Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: a review

Sarika M. Kamble, Sameer N. Goyal and Chandragouda R. Patil*
Drug Discovery Laboratory, Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka, Shirpur, Dist. Dhule, 425405, Maharashtra, India. E-mail: pchandragouda@yahoo.com; Fax: +91-2563251808; Tel: +91-9850115505 Tel: +91-2563255189

Received 29th March 2014 , Accepted 23rd June 2014

First published on 24th June 2014


Abstract

Chemotherapeutic agents are a mainstay in the treatment of cancer. However, the nonselectivity of cytotoxic anticancer agents results in multiorgan toxicities. Cancer chemotherapy is often associated with toxicities, which can be expensive to manage and may affect the patient quality of life. Very few organ-protective agents like amifostine are proved as adjuvants to cancer chemotherapy. Amifostine protects against a wide range of chemo- and radiotherapy-related toxicities and reduces costs of supportive care. Multifunctional natural compounds like pentacyclic triterpenoids and their semisynthetic derivatives possess organ-protective activities against drug-induced toxicities. Triterpenoids interact with biomolecules involved in the cytotoxicity of chemotherapeutic agents. They also sensitize cancer cells for cytotoxic effect of chemotherapy. Further, pentacyclic triterpenoids themselves possess anticancer activity. The efficacy of pentacyclic triterpenoids as organotropic, anticancer and chemo sensitizers may prove these agents as adjuvant to cancer chemotherapy. The current review focuses on the systematic studies of the multifunctional role of pentacyclic triterpenoids and their derivatives in chemotherapy. Interactions of pentacyclic triterpenoids with molecular targets like nuclear factor erythroid-derived 2-like 2 (NrF2), nuclear factor kappa B (NFκ-B), protein kinase C (PKC), free radical scavenging, and cell longevity pathways that contribute to cytoprotective, anticancer, chemosensitizer and chemopreventive effects have been emphasized. The therapeutic utility of pentacyclic triterpenoids as multifunctional adjuvants in cancer chemotherapy is highlighted.


1. Introduction

Chemotherapeutic agents used in the treatment of cancer exert dose-dependent severe multiorgan toxicities.1–3 An approach of targeted treatment with monoclonal antibodies is an emerging trend in cancer therapy that promises reduced organ toxicities. However, these targeted therapies have their own immune-related side effect and other disadvantages, including high cost.4,5 Further, novel site-specific antibody–drug conjugate-based treatment is under clinical investigation.6 Even this mode of treatment is marred with other imitations in terms of site-specific delivery of chemotherapeutic agent and formulation-related problems. Hence, use of traditional cytotoxic drugs continues to be a preferred mode for the treatment of cancer.

To minimize the multiorgan toxicities of cancer chemotherapy, organ-protective adjuvants are also prescribed. Organ protectants are under clinical investigation, and a few drugs including amifostine are FDA adjuvants to cancer chemotherapy. Drugs like amifostine,7 alpha-lipoic acid,8 dexerazoxon, mesna, leucovorin, GM-CSF, recombinant erythropoietin, thrombopoietin,9 imidazenil10 and KR-22335 (ref. 11) are used as organ-protective adjuvants to cancer chemotherapy. Clinical and preclinical studies are having projected selenium, with and without vitamins as dietary adjuvants;12,13 moreover, many natural bioactive agents are also able to restore the microstructure from hazardous chemical.14 However, shortcomings of currently available adjuvants in terms of pharmacoeconomics, short-term efficacy, and innate adverse effects limit their use. It is expected that adjuvants should not interfere with the cytotoxic effect of chemotherapy against cancer cells. To suffice such demands, there is a need for ideal organ-protective agents that do not interfere with the expected effects of chemotherapy without producing cumulative or irreversible toxicity. Further, such agent should provide effective long-term protection, should be easily administrable and should have an acceptable shelf life.15 These agents selectively protect the normal body cells from toxicities of chemotherapy with or without antagonizing the anticancer efficacy of chemotherapy. The currently used organ protectants are not devoid of innate toxicities. Thus, there is a need of an ideal, cost-effective, safe adjuvant to cancer chemotherapy that can protect normal body cells from cytotoxic actions and sensitize the cancer cell to chemotherapeutic agent. Apart from synthetic agent, naturally occurring agents may prove to be better adjuvants to cancer therapy.16–18

Pentacyclic triterpenoids, widely distributed in the plant kingdom, have been extensively reported to possess protective effects against drug-induced organ toxicities including those of chemotherapeutic agents (Table 1). These agents exert a plethora of effects by interacting with multiple biomolecules. Their easy availability and routine consumption across the world's population point towards their safety. Hence, pentacyclic triterpenoids and their semisynthetic and/synthetic derivatives can be projected as organ-protective adjuvants to chemotherapy.39,40

Table 1 Biological sources, chemical structures and parts of plants from which important pentacyclic triterpenoids are extracted
S. no. Name of tritepenoid Structure of triterpenoid Source Parts used for extraction References
1 Betulinic acid image file: c4ra02784a-u1.tif Vitex negundo (L.) Leaves of Vitex negundo (L.) 19
2 Boswellic acid image file: c4ra02784a-u2.tif Boswellia serrata Gum resins of Boswellia serrata 20
3 Arjunolic acid image file: c4ra02784a-u3.tif Terminalia arjuna Bark 21
4 Maslinic acid image file: c4ra02784a-u4.tif Orujo olive oil Oil 22
5 Madecassic acid image file: c4ra02784a-u5.tif Centella asiatica (L.) Essential oil of Centella asiatica (L.) 23
6 Celastrol image file: c4ra02784a-u6.tif Celastrus orbiculatus Root of god thunder vine (Celastrus orbiculatus) 24 and 25
7 Pristimerin image file: c4ra02784a-u7.tif Celastrus hypoleucus Roots of Celastrus hypoleucus 26
8 Oleanolic acid image file: c4ra02784a-u8.tif Orujo olive oil Olive oil 27
9 Tarexerol acetate image file: c4ra02784a-u9.tif Codieaum variegatum Bark of Codieaum variegatum 28
10 Asiatic acid image file: c4ra02784a-u10.tif Centella asiatica (L.) Urb Whole plant of Centella asiatica (L.) Urb 29
11 Maniladiol image file: c4ra02784a-u11.tif Chrysanthemum morifolium Flowers of Chrysanthemum morifolium 30
12 Bartogenic acid image file: c4ra02784a-u12.tif Barringtonia racemosa Roxb Fruits of Barringtonia racemosa Roxb 31
13 Tormentic acid image file: c4ra02784a-u13.tif Perilla frutescens (L.) Britt Leaves of Perilla frutescens (L.) Britt 32
14 Glycyrrhetic acid image file: c4ra02784a-u14.tif Glycyrrhiza glabra Roots of Glycyrrhiza glabra 33
15 Corosolic acid image file: c4ra02784a-u15.tif Lagerstroemia speciosa Leaves of Lagerstroemia speciosa 34
16 23-Hydroxy butulinic acid image file: c4ra02784a-u16.tif Pulsatilla chinensis Roots of Pulsatilla chinensis 35
17 Euscaphic acid image file: c4ra02784a-u17.tif Geum japonicum Thunb Whole plant of Geum japonicum Thunb 36
18 Ursolic acid image file: c4ra02784a-u18.tif Salvia officinalis & Ocimum sanctum Linn Leaves of Salvia officinalis and Ocimum sanctum Linn 37
19 Ceanothic acid image file: c4ra02784a-u19.tif Zizyphus jujuba Mill. var. spinosa (Bunge) Roots of Zizyphus jujube 38
20 Lupenol image file: c4ra02784a-u20.tif Cichorium spinosum Aerial parts of Cichorium spinosum 39


2. Chemotherapy, chemoprevention and adjuvant to chemotherapy

The success of chemotherapy depends upon its administration at effective dose levels in an inflexible and programmed manner. However, such inflexible dosing schedules can rarely be followed in cancer therapy due to dose-limiting toxicities and related perversions in the recipient's quality of life. Thus, the cytotoxic efficacy of the chemotherapeutic agents cannot be exploited. There is a need of organ-protective adjuvants to continue the chemotherapy at effective dose levels along with either protecting normal body cells against chemotherapy-induced toxicities or sensitizing cancer cells to the cytotoxic effects of chemotherapy.39,41 In addition to the protection of normal cells from cytotoxicity, an approach of sensitizing cancer cells to chemotherapy can help in reducing the dose of chemotherapeutic agents. The successful outcome of cancer chemotherapy depends on additional treatment with other agents given concurrently or after the primary treatment that lowers the untoward multi-organ damage inflicted by the chemotherapeutic agents. Obviously, such additional treatment is expected to boost the anticancer activity of the chemotherapeutic agents or at least should not antagonize their actions. The ideal outcomes of adjuvant therapy include protection of noncancerous cells leading to the maintenance of normal functioning of vital organs. Although the use of targeted drugs is an emerging trend in cancer therapy, it is not devoid of the associated toxicities, and hence, the use of cytotoxic drugs for cancer treatment is universally recommended.42 Obviously, the co-administration of organ-protective adjuvant therapy is warranted, and there is a need of adjuvants, which can synergistically contribute to the effects of chemotherapy.

3. Multifunctionality of pentacyclic triterpenoids as adjuvants to chemotherapy

Pentacyclic triterpenoids are widely distributed in the plant kingdom, and their semisynthetic derivatives and synthetic analogs possess molecular globularity, which enables them to interact with multiple biological targets. Pentacyclic triterpenes contain 30-carbon skeleton having six-membered rings (ursanes and lanostanes) and five-membered rings (lupanes and hopanes). Pentacylic triterpenoids are secondary metabolites widespread in fruit peels, leaves and stem bark especially in Mediterranean plant species with a percentage availability of 0.1–3%.43,44 Triterpenoids possess an organotropic nature and accumulate in multiple vital organs. The organ-protective efficacy of pentacyclic triterpenoids has been substantiated through preclinical evaluations. The protective efficacy of pentacyclic triterpenoids through organotrophism and interactions with different molecular targets is summarized in Fig. 1 and Table 2.
image file: c4ra02784a-f1.tif
Fig. 1 Molecular targets with which pentacyclic triterpenoids prove its multifunctional adjuvants effect. The molecular targets on which pentacyclic triterpenoids like BET, betulinic acid; BOS, boswellic acid; ARJ, arjunolic acid; MAS, maslinic acid; MAD. madecassic acid; CEL, celastrol; PRI, pristimerin; OLE, oleanolic acid; TAR, tarexerol acetate; ASI, asiatic acid; MAN, maniladione; BAR, bartogenic acid; TOR, tormentic acid; GLY, glycyrrhetic acid; COR, corosolic acid; HBA, 23-hHydroxy betulinic acid; EUS, escaphic acid; URS, ursolic acid; CEN, cenothic acid; LUP, lupeol are acting, with which they will exert cytoprotective adjuvant effect to cancer chemotherapy.
Table 2 Pentacyclic triterpenoids acting as organotropic effect on vital organs and its responsible molecular mechanisms
S. no Name of compound Organ protective effect Molecular mechanisms References
Heart Kidney Liver
1 Betulinic acid NFκ-B, p65, p50, Bax, Bcl-2, Bcl-xL, IL-1, COX-2, MMP-9, TNF-α, GSH, MPO, ICAM-1, VCAM-1, and VEGE 17 and 45–49
2 Boswellic acid NFκ-B, TNF-α, IL-1, Bcl-2, caspase-3, iNOS 50–52
3 Arjunolic acid GST, SOD, TNF-α, IL-2, GSH, JNK, Bcl2 53–56
4 Maslinic acid iGP, NrF2, Cox-2, Ap-1, NFκ-B 57–61
5 Madecassic acid iNOS, COX-2, TNF-α, IL-1, IL-6, NFκ-B, p65, ERK, p38 62–65
6 Celastrol NFκ-B, AP1, AP2, Bcl-2, Bcl-xL, COX-2, survivin, cyclin D1, MMP9, VEGF, iNOS, Hsp90, VEGFR, NrF2 24 and 66–70
7 Pristimerin NA NFκ-B, PARP-1, JNK, Bax, p27, Bcl-2, Bcl-xL, caspase-3, -8, -9, HSP-60 71–74
8 Oleanolic acid NFκ-B, m'TOR, caspases-3, -8, and -9, ICAM-1, VEGF, PARP-1, Akt, cyclin-D, p65, NrF2, TNF-α 16 and 75–79
9 Tarexerol acetate MMP-1, TNF-α, iNOS, COX-2, NFκ-B, IL-1, IL-6 80–82
10 Asiatic acid NFκ-B, iNOS, MAPK, caspases-2, -3, -8 and -9, PARP-1, Bcl-2, iGP, JNK, p38, MMP-9, PGE2, TNF-α, IL-1, IL-6 30 and 83–89
11 Maniladiol NA NA NA
12 Bartogenic acid NA NA NA PGs and IL-1 31 and 90
13 Tormentic acid α and β DNA polymerase, GSH, NrF2, COX-2, TNF- α, iNOS 91–95
14 Glycyrrhetic acid Cytochrome C, Bcl-2, Bcl- xL, Bak, caspase-3, Caspase-8, PPARγ 96–100
15 Corosolic acid NFκ-B, MAPK, IAP-1, caspase-8, -9 and -3, Bcl-2, iEBV-EA 101–104
16 23-Hydroxy butulinic acid NA NA NA Pgp and MDR 105 and 106
17 Euscaphic acid NA NA iα DNA polymerase 91 and 107
18 Ursolic acid NFκ-B, p38, MAPK, Bcl-2, Bax, ICAM-1, p53, p21, PKC, Cyclin D1, -D2, EGFR, ERK, TNF-α 108–111
19 Ceanothic acid NA NA NA
20 Lupenol NFκ-B, survivin, Bax, caspase-3, -8, -9, p53, cyclin-D, Akt 112–114


Triterpenoids are neither conservative cytotoxic agents nor monotargeted drugs that inimitably target the single pathway. Some synthetic triterpenoids possess multipronged effects on cancer, inflammation, oxidative stress, proliferation of cancer cells, apoptosis and cytoprotection.115

3.1. Molecular pathways underlying protective effects of pentacyclic triterpenoids

3.1.1. Upregulation of NrF2 pathway for cytoprotection. NrF2 is also called a cap‘n’collar bZIP transcription factor. It controls the expression of several enzymes that protect against oxidative stress.116 NrF2 consists of six highly conservative domains, Neh1 to Neh6; Neh2 is an N-terminal domain that takes part in redox-dependent regulation of protein stability due to its attachment to Kelch-like ECH-associated binding protein (Keap-1) and conjugation with ubiquitin.117 Once NrF2 protein enters and stabilizes inside the nucleus, it gets dimerized with Maf proteins and transactivates several antioxidant enzymes.118 NrF2 is a cell-signaling transcriptional factor that generates cytoprotective phase II antioxidant enzymes such as GST, SOD, CAT, NQO1 and HO-1.119,120 These enzymes are responsible for detoxifying harmful materials in the body. Phase II antioxidant enzymes are responsible for the organotropic and chemoprotective effect from anticancer drugs like cisplatin.120

A study by Yap et al. concludes that maslinic acid and oleanolic acid increase the NrF2 expression and nuclear translocation up to 172% and 124%, respectively. This finding was validated through estimations of phase-II antioxidant like HO-1 and NQO1 in HepG2 cell lines. Thus, the organ-protective efficacy of maslinic acid and oleanolic acid is credited to their effects on the NrF2 pathway.60 Another triterpenoid, celastrol, increases the expression of HO-1 via NrF2 translocation in the HaCat cell lines. Through NrF2 driven HO-1 expression, celastrol exerts anti-inflammatory effect and also reverts TNF-α and interferon-γ-induced ICAM expression in karatinocytes.70 A study by Reisman et al. establishes that oleanolic acid, at a dose of 90 mg per kg per day administered to mice for three days, increases NrF2 translocation driven expression of HO-1 and NQO1 phase-II enzymes in the acetaminophen-induced hepatotoxicity model.77 Liby et al. denote that the synthetic derivatives of oleanolic acid like CDDO and CDDO-imidazolide are strong inducers of NrF2 pathway and should be investigated for chemopreventive or chemotherapeutic agent. In their study, they used NrF2++ and NrF2˙ mice as well as U937 and THP-1 cell lines. The northern blot analysis of vital organs and estimations of HO-1 induction substantiate that triterpenoids may also inhibit AKT and PKC pathway.121 A synthetic derivative of oleanolic acid, CDDO-methyl amide, induces the translocation of NrF2. Therefore, NrF2 knockout mice were used to verify the translocation factor via immunohistochemisty and sterologic analysis in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridin (MPTP)-induced parkinsonism in fibroblast cells, which shows the increased levels of GSH, HO-1 and NQO1 and revert the neurotoxicity.122 Recently, patents have been filed for synthetic derivative of triterpenoids for their NrF2 translocation driven organ-protective effects in various diseases associated with increased oxidative stress.123

An interaction of pentacyclic triterpenoids with Keap-1 leads to the accumulation of NrF2 in the cell nucleus and induces an antioxidant response element (ARE)-driven gene expression, which is the most important regulator of cell defense against chemical/oxidative stress.41,124 Chemotherapeutic agents like doxorubicin affect the functioning of vital organs through oxidative stress. Hence, it can be postulated that pentacyclic triterpenoids are agents, which induce nuclear translocation of NrF2 (ref. 92, 121–123 and 125) and protect the vital organs without inhibiting the cytotoxic efficacy of chemotherapeutic agent in cancer cells.

3.1.2. NFκ-B inhibition for cytoprotection. The activation of NFκ-B pathway is a common process in the pathogenesis of multiple malignancies including leukemias, lymphomas, and solid tumors of breast, ovary, prostate, and colon.126 A downregulation of the NFκ-B pathway by natural product can be a rational mode to curb cancer growth.127 NFκ-B is implicated in cytoprotection from undergoing apoptosis in response to DNA damage exercise by chemotherapy. The NFκ-B pathway is regulated by diverse signal transduction cascades that include the activities of IKβ kinases, IKKα and IKKβ. The degradation of IKβ causes the translocation of NFκ-B from the cytoplasm to nucleus, which further activates cellular gene expression. The downregulation of the NFκ-B pathway increases the sensitivity of cells to apoptosis.128,129 Agents inhibiting the NFκ-B pathway decrease the expression of VCAM-1 and ICAM-1 in endothelial cells.61,129,130 Thus, an approach of inhibiting the NFκ-B pathway through a concurrent administration of pentacyclic triterpenoids may increase the efficacy of cancer chemotherapy with reduced cytotoxicity.131

Semisynthetic acyl derivatives of Boswellic acid are reported to inhibit NFκ-B pathway in the different cancer cell lines. The systematic evaluation of such compounds may prove a new era of anticancer agents.132 Arjunolic acid was also proven for its NFκ-B pathway modulation in the streptozotocin (STZ)-induced type 1 diabetes. The study also stated that pentacyclic triterpenoids have free radical scavenging potential and modulate MAPK and NFκ-B pathways. Arjunolic acid reverts cellular hepatotoxicity in diabetes.56 Maslinic acid, a naturally occurring pentacyclic triterpenoid, modulates NFκ-B translocation in the Raji cell line and also inhibits COX-2 expression in them. The ability of maslinic acid to modulate NFκ-B and COX-2 indicates the probable antitumor and anti-inflammatory efficacy of maslinic acid.58 Similarly, asiatic acid inhibits the nuclear translocation of NFκ-B through the possible degradation of IKKβ in lipopolysaccharide (LPS)-stimulated RAW cell line. This report emphasizes that asiatic acid also modulates the activities of p38, COX-2 and TOLL receptor, making it an ideal agent in the treatment of inflammation and cancer.88 Another pentacyclic triterpenoid, madecassic acid, inhibits NFκ-B pathway and exerts inhibitory effect on iNOS, COX-2, IL-1, -6 and TNF-α expression in LPS-stimulated RAW cells. Inhibitory concentration ranges between 50 to 150 μM mL−1, indicating potential anti-inflammatory and anticancer activity of the madecassic acid.65 Another study shows that pretreatment with madecassoside reverts LPS-induced cytotoxicity in neonatal rat cardiomyocytes.63 Another abundantly available triterpenoid, ursolic acid, inhibits NFκ-B translocation and suppresses COX-2, MMP-9 and TNF.107 Similar effects are reported for lupeol, and it has been claimed as a potential agent in the treatment of skin carcinogenesis.133

NFκ-B activation is involved in the progression of a tumor as well as in vital organ damage by chemotherapeutic agents. There is a homeostatic balance between NFκ-B and NrF2 expression in cellular microenvironment. The inhibition of NFκ-B increases the NrF2 translocation and provides cytoprotection against oxidative stress.134 Pentacyclic triterpenoids are well reported for inhibiting the NFκ-B pathway48,135 and hence can be projected to be a component of the arsenal against cancer as an anticancer as well as an organ-protective agent.

3.1.3. Free radical scavenging activity. Toxic electrophiles generated from chemotherapeutic agents and their metabolites exert oxidative stress.136 Apart from this, the effects of chemotherapy generate free radicals like hydroxyl ion (OH˙), nitric oxide (NO˙), nitrites (NO2˙), peroxyl radicals (RO2˙), alkoxy radicals (RO˙), carbonate radicals (CO3˙) and superoxide anion (O2˙).137 For example, the metabolites of doxorubicin, namely, semiquinone and quinone radicals, are more reactive than doxorubicin itself and hence exert severe cytotoxicity.138 They impede the nucleophilic macromolecules of DNA, RNA, proteins and amino acids; these reactions in turn result in lipid peroxidation, DNA damage, cytoskeletal damage, protein oxidation and multiorgan toxicity.139–141 Pentacyclic triterpenoids provide protection against oxidative stress through multiple modes like scavenging of free radicals, donating hydrogen ions to free radicals, depleting oxygen and directly binding and inactivating non-toxic radicals. Such effects of pentacyclic triterpenoids inhibit DNA damage and support the process of DNA repair.7

Betulinic acid reduces oxidative stress and augments antioxidant enzyme level like SOD, LDH, GST, and it also decreases lipid peroxidation in 7,12-dimethylbenzanthracene-induced carcinogenesis in mice.142 It has the potential to revert oxidative and nitrosative stress.49 Other widely studied and easily extractable naturally occurring pentacyclic triterpenoids like oleanolic acid and its derivatives are reported to exert cytoprotective actions against hydrochloric acid and ethanol-induced gastric lesions in mice. They also exert cytoprotection against sodium taurocholate-induced cell damage in AGS cells. This study substantiates that the effect of oleanolic acid is better than that of sucralfate. These protective effects are associated with increased prostaglandins, SOD and GSH levels.143 Another triterpenoid, asiatic acid, is reported to restore the levels of innate antioxidants in STZ-diabetic rats through the modulation of GST, SOD, and glutathione peroxidase (GPx) and thereby inhibit lipid peroxidation.144 Similarly, derivatives of glycyrrhetic acid exert hepatoprotection,85 corosolic acid reverts oxidative stress,145 arjunolic acid inhibits arsenic-induced organ damage,20 CCl4-induced hepatotoxicity and STZ-induced diabetes in preclinical evaluations through various animal models. These protective effects are mediated either through free radical scavenging effects of these drugs or through a restoration of the innate antioxidants.74,146

Cancer chemotherapy-induced oxidative stress is the primary reason for organ damage. Concurrent administration of potent antioxidants like pentacyclic triterpenoids can minimize chemotherapy-induced oxidative stress. Pentacyclic triterpenoids and their derivatives possess antioxidant potential.60,74,103,121–123,125,147–149 In addition to such potent antioxidant effects, pentacyclic triterpenoids also possess cytoprotective effect and can sensitize cancer cells to cytotoxic actions of chemotherapy. This dual effect through interaction with multiple biomolecules provides unique advantage in using pentacyclic triterpenoids as adjuvants to cancer chemotherapy.37,150–154

3.1.4. Protein kinase C pathway inhibition for cytoprotection. Protein kinase C (PKCs) including serine/threonine kinases, manipulate a wide range of cellular processes and are involved in VCAM-1 induction.155 Based on structure and cofactor regulations, PKC is classified in three different groups: first is diacylglycerol and Ca2+-dependent conventional isoforms like α, βI, βII and γ; second is a diacylglycerol-dependent but Ca2+-independent novel PKC isoform like δ, ε, η, θ, and μ; third is diacylglycerol and Ca2+-independent atypical isoforms like ι, λ and ζ.156 In addition to all isoforms of the PKC family, PKC δ is a component which is activated in a calcium-independent manner157,158 and extensively articulated in diverse tissues and has been implicated in an overabundance of cellular processes together with proliferation and apoptosis.159,160 PKC δ is required for the survival and proliferation of cancer cells and not for the normal cell; with this hypothesis, the suppression of PKC δ leads to cell injury and death in tumors. PKC δ suppressing agents will lead to normal tissue-specific protective agents in chemotherapy.161 Moreover, silencing PKC family sub members may also sensitize chemotherapy-resistant cancer cells through phosphorylation to p-gp receptor.162

Pentacyclic triterpenoids like betulinic acid, plantanic acid, oleanolic acid, asiatic acid, glycyrrhetic acid, ursolic acid, uvaol, asiaticoside and their derivatives possess PKC modulatory activity, which is supposed to contribute to their anticancer activity.163–165 Maslinic acid exerts anticancer potential in Epstein–Barr virus-induced cancer in Raji cells by inhibiting the PKC pathway.166 A recent study proves that maslinic acid, oleanolic acid and ursolic acid directly inhibit the βI, ζ, and δ isoforms of PKC in phorbol 12-myristate 13-acetate-induced Raji cells in a dose-dependent manner.167 Similar inhibitory activity is reported for lupeol, alpha amyrin and their derivatives against cyclic AMP- and Ca2+-dependent PKC in rat liver and brain cells, where they produce anti-inflammatory activity.168 Arjunolic acid reverts oxidative stress, and hyperglycaemia exerts PKC activation in diabetic mice and its related complications.169

In addition to its role in cancer cell growth, PKC δ is associated with the process of inflammation. The PKC-inhibiting ability of pentacyclic triterpenoids thus can offer an added advantage if used as an adjuvant to chemotherapy. PKC inhibition may sensitize cancer cells to cytotoxic agents and thereby minimize the dose of chemotherapeutic agent.

3.1.5. Longevity cytoprotective pathways. Turnover of oxidative radicals is tightly controlled by different molecular pathways. Such fine control of oxidative stress determines the process of aging, detoxification and cell death.170 The molecular pathways controlling oxidative stress contribute to the longevity of organisms. Certain components of these pathways determine responses of normal cells to drugs, oxidative stress, chemicals and pathogens.171 Cancer itself minimizes survival time;172 moreover, chemotherapeutic agents treat cancer but simultaneously are responsible for aberrant toxic effects on the vital organ as well as the immunity.1,92,94,100,173 Oxidative stress and disease condition as well as impaired functionality of vital organs ultimately results in the shortening of life.174 The cytoprotective mechanisms of pentacyclic triterpenoids include their interactions with the components of longevity pathways like mitochondrial and endoplasmic reticulum protein response, like heat shock proteins (HSP), ROS responses like SOD, xenobiotic detoxification response like GST, insulin/IGF-1 signaling, autophagy and transcriptional factor like NrF2.175–178 The reports on betulinic acid-induced inhibition DMBA-induced carcinogesis,142 oleanolic acid related restoration of GST activity,123 and other pentacyclic triterpenoids associated cell signal transduction through SOD95,179 etc. show their ability to affect longevity pathways. Similarly, cytoprotection exerted by celastrol through heat shock proteins,24,180 avicin-induced selective apoptosis and autophagy in tumor cells, and reversal of the resistance of the cancer cell to cytotoxic drugs181 indicate the modulation of longevity pathways by pentacyclic triterpenoids.

Though cell longevity is driven by diverse signaling cascades like HSP, SOD, GST, IGF-1, JNK and Nrf2, the pentacyclic triterpenoids possess an ability to modulate a majority of these signaling pathways. In addition to these, they also modulate JNK.72,182 Such multifunctionality of pentacyclic triterpenoids may add to longevity in cancer patients. Certain studies in this regard have concluded in agreement with the claims on longevity induced by pentacyclic triterpenoids.178,183

4. Conclusion

The naturally occurring pentacyclic triterpenoids and their derivatives may prove to be safe, economic and easily available agents, which exert selective toxicities towards cancer cells while protecting normal ones. The biomolecules involved in the survival, growth and resistance to chemotherapy appear to be accessible to the actions of these multifunctional agents. The molecular pathway related to NFκ-B, NrF2, innate antioxidants, protein kinases and longevity pathways are targetable by the pentacyclic triterpenoids. This unique globularity in the actions of pentacyclic triterpenoids along with their selective cytotoxicity towards cancer cells points towards their substantial role as adjuvants to cancer chemotherapy.67,105,106,184–187 Systematic investigations on adjuvant-like role of pentacyclic triterpenoids in cancer chemotherapy could deliver agents that can be used as routine additives to cancer therapy. In addition to monotargeted novel treatment approaches, the use of validated adjuvants like pentacyclic triterpenoids can provide a sustainable approach in minimizing the doses of chemotherapeutic agents without affecting their cytotoxicity against cancer cells. Pentacyclic triterpenoids and their derivatives hold great promise as adjuvants in cancer chemotherapy.

Conflict of interest

Authors are disclosing that there are no conflicts of interest.

List of abbreviations

NrF2Nuclear factor erythroid-derived 2-like 2
NFκ-BNuclear factor kappa B
PKCProtein kinase C
Keap-1Kelch-like ECH-associated binding protein
GSTGlutathion-S-transferase
SODSuperoxide dismutase
CATCatalase
NQO1NAD(P)H dehydrogenase (quinone 1)
HO-1Heme oxygenase 1
TNF-αTumor necrosis factor-α
ICAMIntercellular adhesion molecule 1
MPTP1-Methyl-4-phenyl-1,2,3,4-tetrahydropyridin
AREAntioxidant response element
VCAM-1Vascular cell adhesion protein 1
STZStreptozotocin
MAPKMitogen-activated protein kinases
COX-2Cyclooxygenase-2
iNOSInducible nitric oxide synthase
LPSLipopolysaccharide
ILInterleukin
MMP-9Matrix metallopeptidase 9
GSHGlutathione
GPxGlutathione peroxidase
HSPHeat shock proteins
ROSReactive oxygen species
IGF-1Insulin growth factor-1
JNKc-Jun N-terminal kinase

Acknowledgements

The first author is thankful to the department of science and technology (DST), India, for receiving the research fellowship with order no. SR/WOS-A/LS-121/2011 (G) for present work.

References

  1. M. Mohan, S. Kamble, P. Ghadi and S. Kasture, Food Chem. Toxicol., 2010, 48, 436–440 CrossRef CAS PubMed.
  2. X. Zhang, M. Su, Y. Chen, J. Li and W. Lu, Molecules, 2013, 18, 6491–6503 CrossRef CAS PubMed.
  3. M. Singh, P. Chaudhry, F. Fabi and E. Asselin, BMC Cancer, 2013, 13, 1–9 CrossRef PubMed.
  4. D. M. K. Keefe and E. H. Bateman, Nat. Rev. Clin. Oncol., 2012, 9, 98–109 CrossRef CAS PubMed.
  5. R. Sarin, J. Cancer Res. Ther., 2008, 4, 1–3 CrossRef PubMed.
  6. C. Pisano, S. C. Cecere, M. D. Napoli, C. Cavaliere, R. Tambaro, G. Facchini, C. Scaffa, S. Losito, A. Pizzolorusso and S. Pignata, J. Drug Delivery, 2013, 2013, 1–12 CrossRef PubMed.
  7. C. R. Culy and C. M. Spencer, Drugs, 2001, 61, 641–684 CrossRef CAS PubMed.
  8. N. Tas, B. Bakar, M. O. Kasimcan, S. Gazyagci, S. Ayva, K. Kılınc and C. Evliyaoglu, Int. J. Care Injured, 2010, 41, 1068–1074 CrossRef PubMed.
  9. W. Caceres, L. Baez, I. Aponte, N. Rodriguez and A. Maldonado, Bol. - Asoc. Med. P. R., 1997, 89, 184–188 CAS.
  10. J. Auta, E. Costa, J. Davis and A. Guidotti, Neuropharmacology, 2004, 46, 397–403 CrossRef CAS PubMed.
  11. Y. S. Shin, S. J. Song, S. Kang, H. S. Hwang, Y. S. Jung and C. H. Kim, J. Appl. Toxicol., 2014, 34, 191–204 CrossRef CAS PubMed.
  12. K. El-Bayoumy, Mutat. Res., 2001, 475, 123–139 CrossRef CAS.
  13. I. Cordero-Herrera, S. Cuello, L. Goya, Y. Madrid, L. Bravo, C. Camara and S. Ramos, Food Chem. Toxicol., 2013, 59, 554–563 CrossRef CAS PubMed.
  14. B. Das and K. Chaudhuri, RSC Adv., 2014, 4, 20964–20973 RSC.
  15. P. Paul, M. K. Unnikrishnan and A. N. Nagappa, Indian J. Nat. Prod. Resour., 2011, 2, 137–150 CAS.
  16. T. K. Yim, W. K. Wu, W. F. Pak and K. M. Ko, Phytother. Res., 2001, 15, 589–592 CrossRef CAS PubMed.
  17. E. Eksioglu-Demiralp, E. R. Kardas, S. Ozgul, T. Yagc, H. Bilgin, O. Sehirli, F. Ercan and G. Sener, Phytother. Res., 2010, 24, 325–332 CrossRef CAS PubMed.
  18. L. M. Schuchter, Oncology, 1997, 11, 505–512 CAS.
  19. C. Chandramu, R. D. Manohar, D. G. L. Krupadanam and R. V. Dashavantha, Phytother. Res., 2003, 17, 129–134 CrossRef CAS PubMed.
  20. B. Mahajan, S. C. Taneja, V. K. Sethi and K. L. Dhar, Phytochemistry, 1995, 39, 453–455 CrossRef CAS.
  21. P. Manna, M. Sinha, P. Pal and P. C. Sil, Chem.-Biol. Interact., 2007, 170, 187–200 CrossRef CAS PubMed.
  22. A. R. Martín, R. D. Vázquez, A. Fernández-arche and V. Ruiz-gutiérrez, Free Radical Res., 2006, 40, 295–302 CrossRef PubMed.
  23. O. A. Oyedeji and A. J. Afolayan, Pharm. Biol., 2005, 43, 249–252 CrossRef CAS.
  24. J. Lee, T. H. Koo, H. Yoon, H. S. Jung, H. Z. Jin, K. Lee, X. Y. Hong and J. J. Lee, Biochem. Pharmacol., 2006, 72, 1311–1321 CrossRef CAS PubMed.
  25. A. Salminen, M. Lehtonen, T. Paimela and K. Kaarniranta, Biochem. Biophys. Res. Commun., 2010, 394, 439–442 CrossRef CAS PubMed.
  26. D. Q. Luo, et al., Pest Manage. Sci., 2005, 61, 85 CrossRef CAS PubMed.
  27. R. Rodrıguez-Rodrıguez, M. D. Herrera, J. S. Perona and V. RuizGutierrez, Br. J. Nutr., 2004, 92, 635–642 CrossRef.
  28. S. Chauhan and A. Singh, Rev. Inst. Med. Trop. Sao Paulo, 2011, 53, 265–270 CrossRef PubMed.
  29. M. Bonfill, S. Mangas, R. M. Cusido, L. Osuna, M. T. Pinol and J. Palazon, Biomed. Chromatogr., 2005, 20, 151–153 CrossRef PubMed.
  30. M. Ukiya, T. Akihisa, H. Tokuda, H. Suzuki, T. Mukainaka, E. Ichiishi, Y. Kasahara and H. Nishino, Cancer Lett., 2002, 177, 7–12 CrossRef CAS.
  31. K. R. Patil, C. R. Patil, R. B. Jadhav, V. K. Mahajan, P. R. Patil and P. S. Gaikwad, J. Evidence-Based Complementary Altern. Med., 2011, 2011, 1–7 CrossRef PubMed.
  32. J. H. Chen, Z. H. Xia and R. X. Tan, J. Pharm. Biomed. Anal., 2003, 32, 1175–1179 CrossRef CAS.
  33. C. Sabbioni, R. Mandrioli, A. Ferranti, F. Bugamelli, M. A. Saracino, G. C. Forti, S. Fanali and M. A. Raggi, J. Chromatogr. A, 2005, 1081, 65–71 CrossRef CAS PubMed.
  34. N. Bai, K. He, M. Roller, B. Zheng, Z. Chen, Z. Hao, T. Peng and A. Zheng, J. Agric. Food Chem., 2008, 56, 11668–11674 CrossRef CAS PubMed.
  35. W. Ye, N. Ji, S. Zhao, J. Lio and T. Ye, Phytochemistry, 1996, 42, 799–802 CrossRef CAS.
  36. H. Xu, F. Zeng, M. Wan and K. Sim, J. Nat. Prod., 1996, 59, 7643–7645 CrossRef PubMed.
  37. A. Shukla, K. Kaur and P. Ahuja, Online Int. Interdiscipl. Res. J., 2013, 3, 9–14 Search PubMed.
  38. S. Lee, B. Tin and K. C. Liu, Phytochemistry, 1996, 43, 847–851 CrossRef CAS.
  39. E. Melliou, P. Magiatis and L. Skaltsounis, J. Agric. Food Chem., 2003, 51, 1289–1292 CrossRef CAS PubMed.
  40. B. B. Aggarwal and S. Shishodia, Biochem. Pharmacol., 2006, 71, 1397–1421 CrossRef CAS PubMed.
  41. I. M. Copple, C. E. Goldring, N. R. Kitteringham and B. K. Park, Toxicology, 2008, 246, 24–33 CrossRef CAS PubMed.
  42. Y. Li, S. W. A. Himaya and S. Kim, Molecules, 2013, 18, 7886–7909 CrossRef CAS PubMed.
  43. S. Jager, H. Trojan, T. Kopp, M. N. Laszczyk and A. Scheffler, Molecules, 2009, 14, 2016–2031 CrossRef PubMed.
  44. P. K. Chaturvedi, K. Bhui and Y. Shukla, Cancer Lett., 2008, 263, 1–13 CrossRef CAS PubMed.
  45. Y. Takada and B. B. Aggarwal, J. Immunol., 2003, 171, 3278–3286 CrossRef CAS.
  46. H. Kasperczyk, K. L. Ferla-Bruhl, M. A. Westhoff, L. Behrend, R. Zwacka, K. Debatin and S. Fulda, Oncogene, 2005, 24, 6945–6956 CrossRef CAS PubMed.
  47. F. B. Mullauer, J. H. Kessler and J. P. Medema, Apoptosis, 2009, 14, 191–202 CrossRef CAS PubMed.
  48. J. J. Yoon, Y. J. Lee, J. S. Kim, D. G. Kang and H. S. Lee, Biochem. Biophys. Res. Commun., 2010, 391, 96–101 CrossRef CAS PubMed.
  49. Q. Lu, N. Xia, H. Xu, L. Guo, P. Wenzel, A. Daiber, T. Munzel, U. Forstermann and H. Li, Nitric Oxide, 2011, 24, 132–138 CrossRef CAS PubMed.
  50. T. Akihisa, K. Tabata, N. Banno, H. Tokuda, R. Nishihara, Y. Nakamura, Y. K. Imura, K. Y. Asukawa and T. Suzuki, Biol. Pharm. Bull., 2006, 29, 1976–1979 CAS.
  51. S. Roy, S. Khanna, A. V. Krishnaraju, G. V. Subbaraju, T. Yasmin, D. Bagchi and C. K. Sen, Antioxid. Redox Signaling, 2006, 8, 653–660 CrossRef CAS PubMed.
  52. Y. Takada, H. Ichikawa, V. Badmaev and B. B. Aggarwal, J. Immunol., 2006, 176, 3127–3140 CrossRef CAS.
  53. P. Manna, M. Sinha and P. C. Sil, Arch. Toxicol., 2008, 82, 137–149 CrossRef CAS PubMed.
  54. J. Ghosh, J. Das, P. Manna and P. C. Sil, Toxicol. in Vitro, 2008, 22, 1918–1926 CrossRef CAS PubMed.
  55. J. Ghosh, J. Das, P. Manna and P. C. Sil, Toxicology, 2010, 268, 8–18 CrossRef CAS PubMed.
  56. P. Manna, J. Das, J. Ghosh and P. C. Sil, Free Radical Biol. Med., 2010, 48, 1465–1484 CrossRef CAS PubMed.
  57. X. Wen, P. Zhang, J. Liu, L. Zhang, X. Wu, P. Ni and H. Sun, Bioorg. Med. Chem. Lett., 2006, 16, 722–726 CrossRef CAS PubMed.
  58. Y. W. Hsum, W. T. Yew, P. L. V. Hong, K. Soo, L. S. Hoon, Y. C. Chieng and L. Y. Mooi, Planta Med., 2011, 77, 152–157 CrossRef CAS PubMed.
  59. A. H. Shaikh, S. N. Rasool, M. A. Kareem, G. S. Krushna, P. M. Akhtar and K. L. Devi, J. Med. Food, 2012, 15, 741–746 CrossRef PubMed.
  60. W. H. Yap, S. K. Khoo, H. S. K. Ho and Y. M. Lim, Biomedicine & Preventive Nutrition, 2012, 2, 51–58 Search PubMed.
  61. M. J. Yin, Y. Yamamoto and R. B. Gaynor, Nature, 1998, 396, 77–80 CrossRef CAS PubMed.
  62. M. K. Shanmugam, A. H. Nguyen, A. P. Kumar, B. H. K. Tan and G. Sethi, Cancer Lett., 2012, 320, 158–170 CrossRef CAS PubMed.
  63. W. Cao, X. Li, X. Zhang, Y. Hou, A. Zeng, Y. Xie and S. Wang, Int. Immunopharmacol., 2010, 10, 723–729 CrossRef CAS PubMed.
  64. K. Vohra, G. Pal, S. Gupta, S. Singh and Y. Bansal, Pharmacologyonline, 2011, 2, 440–462 Search PubMed.
  65. J. Won, J. Shin, H. Park, H. Jung, D. Koh, B. Jo, J. Lee, K. Yun and K. Lee, Planta Med., 2010, 76, 251–257 CrossRef CAS PubMed.
  66. S. P. Preetha, M. Kanniappan, E. Selvakumar, M. Nagaraj and P. Varalakshmi, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2006, 143, 333–339 CAS.
  67. D. He, Q. Xu, M. Yan, P. Zhang, X. Zhou, Z. Zhang, W. Duan, L. Zhong, D. Ye and W. Chen, BMC Cancer, 2009, 9, 1–9 CrossRef PubMed.
  68. S. Y. Jang, S. Jang and J. Ko, Cancer Lett., 2011, 300, 57–65 CrossRef CAS PubMed.
  69. M. S. Willis and C. Patterson, Circulation, 2010, 122, 1740–1751 CrossRef PubMed.
  70. W. Y. Seo, A. R. Goh, S. Ju, H. Y. Song, D. Kwon, J. Jun, B. C. Kim, S. Y. Choi and J. Park, Biochem. Biophys. Res. Commun., 2011, 407, 535–540 CrossRef CAS PubMed.
  71. C. Wu, M. Chan and W. Chen, Mol. Cancer Ther., 2005, 4, 1277–1285 CrossRef CAS PubMed.
  72. J. Byun, M. Kim, D. Eum, C. Yoon, W. Seo, K. H. Park, W. Hyun, Y. Lee, J. Lee, M. Yoon and S. Lee, Mol. Pharmacol., 2009, 76, 734–744 CrossRef CAS PubMed.
  73. J. C. R. Vellosa, N. M. Khalil, V. O. Gutierres, V. Santos, M. Furlan, I. L. Brunetti and O. M. Oliveira, Braz. J. Pharm. Sci., 2009, 45, 99–107 CrossRef CAS PubMed.
  74. H. Sassa, K. Kogure, Y. Takaishi and H. Terada, Free Radical Biol. Med., 1994, 17, 201–207 CrossRef CAS.
  75. R. D. Couch, R. G. Browning, T. Honda, W. G. Gribble, D. L. Wright, M. B. Sporn and A. C. Anderson, Bioorg. Med. Chem. Lett., 2005, 15, 2215–2219 CrossRef CAS PubMed.
  76. N. B. Janakiram, C. Indranie, S. V. Malisetty, P. Jagan, V. E. Steele and C. V. Rao, Pharm. Res., 2008, 25, 2151–2157 CrossRef CAS PubMed.
  77. (a) D. Deeb, X. Gao, H. Jiang, S. A. Dulchavsky and S. C. Gautam, Prostate, 2009, 69, 851–860 CrossRef CAS PubMed; (b) S. A. Reisman, L. M. Aleksunes and C. D. Klaassen, Biochem. Pharmacol., 2009, 77, 1273–1282 CrossRef CAS PubMed.
  78. C. R. Patil, R. B. Jadhav, P. K. Singh, S. Mundada and P. R. Patil, Phytother. Res., 2010, 24, 33–37 CrossRef CAS PubMed.
  79. M. Shyu, T. Kao and G. Yen, J. Agric. Food Chem., 2010, 58, 6110–6118 CrossRef CAS PubMed.
  80. A. Jutiviboonsuk, H. Zhang, T. P. Kondratyuk, A. Herunsalee, W. Chaukul, J. M. Pezzuto, H. S. Fong and N. Bunyapraphatsara, Pharm. Biol., 2007, 45, 185–194 CrossRef CAS.
  81. A. Kamboj and A. K. Saluja, Pharmacogn. Rev., 2009, 3, 364–374 CAS.
  82. X. Yao, G. Li, Q. Bai, H. Xu and C. Lu, Int. Immunopharmacol., 2013, 15, 316–324 CrossRef CAS PubMed.
  83. A. Gnanapragasam, K. K. Ebenezar, V. Sathish, P. Govindaraju and T. Devaki, Life Sci., 2004, 76, 585–597 CrossRef CAS PubMed.
  84. Y. Hsu, P. Kuo, L. Lin and C. Lin, J. Pharmacol. Exp. Ther., 2005, 313, 333–344 CrossRef CAS PubMed.
  85. H. G. Jeong, H. J. You, S. J. Park, A. Moon, Y. C. Chung, S. K. Kang and H. Chun, Pharmacol. Res., 2002, 46, 221–227 CrossRef CAS.
  86. L. Zhang, J. Chen, Y. Gong, J. Liu, L. Zhang, W. Hu and H. Sun, Chem. Biodiversity, 2009, 6, 864–874 CAS.
  87. K. Y. Lee, O. Bae, S. Serfozo, S. Hejabian, A. Moussa, M. Reeves, W. Rumbeiha, S. D. Fitzgerald, G. Stein, S. Baek, J. Goudreau, M. Kassab and A. Majid, Stroke, 2012, 43, 1632–1638 CrossRef CAS PubMed.
  88. K. Yun, J. Kim, K. Lee, S. Jeong, H. Park, H. Jung, Y. Cho, K. Yun and K. Lee, Int. Immunopharmacol., 2008, 8, 431–441 CrossRef CAS PubMed.
  89. E. Y. Vouffo, F. M. Donfack, R. J. Temdie, F. T. Ngueguim, J. H. Donfack, D. D. Dzeufiet, A. B. Dongmo and T. Dimo, J. Exp. Integr. Med., 2012, 2, 337–344 Search PubMed.
  90. T. J. Thomas, B. Panikkar, A. Subramoniam, M. K. Nair and K. R. Panikkar, J. Ethnopharmacol., 2002, 82, 223–227 CrossRef.
  91. C. Murakami, K. Ishijima, M. Hirota, K. Sakaguchi, H. Yoshida and Y. Mizushina, Biochim. Biophys. Acta, 2002, 1596, 193–200 CrossRef CAS.
  92. Y. Kim, J. Choi, H. Rim, H. Kang, S. Chang, J. Park, H. Park, J. W. Choi, S. Kim and K. Lee, Biol. Pharm. Bull., 2011, 34, 906–911 CAS.
  93. H. Sheng and H. Sun, Nat. Prod. Rep., 2011, 28, 543–593 RSC.
  94. S. Sohn, H. Rim, Y. Kim, J. Choi, J. Park, H. Park, J. Choi, S. K. Kim, S. Jeong and K. Lee, Biol. Pharm. Bull., 2011, 34, 1508–1513 CAS.
  95. C. Chang, S. Huang, S. Lin, S. Amagaya, H. Ho, W. Hou, P. Shie, J. Wu and G. Huang, Food Chem., 2011, 127, 1131–1137 CrossRef CAS PubMed.
  96. H. Nishino, K. Kitagawa and A. Iwashima, Cardnogenesis, 1984, 5, 1529–1530 CAS.
  97. S. Saito, S. Nagase, M. Kawase and Y. Nagamura, Eur. J. Med. Chem., 1996, 31, 557–574 CrossRef CAS.
  98. E. Sohn, D. Kang and H. Lee, Pharmacol. Toxicol., 2003, 93, 116–122 CAS.
  99. Y. Satomi, H. Nishino and S. Shibata, Anticancer Res., 2005, 25, 4043–4048 CAS.
  100. C. S. Lee, Y. J. Kim, M. S. Lee, E. S. Han and S. J. Lee, Life Sci., 2008, 83, 481–489 CrossRef CAS PubMed.
  101. N. Banno, T. Akihisha, H. Tokuda, K. Yasukawa, K. Higashihara, M. Ukiya, K. Wantanabe, Y. Kimura, J. Hasegawa and H. Nishino, Biosci., Biotechnol., Biochem., 2004, 68, 85–90 CrossRef CAS PubMed.
  102. K. S. Shim, S. Lee, S. Y. Ryu, Y. K. Min and S. H. Kim, Phytother. Res., 2009, 23, 1754–1758 CrossRef CAS PubMed.
  103. M. Yin, M. Lin, M. Mong and C. Lin, J. Agric. Food Chem., 2012, 60, 7697–7701 CrossRef CAS PubMed.
  104. Y. Xu, R. Ge, J. Du, H. Xin, T. Yi, J. Sheng, Y. Wang and C. Ling, Cancer Lett., 2009, 284, 229–237 CrossRef CAS PubMed.
  105. Y. Zheng, F. Zhou, X. Wu, X. Wen, Y. Li, B. Yan, J. Zhang, G. Hao, W. Ye and G. Wang, J. Ethnopharmacol., 2010, 128, 615–622 CrossRef CAS PubMed.
  106. D. Zhang, C. Shu, J. Chen, K. Sodani, J. Wang, J. Bhatnagar, P. Lan, Z. Ruan and Z. Xiao, Mol. Pharmaceutics, 2012, 9, 3147–3154 CrossRef CAS PubMed.
  107. C. H. George, S. R. Barberini-Jammaers and C. T. Muller, Expert Opin. Ther. Pat., 2008, 18, 1–19 CrossRef CAS.
  108. S. Shishodia, S. Majumdar, S. Banerjee and B. B. Aggarwal, Cancer Res., 2003, 63, 4375–4383 CAS.
  109. Y. Hsu, P. Kuo and C. Lin, Life Sci., 2004, 75, 2303–2316 CrossRef CAS PubMed.
  110. S. Senthil, G. Chandramohan and K. V. Pugalendi, Int. J. Cardiol., 2007, 119, 131–133 CrossRef CAS PubMed.
  111. K. Takada, T. Nakane, K. Masuda and H. Ishii, Phytomedicine, 2011, 17, 1114–1119 CrossRef PubMed.
  112. L. Vidya and P. Varalakshmi, Fitoterapia, 2000, 71, 535–543 CrossRef CAS.
  113. R. Saleem, S. I. Ahmad, M. Ahmed, Z. Faizi, S. Zikr-ur-rehman, M. Ali and S. F. Aizi, Biol. Pharm. Bull., 2003, 26, 41–46 CAS.
  114. N. Nigam, S. Prasad, J. George and Y. Shukla, Biochem. Biophys. Res. Commun., 2009, 381, 253–258 CrossRef CAS PubMed.
  115. K. T. Liby, M. M. Yore and M. B. Sporn, Nat. Rev., 2007, 7, 357–369 CAS.
  116. H. Merikallio, P. Paakko, V. L. Kinnula, T. Harju and Y. Soini, Hum. Pathol., 2012, 43, 577–584 CrossRef CAS PubMed.
  117. V. O. Tkachev, E. B. Menshchikova and N. K. Zenkov, Biochemistry, 2011, 76, 407–422 CAS.
  118. T. W. Kensler and N. Wakabayashi, Carcinogenesis, 2010, 31, 90–99 CrossRef CAS PubMed.
  119. J. D. Hayes, M. McMahon, S. Chowdhry and A. T. Dinkova-Kostova, Antioxid. Redox Signaling, 2010, 13, 1714–1748 Search PubMed.
  120. K. Jung and M. Kwak, Molecules, 2010, 15, 7266–7291 CrossRef CAS PubMed.
  121. K. Liby, T. Hock, M. M. Yore, N. Suh, A. E. Place, R. Risingsong, C. R. Williams, D. B. Royc, T. Honda, Y. Honda, G. W. Gribble, N. Hill-Kapturczak, A. Agarwal and M. B. Sporn, Cancer Res., 2005, 65, 4789–4798 CrossRef CAS PubMed.
  122. L. Yang, N. Y. Calingasan, B. Thomas, R. K. Chaturvedi and M. Kiaei, PLoS One, 2009, 4, 1–14 Search PubMed.
  123. M. B. Sporn, K. T. Liby, G. W. Gribble, T. Honda, R. M. Kral and C. J. Meyer, US Pat., 8129 429 B2, 2012.
  124. J. D. Hayes, M. McMahon, S. Chowdhry and A. T. Dinkova-Kostova, Antioxid. Redox Signaling, 2010, 13, 1714–1748 CrossRef PubMed.
  125. M. B. Sporn, K. T. Liby, M. M. Yore, L. Fu, J. M. Lopchuk and G. W. Gribble, J. Nat. Prod., 2011, 74, 537–545 CrossRef CAS PubMed.
  126. B. Rayet and C. Gelinas, Oncogene, 1999, 18, 6938–6947 CrossRef CAS PubMed.
  127. S. Prasad, J. Ravindran and B. B. Aggarwal, Mol. Cell. Biochem., 2010, 336, 25–37 CrossRef CAS PubMed.
  128. A. D. J. Van, S. J. Martin, T. Kafri, D. R. Green and I. M. Verma, Science, 1996, 274, 787–789 CrossRef.
  129. C. Y. Wang, M. W. Mayo and A. S. J. Baldwin, Science, 1996, 274, 784–787 CrossRef CAS.
  130. Y. Yamamoto, M. J. Yin, K. M. Lin and R. B. Gaynor, J. Biol. Chem., 1999, 274, 27307–27314 CrossRef CAS PubMed.
  131. Y. Yamamoto and R. B. Gaynor, J. Clin. Invest., 2001, 107, 135–142 CrossRef CAS PubMed.
  132. A. Kumar, B. A. Shah, S. Singh, A. Hamid, S. K. Singh, V. K. Sethi, A. K. Saxena, J. Singh and S. C. Taneja, Bioorg. Med. Chem. Lett., 2012, 22, 431–435 CrossRef CAS PubMed.
  133. S. Prasad, E. Madan, N. Nigam, P. Roy, J. George and J. Shukla, Cancer Biol. Ther., 2009, 8, 1632–1639 CrossRef CAS.
  134. J. K. Kundu and Y. Surh, Pharm. Res., 2010, 27, 999 CrossRef CAS PubMed.
  135. V. R. Yadav, S. Prasad, B. Sung, R. Kannappan and B. B. Aggarwal, Toxins, 2010, 2, 2428–2466 CrossRef CAS PubMed.
  136. S. M. Attia, Oxid. Med. Cell. Longevity, 2010, 3, 238–253 CrossRef.
  137. C. Houée-Levin and K. Bobrowski, J. Proteomics, 2013, 92, 51–62 CrossRef PubMed.
  138. O. O. Shevchuk, E. A. Posokhova, L. A. Sakhno and V. G. Nikolaev, Exp. Oncol., 2012, 34, 314–322 CAS.
  139. L. Bruton, K. Parker and I. Buxton, in Goodman and Gilman's annual of pharmacology and therapeutics, The mcGrow-Hill companies, USA, 11th edn, 2008, pp. 867–888 Search PubMed.
  140. H. Mohan, in The textbook of pathophysiology, Jaypee brother's medical publishers (P) ltd, India, 5th edn, 2005, pp. 38–41 Search PubMed.
  141. I. Bouhlel, K. Valenti, S. Kilani, I. Skandrani, M. B. Sghaier, A. Mariotte, M. Dijoux-Franca, K. Ghedira, I. Hininger-Favier and F. Laporte, Toxicol. in Vitro, 2008, 22, 1264–1272 CrossRef CAS PubMed.
  142. R. Kaur and S. Arora, Free Radicals Biol. Med., 2013, 65, 131–142 CrossRef CAS PubMed.
  143. M. Sánchez, C. Theoduloz, G. Schmeda-Hirschmann, I. Razmilic, T. Yáñez and J. A. Rodríguez, Life Sci., 2006, 79, 1349–1356 CrossRef PubMed.
  144. V. Ramachandran and R. Saravanan, J. Funct. Foods, 2013, 5, 1077–1087 CrossRef CAS PubMed.
  145. Y. Yamaguchi, K. Yamada, N. Yoshikawa, K. Nakamura, J. Haginaka and M. Kunitomo, Life Sci., 2006, 79, 2474–2479 CrossRef CAS PubMed.
  146. P. Manna, J. Ghosh, J. Das and P. C. Sil, Toxicol. Appl. Pharmacol., 2010, 244, 114–129 CrossRef CAS PubMed.
  147. L. I. Somova, F. O. Shode, P. Ramnanan and A. Nadar, J. Ethnopharmacol., 2003, 84, 299–305 CrossRef CAS.
  148. H. S. Chung, Int. J. Food Sci. Nutr., 2009, 14, 49–53 CAS.
  149. T. Morita, Am. J. Hypertens., 2010, 23, 821 CrossRef PubMed.
  150. P. Bigoniya, A. Shukla and C. S. Singh, Int. J. Phytomed., 2010, 2, 240–254 Search PubMed.
  151. X. Peng, J. Liu, Z. Han, X. Yuan, H. Luo and M. Qiu, Food Chem., 2013, 141, 920–926 CrossRef CAS PubMed.
  152. T. B. Nguelefack, H. K. Mbakam, L. K. Tapondjou, P. Watcho, E. P. Nguelefack-Mbuyo, B. K. Ponou, A. Kamanyi and H. A. Park, Arch. Pharmacal Res., 2011, 34, 543–550 CrossRef CAS PubMed.
  153. C. Grace-Lynn, I. Darah, Y. Chen, L. Y. Latha, S. L. Jothy and S. Sasidharan, Molecules, 2012, 17, 11185–11198 CrossRef CAS PubMed.
  154. A. Manosroi, P. Jantrawut, E. Ogihara, A. Yamamoto, M. Fukatsu, K. Yasukawa, H. Tokuda, N. Suzuki, J. Manosroi and T. Akihisa, Chem. Biodiversity, 2013, 10, 1448–1463 CAS.
  155. P. J. Parker and J. Murray-Rust, J. Cell Sci., 2004, 117, 131–132 CrossRef CAS PubMed.
  156. S. Yan, E. Harja, M. Andrassy, T. Fujita and A. M. Schmidt, J. Am. Coll. Cardiol., 2006, 48, A47–A55 CrossRef CAS PubMed.
  157. W. S. Liu and C. A. Heckman, Cell Signal, 1998, 10, 529–542 CrossRef CAS.
  158. U. Kikkawa, H. Matsuzaki and T. Yamamoto, J. Biochem., 2002, 132, 831–839 CrossRef CAS.
  159. T. A. De Vries-Seimon, A. M. Ohm, M. J. Humphries and M. E. Reyland, J. Biol. Chem., 2007, 282, 22307–22314 CrossRef CAS PubMed.
  160. M. J. Humphries, A. M. Ohm, J. Schaack, T. S. Adwan and M. E. Reyland, Oncogene, 2008, 27, 3045–3053 CrossRef CAS PubMed.
  161. N. Pable and Z. Dong, Oncotarget, 2012, 3, 107–111 Search PubMed.
  162. L. Zhao, H. Xu, J. Qu, W. Zhao, Y. Zhao and J. Wang, Asian Pac. J. Cancer Prev., 2012, 13, 3631–3636 CrossRef.
  163. T. Fujioka, Y. Kashiwada, R. E. Kilkuskie, L. M. Cosentino, L. M. Ballas, J. B. Jiang, W. P. Janzen, I. S. Chen and K. H. Lee, J. Nat. Prod., 1994, 57, 243–247 CrossRef CAS.
  164. B. H. Wang and G. M. Polya, Phytochemistry, 1996, 41, 55–63 CrossRef CAS.
  165. L. Moon, Y. M. Ha, H. J. Jang, H. S. Kim, M. S. Jun, Y. M. Kim, Y. S. Lee, D. H. Lee, K. H. Son, H. J. Kim, H. G. Seo, J. H. Lee, Y. S. Kim and K. C. Chang, J. Ethnopharmacol., 2011, 133, 336–344 CrossRef CAS PubMed.
  166. L. Y. Mooi, N. A. Wahab, N. H. Lajis and A. M. Ali, Chem. Biodiversity, 2010, 7, 1267–1275 CAS.
  167. L. Y. Mooi, W. T. Yew, Y. S. Hsum, K. K. Soo, L. S. Hoon and Y. C. Chieng, Asian Pac. J. Cancer Prev., 2012, 13, 1177–1182 CrossRef.
  168. M. Hasmeda, G. Kweifio-Okai, T. Macrides and G. M. Polya, Planta Med., 1999, 65, 14–18 CrossRef CAS PubMed.
  169. P. Manna and P. C. Sil, Free Radical Res., 2012, 46, 815–830 CrossRef CAS PubMed.
  170. K. N. Lewis, J. Mele, J. D. Hayes and R. Buffenstein, Integr. Comp. Biol., 2010, 50, 829–843 CrossRef CAS PubMed.
  171. D. E. Shore and G. Ruvkun, Trends Cell Biol., 2013, 13, 409–420 CrossRef PubMed.
  172. F. Fallah-Rostami, M. A. Tabari, B. Esfandiari, H. Aghajanzadeh and M. Y. Behzadi, N. Am. J. Med. Sci., 2013, 5, 207–212 CrossRef PubMed.
  173. S. E. Jang, E. H. Joh, Y. T. Ahn, C. S. Huh, M. J. Han and D. H. Kim, Immunopharmacol. Immunotoxicol., 2013, 35, 396–402 CrossRef CAS PubMed.
  174. M. Maulik, D. Mc Fadden, H. Otani, M. Thirunavukkarasu and N. L. Parinandi, Oxid. Med. Cell. Longevity, 2013, 2013, 1–3 CrossRef PubMed.
  175. D. E. Shore, C. E. Carr and G. Ruvkun, PLoS Genet., 2012, 8, 1–15 Search PubMed.
  176. M. T. Crow, Circ. Res., 2004, 95, 953–995 CrossRef CAS PubMed.
  177. F. Madeo, N. Tavernarakis and G. Kroemer, Nat. Cell Biol., 2010, 12, 842–846 CrossRef CAS PubMed.
  178. G. P. Sykiotis, J. G. Habeos, A. V. Samuelson and D. Bohmann, Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 41–48 CrossRef CAS PubMed.
  179. Y. Huang, J. Li, Q. Cao, S. Yu, L. Xiong-Wen, Y. Jin, L. Zhang, Y. Zou and J. Ge, Life Sci., 2006, 78, 2749–2757 CrossRef CAS PubMed.
  180. S. D. Westerheide, J. D. Bosman, B. N. A. Mbadugha, T. L. A. Kawahara, G. Matsumoto, S. Kim, W. Gu, J. P. Devlin, R. B. Silverman and R. I. Morimoto, J. Biol. Chem., 2004, 279, 56053–56060 CrossRef CAS PubMed.
  181. H. Wang, V. Haridas, J. U. Gutterman and Z. Xu, Commun. Integr. Biol., 2010, 3, 205–208 CrossRef.
  182. T. Rabi and S. Banerjee, Mol. Carcinog., 2008, 47, 415–423 CrossRef CAS PubMed.
  183. C. Stack, D. Ho, E. Wille, N. Y. Calingasan, C. Williams, K. Liby, M. Sporn, M. Dumont and M. F. Beal, Free Radical Biol. Med., 2010, 49, 147–158 CrossRef CAS PubMed.
  184. M. L. Hyer, R. Croxton and M. Krajewska, Cancer Res., 2005, 65, 4799–4808 CrossRef CAS PubMed.
  185. V. H. Villar, M. Gomez, O. Vogler, J. M. Serra, J. Martin, V. Ruiz-Gutierrez, F. Barcelo and R. Alemany, Chem. Phys. Lipids, 2010, 163S, S57–S59 Search PubMed.
  186. K. Liby, T. Honda and C. R. Williams, Mol. Cancer Ther., 2007, 6, 2113–2119 CrossRef CAS PubMed.
  187. V. Zuco, R. Supino, S. C. Righetti, L. Cleris, E. Marchesi, C. Gambacorti-Passerini and A. Formelli, Cancer Lett., 2002, 175, 17–25 CrossRef CAS.

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.