J = 7.0 Hz, 2H), 3.98 (s, 3H), 3.18 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 163.0, 161.5, 160.0, 133.6, 132.6, 132.4, 130.4, 128.8 (2C), 128.0, 127.9, 127.70, 127.65, 127.0 (2C), 125.5, 125.3, 118.2, 116.3, 52.3, 43.4, 28.3; IR ν/cm−1 (KBr) 1497, 1385, 1199, 756, 694, 620; GC-MS m/z 373.6 [M + 1]+, 372.1, 348.6, 303.2, 256.4, 202.1, 154.1, 54.6; HRMS (ESI-TOF) m/z calcd for C22H17N2O4 [M + H]+ 373.1188, found 373.1184.
image file: c4ra03455d-u17.tif
tert-Butyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo[5,6]isoindolo[1,2-a]isoquinoline-8-carboxylate (3p)19s. Orange solid, yield 61% (0.244 g), mp 170–171 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 9.02 (d, J = 7.5 Hz, 1H), 8.30 (dd, J1 = 2.0 Hz, J2 = 6.5 Hz, 1H), 8.23 (dd, J1 = 2.0 Hz, J2 = 6.5 Hz, 1H), 7.72–7.69 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 4.27 (t, J = 7.0 Hz, 2H), 3.11 (t, J = 7.0 Hz, 2H), 1.72 (s, 9H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.8, 179.3, 160.6, 135.8, 135.0, 134.9, 133.5, 133.1, 132.9 (2C), 129.9, 128.8, 127.7, 127.4, 127.4, 127.2, 126.5, 122.4, 117.2, 84.1, 43.0, 29.1, 28.1 (3C); IR ν/cm−1 (KBr) 1660, 1467, 1385, 1266, 1229, 1141, 1010, 714; HRMS (ESI-TOF) m/z calcd for C25H21NO4Na [M + Na]+ 422.1369, found 422.1365.
image file: c4ra03455d-u18.tif
tert-Butyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo [3′,4′:3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3q)19s. Orange solid, yield 58% (0.240 g), mp 234–235 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 8.59 (dd, J1 = 1.5 Hz, J2 = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 2H), 7.43–7.35 (m, 5H), 7.28 (t, J = 6.5 Hz, 1H), 4.75 (t, J = 6.5 Hz, 2H), 3.16 (t, J = 6.5 Hz, 2H), 1.68 (s, 9H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 163.2, 161.6, 159.0, 133.0, 132.8, 132.4, 130.1, 128.9 (2C), 127.9, 127.9, 127.7, 127.6, 127.3 (2C), 125.7, 124.7, 120.2, 116.0, 83.4, 43.3, 28.4, 28.3 (3C); IR ν/cm−1 (KBr) 1759, 1703, 1481, 1415, 1385, 1349, 1305, 1289, 1154, 1135, 1112, 1089, 1051, 950, 889, 843, 762; HRMS (ESI-TOF) m/z calcd for C25H22N2O4Na [M + Na]+ 437.1478, found 437.1475.
image file: c4ra03455d-u19.tif
Benzyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo[3′,4′:3,4] pyrrolo[2,1-a]isoquinoline-8-carboxylate (3r)19s. Orange solid, yield 90% (0.390 g), mp 198–199 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) 9.00 (d, J = 7.5 Hz, 1H), 8.30 (dd, J1 = 2.5 Hz, J2 = 6.0 Hz, 1H), 8.24 (dd, J1 = 3.0 Hz, J2 = 6.5 Hz, 1H), 7.74–7.70 (m, 2H), 7.57 (d, J = 6.5 Hz, 2H), 7.47–7.36 (m, 5H), 7.27 (d, J = 8.5 Hz, 1H), 5.53 (s, 2H), 4.26 (t, J = 6.5 Hz, 2H), 3.08 (t, J = 6.5 Hz, 2H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 179.8, 179.5, 161.4, 135.9, 135.8, 135.2, 134.9, 133.7, 133.4, 133.1, 130.2, 129.0, 128.8 (2C), 128.7 (2C), 128.7, 127.5, 127.5, 127.3, 126.7, 126.4, 125.5, 123.7, 117.7, 68.4, 43.3, 29.2; IR ν/cm−1 (KBr) 1642, 1384, 1262, 1097, 802; HRMS (ESI-TOF) m/z calcd for C28H20NO4 [M + H]+ 434.1392, found 434.1390.

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant no. 21176223), the National Natural Science Foundation of Zhejiang (Grant no. LY13B020016), and the Key Innovation Team of Science and Technology in Zhejiang Province (Grant no. 2010R50018).

Notes and references

  1. (a) A. De Mico, R. Margarita, L. Parlanti, A. Vescovi and G. Piancatelli, J. Org. Chem., 1997, 62, 6974–6977 CrossRef CAS; (b) D. Kalyani, N. R. Deprez, L. V. Desai and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330–7331 CrossRef CAS PubMed; (c) K. C. Nicolaou, T. Montagnon, P. S. Baran and Y. L. Zhong, J. Am. Chem. Soc., 2002, 124, 2245–2258 CrossRef CAS PubMed; (d) T. Wirth, Angew. Chem., Int. Ed., 2005, 44, 3656–3665 CrossRef CAS PubMed; (e) H. Tohma, H. Morioka, S. Takizawa, M. Arisawa and Y. Kita, Tetrahedron, 2001, 57, 345–352 CrossRef CAS; (f) L. Pouységu, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 2235–2261 CrossRef PubMed.
  2. (a) P. T. Parvatkar, P. S. Parameswaran and S. G. Tilve, Chem.–Eur. J., 2012, 18, 5460–5489 CrossRef CAS PubMed; (b) H. Togo and S. Iida, Synlett, 2006, 2006, 2159–2175 CrossRef PubMed; (c) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Z. Huo and Y. Yamamoto, J. Am. Chem. Soc., 2008, 130, 15720–15725 CrossRef CAS PubMed; (d) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil and Y. Yamamoto, Angew. Chem., Int. Ed., 2007, 46, 4764–4766 CrossRef CAS PubMed; (e) Z. Huo, H. Tomeba and Y. Yamamoto, Tetrahedron Lett., 2008, 49, 5531–5533 CrossRef CAS PubMed; (f) F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. Lu, M. Jonsson and L. Kloo, Angew. Chem., Int. Ed., 2011, 50, 11598–11620 CrossRef PubMed; (g) Y. Kita, K. Morimoto, M. Ito, C. Ogawa, A. Goto and T. Dohi, J. Am. Chem. Soc., 2009, 131, 1668–1669 CrossRef CAS PubMed; (h) N. Fei, Q. Hou, S. Wang, H. Wang and Z.-J. Yao, Org. Biomol. Chem., 2010, 8, 4096–4103 RSC; (i) S. Ali, H.-T. Zhu, X.-F. Xia, K.-G. Ji, Y.-F. Yang, X.-R. Song and Y.-M. Liang, Org. Lett., 2011, 13, 2598–2601 CrossRef CAS PubMed; (j) H. Batchu, S. Bhattacharyya and S. Batra, Org. Lett., 2012 Search PubMed; (k) B. Alcaide, P. Almendros, G. Cabrero, R. Callejo, M. P. Ruiz, M. Arnó and L. R. Domingo, Adv. Synth. Catal., 2010, 352, 1688–1700 CrossRef CAS; (l) W.-B. Wu and J.-M. Huang, Org. Lett., 2012, 14, 5832–5835 CrossRef CAS PubMed; (m) W.-C. Lee, H.-C. Shen, W.-P. Hu, W.-S. Lo, C. Murali, J. K. Vandavasi and J.-J. Wang, Adv. Synth. Catal., 2012, 354, 2218–2228 CrossRef CAS; (n) Y.-X. Li, K.-G. Ji, H.-X. Wang, S. Ali and Y.-M. Liang, J. Org. Chem., 2010, 76, 744–747 CrossRef PubMed; (o) Y.-X. Li, H.-X. Wang, S. Ali, X.-F. Xia and Y.-M. Liang, Chem. Commun., 2012, 48, 2343–2345 RSC; (p) Y.-P. Zhu, M.-C. Liu, F.-C. Jia, J.-J. Yuan, Q.-H. Gao, M. Lian and A.-X. Wu, Org. Lett., 2012, 14, 3392–3395 CrossRef CAS PubMed; (q) H. Huang, X. Ji, W. Wu and H. Jiang, Adv. Synth. Catal., 2013, 355, 170–180 CrossRef CAS; (r) K. V. Sashidhara, A. Kumar, S. Agarwal, M. Kumar, B. Kumar and B. Sridhar, Adv. Synth. Catal., 2012, 354, 1129–1140 CrossRef CAS; (s) X. Zhang, Y. Zhou, H. Wang, D. Guo, D. Ye, Y. Xu, H. Jiang and H. Liu, Adv. Synth. Catal., 2011, 353, 1429–1437 CrossRef CAS.
  3. (a) C.-J. Li, Acc. Chem. Res., 2008, 42, 335–344 CrossRef PubMed; (b) Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982, 23, 885–888 CrossRef CAS; (c) Y. Zhang and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 4242–4243 CrossRef CAS PubMed.
  4. V. P. Mehta and B. Punji, RSC Adv., 2013, 3, 11957–11986 RSC.
  5. (a) M. Uyanik and K. Ishihara, ChemCatChem, 2012, 4, 177–185 CrossRef CAS; (b) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara, Science, 2010, 328, 1376–1379 CrossRef CAS PubMed; (c) M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew. Chem., Int. Ed., 2011, 50, 5331–5334 CrossRef CAS PubMed.
  6. T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and B. J. Nachtsheim, Org. Lett., 2011, 13, 3754–3757 CrossRef CAS PubMed.
  7. J. Zhang, J. Jiang, Y. Li and X. Wan, J. Org. Chem., 2013, 78, 11366–11372 CrossRef CAS PubMed.
  8. (a) G. Wang, Q.-Y. Yu, J. Wang, S. Wang, S.-Y. Chen and X.-Q. Yu, RSC Adv., 2013, 3, 21306–21310 RSC; (b) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu and X. Wan, Angew. Chem., Int. Ed., 2012, 51, 3231–3235 CrossRef CAS PubMed; (c) S. Zhang, L.-N. Guo, H. Wang and X.-H. Duan, Org. Biomol. Chem., 2013, 11, 4308–4311 RSC; (d) M. Lamani and K. R. Prabhu, Chem.–Eur. J., 2012, 18, 14638–14642 CrossRef CAS PubMed; (e) H. Li, J. Xie, Q. Xue, Y. Cheng and C. Zhu, Tetrahedron Lett., 2012, 53, 6479–6482 CrossRef CAS PubMed; (f) W.-P. Mai, G. Song, J.-W. Yuan, L.-R. Yang, G.-C. Sun, Y.-M. Xiao, P. Mao and L.-B. Qu, RSC Adv., 2013, 3, 3869–3872 RSC.
  9. Y. Gao, Q. Song, G. Cheng and X. Cui, Org. Biomol. Chem., 2014, 12, 1044–1047 CAS.
  10. X. Li, X. Xu, P. Hu, X. Xiao and C. Zhou, J. Org. Chem., 2013, 78, 7343–7348 CrossRef CAS PubMed.
  11. J. Zhang, J. Jiang, Y. Li, Y. Zhao and X. Wan, Org. Lett., 2013, 15, 3222–3225 CrossRef CAS PubMed.
  12. W. Wei, C. Zhang, Y. Xu and X. Wan, Chem. Commun., 2011, 47, 10827–10829 RSC.
  13. E. Shi, Y. Shao, S. Chen, H. Hu, Z. Liu, J. Zhang and X. Wan, Org. Lett., 2012, 14, 3384–3387 CrossRef CAS PubMed.
  14. S. Chen, Y. Xu and X. Wan, Org. Lett., 2011, 13, 6152–6155 CrossRef CAS PubMed.
  15. G. Majji, S. Guin, A. Gogoi, S. K. Rout and B. K. Patel, Chem. Commun., 2013, 49, 3031–3033 RSC.
  16. Y.-C. Wong, C.-T. Tseng, T.-T. Kao, Y.-C. Yeh and K.-S. Shia, Org. Lett., 2012, 14, 6024–6027 CrossRef CAS PubMed.
  17. K. Rajender Reddy, M. Venkateshwar, C. Uma Maheswari and P. Santhosh Kumar, Tetrahedron Lett., 2010, 51, 2170–2173 CrossRef CAS PubMed.
  18. (a) H. Fan, J. Peng, M. T. Hamann and J.-F. Hu, Chem. Rev., 2007, 108, 264–287 CrossRef PubMed; (b) D. Pla, F. Albericio and M. Alvarez, MedChemComm, 2011, 2, 689–697 RSC; (c) B. T. Fukuda, F. Ishibashi and M. Iwaob, Heterocycles, 2011, 83, 491–529 CrossRef PubMed; (d) S. T. Handy and Y. Zhang, Org. Prep. Proced. Int., 2005, 37, 411–445 CrossRef CAS; (e) C. Bailly, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 363–378 CrossRef CAS; (f) F. A. M. A. D. Pla, Anti-Cancer Agents Med. Chem., 2008, 2008, 746–760 CrossRef.
  19. (a) M. Banwell and D. Hockless, Chem. Commun., 1997, 2259–2260 RSC; (b) A. Heim, A. Terpin and W. Steglich, Angew. Chem., Int. Ed. Engl., 1997, 36, 155–156 CrossRef CAS; (c) D. L. Boger, C. W. Boyce, M. A. Labroli, C. A. Sehon and Q. Jin, J. Am. Chem. Soc., 1998, 121, 54–62 CrossRef; (d) C. P. Ridley, M. V. R. Reddy, G. Rocha, F. D. Bushman and D. J. Faulkner, Bioorg. Med. Chem., 2002, 10, 3285–3290 CrossRef CAS; (e) P. Ploypradith, C. Mahidol, P. Sahakitpichan, S. Wongbundit and S. Ruchirawat, Angew. Chem., Int. Ed., 2004, 43, 866–868 CrossRef CAS PubMed; (f) P. Cironi, I. Manzanares, F. Albericio and M. Álvarez, Org. Lett., 2003, 5, 2959–2962 CrossRef CAS PubMed; (g) S. T. Handy, Y. Zhang and H. Bregman, J. Org. Chem., 2004, 69, 2362–2366 CrossRef CAS PubMed; (h) P. Ploypradith, R. K. Kagan and S. Ruchirawat, J. Org. Chem., 2005, 70, 5119–5125 CrossRef CAS PubMed; (i) S. Su and J. A. Porco, J. Am. Chem. Soc., 2007, 129, 7744–7745 CrossRef CAS PubMed; (j) T. Ohta, T. Fukuda, F. Ishibashi and M. Iwao, J. Org. Chem., 2009, 74, 8143–8153 CrossRef CAS PubMed; (k) Q. Li, J. Jiang, A. Fan, Y. Cui and Y. Jia, Org. Lett., 2010, 13, 312–315 CrossRef PubMed; (l) L. Ackermann, L. Wang and A. V. Lygin, Chem. Sci., 2012, 3, 177–180 RSC; (m) C. Yu, Y. Zhang, S. Zhang, H. Li and W. Wang, Chem. Commun., 2011, 47, 1036–1038 RSC; (n) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2011, 50, 7171–7175 CrossRef CAS PubMed; (o) M. Rueping, D. Leonori and T. Poisson, Chem. Commun., 2011, 47, 9615–9617 RSC; (p) L. Huang and J. Zhao, Chem. Commun., 2013, 49, 3751–3753 RSC; (q) H.-T. Wang and C.-D. Lu, Tetrahedron Lett., 2013, 54, 3015–3018 CrossRef CAS PubMed; (r) S. Guo, H. Zhang, L. Huang, Z. Guo, G. Xiong and J. Zhao, Chem. Commun., 2013, 49, 8689–8691 RSC; (s) H.-M. Huang, Y.-J. Li, Q. Ye, W.-B. Yu, L. Han, J.-H. Jia and J.-R. Gao, J. Org. Chem., 2014, 79, 1084–1092 CrossRef CAS PubMed.
  20. (a) H.-M. Huang, J.-R. Gao, L.-F. Hou, J.-H. Jia, L. Han, Q. Ye and Y.-J. Li, Tetrahedron, 2013, 69, 9033–9037 CrossRef CAS PubMed; (b) H.-M. Huang, Y.-J. Li, Y.-P. Dai, W.-B. Yu, Q. Ye and J.-R. Gao, J. Chem. Res., 2013, 37, 34–37 CrossRef CAS; (c) H.-M. Huang, Y.-J. Li, J.-R. Yang, J.-H. Jia, Q. Ye, L. Han and J.-R. Gao, Tetrahedron, 2013, 69, 5221–5226 CrossRef CAS PubMed; (d) Y.-J. Li, H.-M. Huang, H.-Q. Dong, J.-H. Jia, L. Han, Q. Ye and J.-R. Gao, J. Org. Chem., 2013, 78, 9424–9430 CrossRef CAS PubMed; (e) Y.-J. Li, H.-M. Huang, J. Ju, J.-H. Jia, L. Han, Q. Ye, W.-B. Yu and J.-R. Gao, RSC Adv., 2013 Search PubMed; (f) Y.-J. Li, H.-M. Huang, Q. Ye, L.-F. Hou, W.-B. Yu, J.-H. Jia and J.-R. Gao, Adv. Synth. Catal., 2014, 356, 421–427 CrossRef CAS; (g) H.-M. Huang, J. Han, F. Xu, Y.-J. Li, H. Dong, W.-B. Yu and J.-R. Gao, Chem. Lett., 2013, 42, 921–923 CrossRef CAS; (h) H.-M. Huang, J.-R. Gao, Q. Ye, W.-B. Yu, W.-J. Sheng and Y.-J. Li, RSC Adv., 2014, 4, 15526–15533 RSC.
  21. L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and X. Wan, Chem.–Eur. J., 2011, 17, 4085–4089 CrossRef CAS PubMed.
  22. T. Nobuta, N. Tada, A. Fujiya, A. Kariya, T. Miura and A. Itoh, Org. Lett., 2013, 15, 574–577 CrossRef CAS PubMed.
  23. (a) J. Barluenga, M. Marco-Arias, F. Gonzalez-Bobes, A. Ballesteros and J. M. Gonzalez, Chem. Commun., 2004, 2616–2617 RSC; (b) J. Barluenga, M. Marco-Arias, F. González-Bobes, A. Ballesteros and J. M. González, Chem.–Eur. J., 2004, 10, 1677–1682 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Images of 1H and 13C NMR of all products. See DOI: 10.1039/c4ra03455d

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.