Synthesis of 6-aminophenanthridines via palladium-catalyzed insertion of isocyanides into N-sulfonyl-2-aminobiaryls

Huanfeng Jiang*, Hanling Gao, Bifu Liu and Wanqing Wu
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China. E-mail: jianghf@scut.edu.cn

Received 18th February 2014 , Accepted 1st April 2014

First published on 1st April 2014


Abstract

A robust route to a diverse set of 6-aminophenanthridines via palladium-catalyzed C–H activation of N-sulfonyl-2-aminobiaryl and isocyanide insertion is reported. This transformation could also provide an important approach for building core frameworks of conjugated organic polymer materials.


The phenanthridine core is an important structural unit present in a variety of natural products with wide-ranging biological activities and pharmacological properties.1 Moreover, they are also important frameworks in materials science because of their optoelectronic properties.2 In view of this, numerous methods used for the preparation of phenanthridines have been developed.3–5 Despite numerous processes reported to construct these molecular scaffolds, the preparation of 6-aminophenanthridines (6APs) bearing diverse substituents at specific positions remains an attractive research area. Unfortunately, only a few examples were developed for constructing 6-aminophenanthridines.6 Meanwhile, they are widely known effective inhibitors of yeast prions and successfully used as drugs against mammalian prions.7 Thus, the development of new methodologies for the synthesis of 6-aminophenanthridines is highly desirable.

Isocyanides are powerful synthons in the formation of structurally appealing heteroarenes due to their amphoteric property.8 Very recently, Studer and Yu et al. exploited a novel strategy to prepare 6-substituted phenanthridines via C-radical addition to 2-isocyanobiphenyls.9 While we were preparing this manuscript, Ji's group reported a Co(acac)2-catalyzed isocyanide insertion with 2-aryl anilines via homolytic aromatic substitution (HAS) type to 6-aminophenanthridine derivatives.9h In addition, the reactions of transition metal-catalyzed one-pot cyclization combined with isocyanides for the construction of various heterocycles have also become very attractive in modern organic synthesis.10 Our group has also discovered that 6-aminophenanthridines could be prepared from 2′-bromo-[1,1′-biphenyl]-2-amine and isocyanides (Scheme 1).11 However, the major limitation of this method is that the starting material should be prefunctionalized as ortho-halogenated anilines. In contrast, the C–H functionalization approach is more economical and environmental. And palladium-catalyzed functionalization of C–H bonds to prepare useful N-containing heterocyclics is valuable and more applicable to industrial catalysis.12 Thus, we decided to investigate the synthesis of 6-aminophenanthridines (6APs) via Pd-catalyzed intramolecular C–H activation and isocyanide insertion (Scheme 1).


image file: c4ra02381a-s1.tif
Scheme 1 The reaction hypothesis.

With the standard condition in hand (see ESI for details), various N-sulfonyl-2-aminobiaryls and isocyanides were employed to explore this method's functional group compatibility (Table 1). Substituent effect of the aniline moiety of 2-phenylanilines was first evaluated under the optimized conditions. It was shown that both electron-donating groups and electron-withdrawing groups on aryl rings reacted smoothly to afford the corresponding phenanthridinones 3aa–3ha in good to excellent yields (53–90%). At the same time, 3ia, 3ja and 3ka were generated as the only product at the less hindered site when substrates bearing a meta substituent.13 In addition to 3ja, the yields of 3ia–3ma were satisfying. It was the same with 3la in good yield. When it came to the substituent effect of the 2-aryl moiety in N-sulfonyl-2-aminobiaryls, the process bore a diverse array of substituents on ortho, meta and para positions, including alkyl, aryl, halogen, ester, nitrile, and trifluoromethyl groups, which worked well and gave the desired products in good yields (3na–3ua). As expected, it is also applicable to heteroaromatic system such as benzothiophene, giving 3wa in good yield. In terms of various isocyanides investigated, isocyanides (isocyanocyclohexane, 2-isocyano-2,4,4-trimethylpentane, 1-isocyanobutane) were found to successfully undergo insertion and cyclization, and 3ad was obtained without the cleavage of Ts group.

Table 1 Substrate scope of 6-aminophenanthridinesa

image file: c4ra02381a-u1.tif

a Reaction conditions: all reactions were performed with 1a (0.1 mmol), 2a (0.15 mmol), Pd(OAc)2 (10 mol%), NaHCO3 (0.2 mmol), Cu(OAc)2 (0.2 mmol), and H2O (0.4 mmol) in DCE (2.0 mL) at 120 °C for 12 h.
image file: c4ra02381a-u2.tif


In order to gain insight into this reaction, we have developed an intermolecular kinetic isotope experiment by the employment of equivalent N-sulfonyl-2-aminobiaryl (1a) and its deuterated analogues 1a–d5 under the standard condition except the reaction time was reduced to 2 h (Scheme 2). Through the kinetic isotope effect of 1.5, the C–H activation mechanism was supported in our reaction.


image file: c4ra02381a-s2.tif
Scheme 2 Kinetic isotope experiments.

A plausible mechanism for the synthesis of 6-aminophenanthridines is depicted in Scheme 4. The reaction is initiated by the reaction of PdII with 1 to form the palladacycle intermediate A,14 followed by the migratory insertion of 2 into A to provide intermediate B.15 Subsequent reductive elimination of intermediate B forms Pd0 and intermediate C. And we were delightly to synthesize our intermediate C (Scheme 3). Then with the aid of H2O and base, Ts group is easily cleaved out of C to afford the desired product 3. Finally, the active PdII species is regenerated by oxidation of CuII salts and finished the catalytic cycle.


image file: c4ra02381a-s3.tif
Scheme 3 Study of the intermediate C.

image file: c4ra02381a-s4.tif
Scheme 4 Possible catalytic cycle.

It is noteworthy that 6-aminophenanthridines which the nitrogen are substituented can be further transformed to free amine product (4) from the deprotection of TFA.16 Moreover, the pyridin-2-amine skeleton derived from 6-aminophenanthridine is an important and reactive class of compound that it can enables rapid formation of the extended conjugated molecules (5) (Scheme 5).17 And in addition, compound 5 was an important core framework of conjugated organic polymer materials.18


image file: c4ra02381a-s5.tif
Scheme 5 Reaction with 6-aminophenanthridine.

In summary, a novel C–H activation and isocyanide insertion of N-sulfonyl-2-aminobiaryls for the synthesis of the corresponding functionalized 6-aminophenanthridines has been developed. From a synthetic point of view, this protocol represents a simple, efficient and practical way to construct 6-aminophenanthridines with diverse functional groups in good yields with high regioselectivity. The application of this method to the synthesis of 6-aminophenanthridine derivatives and other heterocyclic compounds is ongoing in our laboratory.

Acknowledgements

The authors thank the National Natural Science Foundation of China (21172076 and 20932002), the National Basic Research Program of China (973 Program) (2011CB808600), Guangdong Natural Science Foundation (10351064101000000), and the Fundamental Research Funds for the Central Universities (2014ZP0004 and 2014ZZ0046) for financial support.

References

  1. (a) S. Simeon, J. L. Rios and A. Villar, Pharmazie, 1989, 44, 593 CAS; (b) B. D. Krane, M. O. Fagbule and M. Shamma, J. Nat. Prod., 1984, 47, 1 CrossRef CAS; (c) O. B. Abdel-Halim, T. Morikawa, S. Ando, H. Matsuda and M. Yoshikawa, J. Nat. Prod., 2004, 67, 1119 CrossRef CAS PubMed; (d) M. Blanchot, D. A. Candito, F. Larnaud and M. Lautens, Org. Lett., 2011, 13, 1486 CrossRef CAS PubMed; (e) K. Merz, T. Muller, S. Vanderheiden, G. Eisenbrand, D. Marko and S. Bräse, Synlett, 2006, 20, 3461 Search PubMed; (f) A. A. Ali, H. M. El Sayed, O. M. Abdallah and W. Steglich, Phytochemistry, 1986, 25, 2399 CrossRef CAS; (g) S. D. Phillips and R. N. Castle, J. Heterocycl. Chem., 1981, 18, 223 CrossRef CAS PubMed.
  2. (a) N. Stevens, N. O'Connor, H. Vishwasrao, D. Samaroo, E. R. Kandel, D. L. Akins, C. M. Drain and N. J. Turro, J. Am. Chem. Soc., 2008, 130, 7182 CrossRef CAS PubMed; (b) J. Zhang and J. R. Lakowicz, J. Phys. Chem. B, 2005, 109, 8701 CrossRef CAS PubMed; (c) S. L. Bondarev, V. N. Knyukshto, S. A. Tikhomirov and A. N. Pyrko, Opt. Spectrosc., 2006, 100, 386 CrossRef CAS.
  3. (a) M. E. Budén, V. B. Dorn, M. Gamba, A. B. Pierini and R. A. Rossi, J. Org. Chem., 2010, 75, 2206 CrossRef PubMed; (b) V. A. Vaillard, M. E. Budén, S. E. Martín and R. A. Rossi, Tetrahedron Lett., 2009, 50, 3829 CrossRef CAS PubMed; (c) S. M. Barolo, X. Teng, G. D. Cuny and R. A. Rossi, J. Org. Chem., 2006, 71, 8493 CrossRef CAS PubMed; (d) J. K. Laha, S. M. Barolo, R. A. Rossi and G. D. Cuny, J. Org. Chem., 2011, 76, 6421 CrossRef CAS PubMed.
  4. (a) S. De, S. Mishra, B. N. Kakde, D. Dey and A. Bisai, J. Org. Chem., 2013, 78, 7823 CrossRef CAS PubMed; (b) L. M. Anna, C. M. Williams and B. Stefan, J. Org. Chem., 2011, 76, 9127 CrossRef PubMed.
  5. (a) T. Gerfaud, L. Neuville and J. P. Zhu, Angew. Chem., Int. Ed., 2009, 48, 572 CrossRef CAS PubMed.
  6. (a) F. Gug, S. Bach, M. Blondel, J.-M. Vierfond, A.-S. Martin and H. Galons, Tetrahedron, 2004, 60, 4705 CrossRef CAS PubMed; (b) F. Gug, N. Oumata, D. Tribouillard-Tanvier, C. Voisset, S. N. Bach, M. Blondel and H. Galons, Bioconjugate Chem., 2010, 21, 279 CrossRef CAS PubMed; (c) F. Gug, M. Blondel, N. Desban, S. Bouaziz, J.-M. Vierfond and H. Galons, Tetrahedron Lett., 2005, 46, 3725 CrossRef CAS PubMed.
  7. S. Bach, N. Talarek, J.-M. Vierfond, Y. Mettey, H. Galons, L. Meijer, C. Cullin and M. Blondel, Nat. Biotechnol., 2003, 21, 1075 CrossRef CAS PubMed.
  8. (a) A. Dömling, Chem. Rev., 2006, 106, 17 CrossRef PubMed; (b) A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru and V. G. Nenajdenko, Chem. Rev., 2010, 110, 5235 CrossRef CAS PubMed; (c) A. V. Lygin and A. de Meijere, Angew. Chem., Int. Ed., 2010, 49, 9094 CrossRef CAS PubMed; (d) A. Dömling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168 CrossRef; (e) V. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen and L. Balagopal, Acc. Chem. Res., 2003, 36, 899 CrossRef CAS PubMed.
  9. (a) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc and A. Studer, Angew. Chem., Int. Ed., 2013, 52, 10792 CrossRef CAS PubMed; (b) Y. Cheng, H. Jiang, Y. Zhang and S. Y. Yu, Org. Lett., 2013, 15, 5520 CrossRef CAS PubMed; (c) Q. L. Wang, X. C. Dong, T. B. Xiao and L. Zhou, Org. Lett., 2013, 15, 4846 CrossRef CAS PubMed; (d) M. Tobisu, K. Koh, T. Furukawa and N. Chatani, Angew. Chem., Int. Ed., 2012, 51, 11363 CrossRef CAS PubMed; (e) D. Leifert, C. G. Daniliuc and A. Studer, Org. Lett., 2013, 15, 6286 CrossRef CAS PubMed; (f) H. Jiang, Y. Z. Cheng, R. Z. Wang, M. M. Zheng, Y. Zhang and S. Y. Yu, Angew. Chem., Int. Ed., 2013, 52, 13289 CrossRef CAS PubMed; (g) B. Zhang, C. G. Daniliuc and A. Studer, Org. Lett., 2014, 16, 250 CrossRef CAS PubMed; (h) T.-H. Zhu, S.-Y. Wang, Y.-Q. Tao, T.-Q. Wei and S.-J. Ji, Org. Lett., 2014, 16, 1260 CrossRef CAS PubMed.
  10. (a) P. J. Boissarie, Z. E. Hamilton, S. Lang, J. A. Murphy and C. Suckling, Org. Lett., 2011, 13, 6256 CrossRef CAS PubMed; (b) J. Vicente, I. Saura-Llamas and J. García-López, Organometallics, 2009, 28, 448 CrossRef CAS; (c) J. Vicente, M. T. Chicote, A. J. Martínez-Martínez and A. Abellán-López, Organometallics, 2010, 29, 5693 CrossRef CAS; (d) G. V. Baelen, S. Kuijer, L. Rýček, S. Sergeyev, E. J. J. Janssen, F. U. W. de Kanter, B. Maes, E. V. A. Ruijter and R. Orru, Chem.–Eur. J., 2011, 17, 15039 CrossRef PubMed.
  11. B. F. Liu, Y. B. Li, M. Z. Yin, H. W. Huang and H. F. Jiang, Adv. Synth. Catal., 2012, 354, 2288 CrossRef CAS PubMed.
  12. (a) T. Vlaar, E. Ruijter, A. Znabet, E. Janssen, F. J. J. de Kanter, B. U. W. Maes and R. V. A. Orru, Org. Lett., 2011, 13, 6496 CrossRef CAS PubMed; (b) D. P. Curran and W. Du, Org. Lett., 2002, 4, 3215 CrossRef CAS PubMed; (c) P. J. Z. Boissarie, E. Hamil-ton, S. Lang, J. A. Murphy and C. J. Suckling, Org. Lett., 2011, 13, 6256 CrossRef CAS PubMed; (d) G. Qiu, G. Liu, S. Pu and J. Wu, Chem. Commun., 2012, 48, 2903 RSC; (e) G. Qiu, Y. He and J. Wu, Chem. Commun., 2012, 48, 3836 RSC; (f) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi and M. Murakami, Org. Lett., 2011, 13, 1429 CrossRef CAS PubMed; (g) G. V. Baelen, S. Kuijer, L. Rycek, S. Sergeyev, E. Janssen, F. J. J. de Kanter, B. U. W. R. Maes, E. R. uijter and V. A. Orru, Chem.–Eur. J., 2011, 17, 15039 CrossRef PubMed; (h) Y. Wang, H. G. Wang, J. L. Peng and Q. Zhu, Org. Lett., 2011, 13, 4604 CrossRef CAS PubMed.
  13. In order to prove our inference, we did a NOE test of 3ia, which the result was what we expected. As for the NOE spectrogram of 3ia, see the ESI..
  14. (a) S. W. Youn, J. H. Bihn and B. S. Kim, Org. Lett., 2011, 13, 3738 CrossRef CAS PubMed; (b) J. Vicente, I. Saura-Llamas, M.-J. Oliva-Madrid and J.-A. García-López, Organometallics, 2011, 30, 4624 CrossRef CAS; (c) M.-J. Oliva-Madrid, J.-A. García-López, I. Saura-Llamas, D. Bautista and J. Vicente, Organometallics, 2012, 31, 3647 CrossRef CAS.
  15. (a) J. Vicente, J.-A. Abad and W. Förtsch, Organometallics, 2001, 20, 2704 CrossRef CAS; (b) J. Vicente, J.-A. Abad and J. López-Serrano, Organometallics, 2005, 24, 5044 CrossRef CAS; (c) J. Vicente, I. Saura-Llamas, J.-A. García-López and B. Calmuschi-Cula, Organometallics, 2007, 26, 2768 CrossRef CAS; (d) J. Vicente and I. Saura-Llamas, Comments Inorg. Chem., 2007, 28, 39 CrossRef CAS.
  16. P. P. Sharp, M. G. Banwell, J. Renner, K. Lohmann and A. C. Willis, Org. Lett., 2013, 15, 2616 CrossRef CAS PubMed.
  17. (a) H. Cao, X. H. Liu, L. M. Zhao, J. H. Cen, J. X. Lin, Q. X. Zhu and M. L. Fu, Org. Lett., 2014, 16, 146 CrossRef CAS PubMed; (b) R.-L. Yan, H. Yan, C. Ma, Z.-Y. Ren, X.-A. Gao, G.-Sh. Huang and Y.-M. Liang, J. Org. Chem., 2012, 77, 2024 CrossRef CAS PubMed; (c) J. Zeng, Y. J. Tan, M. L. Leow and X. W. Liu, Org. Lett., 2012, 14, 4386 CrossRef CAS PubMed; (d) S. Santra, A. K. Bagdi, A. Majee and A. Hajra, Adv. Synth. Catal., 2013, 355, 1065 CrossRef CAS PubMed; (e) Z. Q. Wu, Y. Y. Pan and X. G. Zhou, Synthesis, 2011, 14, 2255 Search PubMed; (f) Y. F. Zhang, Z. K. Chen, W. L. Wu, Y. H. Zhang and W. P. Su, J. Org. Chem., 2013, 78, 12494 CrossRef CAS PubMed; (g) Y. Gao, M. Z. Yin, W. Q. Wu, H. W. Huang and H. F. Jiang, Adv. Synth. Catal., 2013, 355, 2263 CrossRef CAS PubMed; (h) H. He, J. Hao, H. Xu, Y. P. Mo, H. Y. Liu, J. J. Han and A. W. Lei, Chem. Commun., 2012, 48, 11073 RSC.
  18. W. Pisula, F. Dierschke and K. Müllen, J. Mater. Chem., 2006, 16, 4058 RSC.

Footnote

Electronic supplementary information (ESI) available: Typical experimental procedure and characterization for all products. See DOI: 10.1039/c4ra02381a

This journal is © The Royal Society of Chemistry 2014